Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / 16

Math 375 – 11/15

  • Nov 16, 2017
  • Shawn
  • Math 375
  • No comments yet
Theorem • Statement ○ If dim⁡V=dim⁡W<∞, then for linear map T:V→W ○ injective ⟺ surjective ⟺ bijective • Proof ○ By Rank-Nullity Theorem § dim⁡W=dim⁡V=dim⁡N(T)+dim⁡Range(T) ○ If T is injective § ⇒dim⁡N(T)=0 § ⇒dim⁡W=dim⁡Range(T) § ⇒ T is surjective § ⇒T is bijective ○ If T is not injective § ⇒dim⁡N(T)>0 § ⇒dim⁡W≠dim⁡Range(T) § ⇒T is not surjective § ⇒T is not bijective Left Inverse and Right Inverse • If both left inverse and right inverse exists • Then they are the same • Suppose ○ f:V→W ○ g,h:W→V ○ gf=id_V (i.e. g is the left inverse of T) ○ fh=id_w (i.e. h is the right inverse of T) • Then ○ g=g(fh=(gf)h=h Injective and Null Space • Proof: T injective⇒N(T)={0} ○ If T is injective ○ then the only one element mapped to 0 is 0 itself. ○ Therefore N(T)={0} • Proof: N(T)={0}⇒T injective ○ If T(x)=T(y), then ○ T(x)−T(y)=T(x−y)=0 ○ So x−y∈N(T) ○ ⇒x=y ○ Therefore T is injective
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP