Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2018 / February / 25

Math 541 – 2/23

  • Feb 25, 2018
  • Shawn
  • Math 541
  • No comments yet
Theorem 20 • Let G=⟨g⟩ be a cyclic group • Statement (1) ○ Every subgroup of G is cyclic ○ More precisely, if H≤G, then either H={1} or ○ H=⟨g^d ⟩, where d is the smallest positive integer s.t. g^d∈H • Proof (1) ○ Assume H≠{1} ○ Choose a≠0 s.t. g^a∈H, then (g^a )^(−1)=g^(−a)∈H ○ Thus, H contains some positive power of g ○ Let S≔{b∈Z( 0) |g^b∈H}, then S≠∅ ○ By the Well-Ordering Principle, S contains a minimum element d ○ Thus, ⟨g^d ⟩⊆H; we must show H⊆⟨g^d ⟩ ○ Let h∈H, then h=g^a for some a∈Z ○ Choose q,r∈Z s.t. a=qd+r, 0≤r d ○ g^d∈H⇒g^(−qd)∈H⇒g^a g^(−qd)∈H⇒g^r∈H ○ If r 0, then r∈S, which is impossible, since r d ○ Therefore r=0 ○ So g^a=g^qd∈⟨g^d ⟩⇒H⊆⟨g^d ⟩ ○ Therefore H=⟨g^d ⟩ • Statement (2) ○ If G is finite, then for all positive integers a dividing n ○ ∃! subgroup H≤G of order a ○ Moreover, this subgroup is ⟨g^d ⟩, where d=n/a • Proof (2) ○ Let a be a positive divisor of n=|G| ○ Let d≔n/a⇒n/d=a ○ Existence § |⟨g^d ⟩|=n/((d,n) )=n/d=a by Proposition 19 § This proves existence ○ Uniqueness § Without loss of generality, assume a 1 § Suppose H≤G and |H|=a § We must show H=⟨g^d ⟩ § By (1), H=⟨g^b ⟩, where b is the smallest positive integer s.t. g^b∈H § We have n/d=a=|H|=|⟨g^b ⟩|=n/((n,b) ) by Proposition 19 § Thus d=(n,b) i.e. d|b § Thus g^b∈⟨g^d ⟩⇒⟨g^b ⟩≤⟨g^d ⟩ § Since |⟨g^b ⟩|=|⟨g^d ⟩|, ⟨g^b ⟩=⟨g^d ⟩ § i.e. H=⟨g^d ⟩ Subgroups Generated by Subsets of a Group (Section 2.4) • Lemma: If {H_i }_(i∈I) is a family of subgroups of G, then ⋂136_(i∈I)▒〖H_i≤G〗 ○ Let H≔⋂136_(i∈I)▒H_i ○ H≠∅ because 1∈H_i, ∀i∈I ○ Let h1,h2∈H, then h1,h2∈H_i, ∀i∈I ○ ⇒h1 h2^(−1)∈H_i,∀i∈I ○ ⇒h1 h2^(−1)∈H • Definition ○ Let G be a group and A⊆G ○ The subgroup generated by A is ○ the intersection of every subgroup of G containing A ○ ⟨A⟩≔⋂8_█(H≤G@A⊆H)▒H • Example ○ If A=∅, then ⟨A⟩={1} ○ If A={1}, then ⟨A⟩={1}
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP