Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / June / 26

第5讲 行列式的计算

  • Jun 26, 2017
  • Shawn
  • Linear Algebra
  • No comments yet
5.1 基本篇 • 例1: |■8(0&1&0&…&0@0&0&2&…&0@⋮&⋮&⋮&⋱&⋮@0&0&0&…&n−1@n&0&0&…&0)| ○ 定义法 § D=(−1)^N(23…n−1,1) n!=(−1)^(n−1) n! ○ 对角线法 § 最后一行交换 n−1 次至第一行 § D=(−1)^(n−1) |■8(n&0&0&…&0@0&1&0&…&0@0&0&2&…&0@⋮&⋮&⋮&⋱&⋮@0&0&0&…&n−1)|=(−1)^(n−1) n! ○ 按照第一列展开 § D=n(−1)^(n+1) |■8(1&0&0&…&0@0&2&0&…&0@0&0&3&…&0@⋮&⋮&⋮&⋱&⋮@0&0&0&…&n−1)| § =n(−1)^(n+1) (n−1)!=(−1)^(n+1) n! • 例2: |■8(0&−1&−1&2@1&−1&0&2@−1&2&−1&0@2&1&1&0)| ○ 高斯消元法 § |■8(0&−1&−1&2@1&−1&0&2@−1&2&−1&0@2&1&1&0)|=−|■8(1&−1&0&2@0&−1&−1&2@−1&2&−1&0@2&1&1&0)| § =−|■8(1&−1&0&2@0&−1&−1&2@0&1&−1&2@0&3&1&−4)|=−|■8(1&−1&0&2@0&−1&−1&2@0&1&−1&2@0&3&1&−4)| § =−|■8(1&−1&0&2@0&−1&−1&2@0&0&−2&4@0&0&−2&2)|=−|■8(1&−1&0&2@0&−1&−1&2@0&0&−2&4@0&0&0&−2)| § =−1×(−1)×(−2)×(−2)=4 ○ 展开法 § |■8(0&−1&−1&2@1&−1&0&2@−1&2&−1&0@2&1&1&0)|=|■8(0&−1&−1&2@1&0&1&0@−1&2&−1&0@2&1&1&0)| § =2(−1)^(1+4) |■8(1&0&1@−1&2&−1@2&1&1)|=−2|■8(1&0&1@0&2&0@2&1&1)| § =−2×2(−1)^(2+2) |■8(1&1@2&1)|=4 • 例3:已知 |■8(a_11&a_12&a_13@a_21&a_22&a_23@a_31&a_32&a_33 )|=1,求|■8(6a_11&−2a_12&−10a_13@−3a_21&a_22&5a_23@−3a_31&a_32&5a_33 )| ○ |■8(6a_11&−2a_12&−10a_13@−3a_21&a_22&5a_23@−3a_31&a_32&5a_33 )|=(−2)(−3)(5)|■8(a_11&a_12&a_13@a_21&a_22&a_23@a_31&a_32&a_33 )|=30 • 例4:|■8(a&b&c&d@a&a+b&a+b+c&a+b+c+d@a&2a+b&3a+2b+c&4a+3b+2c+d@a&3a+b&6a+3b+c&10a+6b+3c+d)| ○ 原式=|■8(a&b&c&d@0&a&a+b&a+b+c@0&2a&3a+2b&4a+3b+2c@0&3a&6a+3b&10a+6b+3c)| ○ =|■8(a&b&c&d@0&a&a+b&a+b+c@0&0&a&2a+b@0&0&3a&7a+3b)|=|■8(a&b&c&d@0&a&a+b&a+b+c@0&0&a&2a+b@0&0&0&a)|=a^4 • 例5:已知 |■8(a_1&a_2&a_3&…&a_n@a_1&a_1+a_2−x&a_3&…&a_n@a_1&a_2&a_2+a_3−x&…&a_n@⋮&⋮&⋮&⋱&⋮@a_1&a_2&a_3&…&a_(n−1)+a_n−x)|=0 ○ D=|■8(a_1&a_2&a_3&…&a_n@a_1&a_1+a_2−x&a_3&…&a_n@a_1&a_2&a_2+a_3−x&…&a_n@⋮&⋮&⋮&⋱&⋮@a_1&a_2&a_3&…&a_(n−1)+a_n−x)| ○ =|■8(a_1&a_2&a_3&…&a_n@a_1&a_1−x&a_3&…&a_n@a_1&a_2&a_2−x&…&a_n@⋮&⋮&⋮&⋱&⋮@a_1&a_2&a_3&…&a_(n−1)−x)| ○ =a_1 (a_1−x)(a_2−x)…(a_(n−x)−x)=0 ○ ⇒x=a_1 or x=a_2 … x=a_(n−1) • 例6: |■8(1&1&0&0@1&k&1&0@0&0&k&2@0&0&2&k)| ○ 高斯消元法 § D=|■8(1&1&0&0@0&k−1&1&0@0&0&k&2@0&0&2&k)|=|■8(k−1&1&0@0&k&2@0&2&k)| § =(k−1)|■8(k&2@2&k)|=(k−1)(k^2−4) ○ 拉普拉斯展开(按照第三第四行) § D=|■8(k&2@2&k)| (−1)^(3+4+3+4) |■8(1&1@1&k)|=(k^2−4)(k−1) 5.2 技巧篇I—利用行列式性质 • 例1: |■8(x&a&a&…&a@a&x&a&…&a@a&a&x&…&a@⋮&⋮&⋮&⋱&⋮@a&a&a&…&x)| ○ 原式=|■8(x+(n−1)a&a&a&…&a@x+(n−1)a&x&a&…&a@x+(n−1)a&a&x&…&a@⋮&⋮&⋮&⋱&⋮@x+(n−1)a&a&a&…&x)| ○ =(x+(n−1)a)|■8(1&a&a&…&a@1&x&a&…&a@1&a&x&…&a@⋮&⋮&⋮&⋱&⋮@1&a&a&…&x)| ○ =(x+(n−1)a)|■8(1&a&a&…&a@0&x−a&a&…&a@0&0&x−a&…&a@⋮&⋮&⋮&⋱&⋮@0&0&0&…&x−a)| ○ =(x+(n−1)a) (x−a)^(n−1) • 例2:|■8(a^2&(a+1)^2&(a+2)^2&(a+3)^2@b^2&(b+1)^2&(b+2)^2&(b+3)^2@c^2&(c+1)^2&(c+2)^2&(c+3)^2@d^2&(d+1)^2&(d+2)^2&(d+3)^2 )| ○ 原式=|■8(a^2&(a+1)^2&2a+3&6a+9@b^2&(b+1)^2&2b+3&6b+9@c^2&(c+1)^2&2c+3&6c+9@d^2&(d+1)^2&2d+3&6d+9)|=0 • 例3(三线型a):|■(1&a_1&&&&@−1&1−a_1&a_2&&&@&−1&1−a_2&a_3&&@&&−1&1−a_3&⋱&@&&&⋱&⋱&a_n@&&&&−1&1−a_n )| ○ 按行从上往下加 ○ 原式=|■(1&a_1&&&&@&1&a_2&&&@&&1&a_3&&@&&&1&⋱&@&&&&⋱&a_n@&&&&&1)|=1 • 例3(三线型b):|■(−a_1&a_1&&&&@&〖−a〗_2&a_2&&&@&&−a_3&a_3&&@&&&⋱&⋱&@&&&&−a_n&a_n@1&1&1&…&1&1)| ○ 按列从左往右加 ○ 原式=|■(−a_1&&&&&@&〖−a〗_2&&&&@&&−a_3&&&@&&&⋱&&@&&&&−a_n&@1&2&3&…&n&n+1)|=(−1)^n (n+1) a_1…a_n • 例3(三线型c):|■(1&2&3&…&n−1&n@1&−1&&&&@&2&−2&&&@&&3&−3&&@&&&⋱&⋱&@&&&&n−1&1−n)| ○ 按列从右往左加 ○ 原式=|■(n(n+1)/2&…&…&…&…&n@&−1&&&&@&&−2&&&@&&&−3&&@&&&&⋱&@&&&&&1−n)| ○ =n(n+1)/2 (−1)^(n−1) (n−1)!=(−1)^(n−1)/2 (n+1)! • 例4(箭型a):|■(a_0&1&1&…&1@1&a_1&&&@1&&a_2&&@⋮&&&⋱&@1&&&&a_n )| ○ 令 r_1−1/a_1 r_2 得|■(a_0−1/a_1 &0&1&…&1@1&a_1&&&@1&&a_2&&@⋮&&&⋱&@1&&&&a_n )| ○ =|■(a_0−1/a_1 …−1/a_n &0&0&…&0@1&a_1&&&@1&&a_2&&@⋮&&&⋱&@1&&&&a_n )| ○ =a_1…a_n (a_0−1/a_1 …−1/a_n ) • 例4(箭型b):|■8(1+a_1&1&1&…&1@1&1+a_2&1&…&1@1&1&〖1+a〗_3&…&1@⋮&⋮&⋮&⋱&⋮@1&1&1&…&1+a_n )| ○ 原式=|■8(1+a_1&1&1&…&1@−a_1&a_2&0&…&0@−a_1&0&a_3&…&0@⋮&⋮&⋮&⋱&⋮@−a_1&0&0&…&a_n )| ○ 令 r_1−1/a_2 r_2, r_1−1/a_3 r_3… r_1−1/a_n r_n 得 ○ |■8(1+a_1+a_1/a_2 +…+a_1/a_n &0&0&…&0@−a_1&a_2&0&…&0@−a_1&0&a_3&…&0@⋮&⋮&⋮&⋱&⋮@−a_1&0&0&…&a_n )| ○ =(1+a_1+a_1/a_2 +…+a_1/a_n )(a_2 a_3…a_n )=(1+1/a_1 +…1/a_n ) a_1…a_n 5.3 技巧篇II—利用行列式的展开 • 例1(两线型a):|■(a&b&&&@&a&b&&@&&⋱&⋱&@&&&a&b@b&&&&a)| ○ 原式=a(−1)^(1+1) |■(a&b&&@&⋱&⋱&@&&a&b@&&&a)|+b(−1)^(n+1) |■(b&&&@a&b&&@&⋱&⋱&@&&a&b)| ○ =a(−1)^(1+1) a^(n−1)+b(−1)^(n+1) b^(n−1)=a^n+(−1)^(n+1) b^n • 例1(两线型b):|■(a&&&&b@&a&&&@&&⋱&&@&&&a&@b&&&&a)| ○ 原式=a(−1)^2 |■(a&&&@&⋱&&@&&a&@&&&a)|+b(−1)^(n+1) |■(&&&b@a&&&@&⋱&&@&&a&)| ○ =a(−1)^2 a^(n−1)+b(−1)^(n+1) b(−1)^(1+n−1) |■(a&&@&⋱&@&&a)|_((n−2)×(n−2)) ○ = a(−1)^2 a^(n−1)+b(−1)^(n+1) b(−1)^(1+n−1) a^(n−2)=a^n−b^2 a^(n−2) • 例1(两线型c):D_(奇×奇)=|■(a&&&&&&b@&⋱&&&&⋰&@&&a&&b&&@&&&a&&&@&&b&&a&&@&⋰&&&&⋱&@b&&&&&&a)| ○ 令 r_i−b/a r_1 (i>(n−1)/2)得 ○ |■(a&&&&&&b@&⋱&&&&⋰&@&&a&&b&&@&&&a&&&@&&&&a−b^2/a&&@&&&&&⋱&@&&&&&&a−b^2/a)| ○ =a^((n+1)/2) (a−b^2/a)^((n−1)/2)=a(a^2−b^2 )^((n−1)/2) • 例2:|■(−a_1&a_1&&&&@&〖−a〗_2&a_2&&&@&&−a_3&a_3&&@&&&⋱&⋱&@&&&&−a_n&a_n@1&1&1&…&1&1)|_((n+1)×(n+1)) ○ 全部加到第一列得 ○ |■(&a_1&&&&@&〖−a〗_2&a_2&&&@&&−a_3&a_3&&@&&&⋱&⋱&@&&&&−a_n&a_n@n+1&1&1&…&1&1)|_((n+1)×(n+1)) ○ =(n+1) (−1)^(n+1+1) |■(a_1&&&&@〖−a〗_2&a_2&&&@&−a_3&a_3&&@&&⋱&⋱&@&&&−a_n&a_n )|_(n×n) ○ =(−1)^n (n+1) a_1 a_2…a_n 5.4 提高篇 • 例1:|■(x&−1&&&@&x&−1&&@&&⋱&⋱&@&&&x&−1@a_n&a_(n−1)&…&a_2&a_1+x)|_(n×n) ○ 法1:从后往前将后一列乘 x 加到前一列 § 原式=|■(0&−1&&&@&&⋱&&@&&&−1&@&&&&−1@x^n+a_1 x^(n−1)+…+a_n&…&…&x^2+a_1 x+a_2&a_1+x)| § =(x^n+a_1 x^(n−1)+…+a_n ) (−1)^(n+1) |■(−1&&&@&−1&&@&&⋱&@&&&−1)|_((n−1)×(n−1)) § =(x^n+a_1 x^(n−1)+…+a_n ) (−1)^(n+1) (−1)^(n−1)=x^n+a_1 x^(n−1)+…+a_n ○ 法2:直接展开(递推法) § 原式=x(−1)^2 |■(x&−1&&@&⋱&⋱&@&&x&−1@a_(n−1)&…&a_2&a_1+x)|+a_n (−1)^(n+1) |■(−1&&&@x&−1&&@&⋱&⋱&@&&x&−1)| § =x(−1)^2 |■(x&−1&&@&⋱&⋱&@&&x&−1@a_(n−1)&…&a_2&a_1+x)|+a_n § 将原式记为 D_n,则有 § D_n=xD_(n−1)+a_n=x(xD_(n−2)+a_(n−1) )+a_n=…=x^n+a_1 x^(n−1)+…+a_n • 例2: ○ 求证 § |■8(a_11+x&…&a_1n+x@⋮&⋮&⋮@a_n1+x&…&a_nn+x)|=|■8(a_11&…&a_1n@⋮&⋮&⋮@a_n1&…&a_nn )|+x∑_(i=1)^n▒∑128_(j=1)^n▒A_ij § (其中A_ij 为|■8(a_11&…&a_1n@⋮&⋮&⋮@a_n1&…&a_nn )|的代数余子式) ○ 证明 § |■8(a_11+x&…&a_1n+x@⋮&⋮&⋮@a_n1+x&…&a_nn+x)| § =|■8(a_11&…&a_1n@⋮&⋮&⋮@a_n1&…&a_nn )|+|■8(x&a_12&…&a_1n@⋮&⋮&⋮&⋮@x&a_n2&…&a_nn )|+|■8(a_11&x&…&a_1n@⋮&⋮&⋮&⋮@a_n1&x&…&a_nn )|+…+|■8(a_11&…&x@⋮&⋮&⋮@a_n1&…&x)| § =|■8(a_11&…&a_1n@⋮&⋮&⋮@a_n1&…&a_nn )|+x∑_(i=1)^n▒A_i1 +x∑_(i=1)^n▒〖A_i2+…+x∑_(i=1)^n▒A_in 〗 § =|■8(a_11&…&a_1n@⋮&⋮&⋮@a_n1&…&a_nn )|+x∑_(i=1)^n▒∑128_(j=1)^n▒A_ij • 例3 ○ 已知 § a_1,a_2…a_n 为互不相同的实数 § b_1,b_2…b_n 为任意一组实数 ○ 求证 § 存在唯一的多项式 f(x)=c_0+c_1 x+…c_(n−1) x^(n−1) § 使得 f(a_i )=b_i, (i=1,2…n) ○ 证明 § {█(c_0+c_1 a_1+…c_(n−1) a_1^(n−1)=b_1@c_0+c_1 a_2+…c_(n−1) a_2^(n−1)=b_2@⋮@c_0+c_1 a_n+…c_(n−1) a_n^(n−1)=b_n )┤ § 系数行列式 D=|■8(1&a_1&a_1^2&…&a_1^(n−1) @1&a_2&a_2^2&…&a_2^(n−1)@⋮&⋮&⋮&⋱&⋮@1&a_(n−1)&a_(n−1)^2&…&a_(n−1)^(n−1)@1&a_n&a_n^2&…&a_n^(n−1) )| § =V_n=∏_(i≤i<j≤n)▒〖(a_j−a_i 〗) • 例4:|■8(1&1&1&…&1@a_1&a_2&a_3&…&a_n@a_1^2&a_2^2&a_3^2&…&a_n^2@⋮&⋮&⋮&⋮&⋮@a_1^(n−2)&a_1^(n−2)&a_1^(n−2)&…&a_1^(n−2)@a_1^n&a_2^n&a_3^n&…&a_n^n )| ○ 构造 D_(n+1)=|■8(1&1&1&…&1&1@a_1&a_2&a_3&…&a_n&x@a_1^2&a_2^2&a_3^2&…&a_n^2&x^2@⋮&⋮&⋮&⋮&⋮&⋮@a_1^(n−2)&a_1^(n−2)&a_1^(n−2)&…&a_1^(n−2)&x^(n−2)@a_1^(n−1)&a_1^(n−1)&a_1^(n−1)&…&a_1^(n−1)&x^(n−1)@a_1^n&a_2^n&a_3^n&…&a_n^n&x^n )| ○ =(∏_(i≤i<j≤n)▒〖(a_j−a_i)〗)(├0(x−a_1 ┤0)(x−a_1 )…(x−a_n)) ○ D_(n+1) 为 n 次多项式,可以写为 c_0+c_1 x+…c_(n−1) x^(n−1)+c_n x^n ○ 同时 D_(n+1) 展开得:D_(n+1)=(−1)^(n+n+1) D ○ 对比系数得 ○ D=−C_(n−1)=−(∏_(i≤i<j≤n)▒(a_j−a_i ) )(−a_1−a_2−…a_n ) ○ =(∏_(i≤i<j≤n)▒(a_j−a_i ) )(∑▒a_n )
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP