Ch 1: Simple Iteration Method

Wednesday, September 5, 2018 12:52 PM

Motivation
e Goal: given f(x) = 0, find x

e Motivation for numerical methods

o ax+b=0=>x=—-—

a
5 —b +Vb? — 4ac
o ax“+bx+c=0=>x= a

o i
o ax®+ bx* + cx3 4+ dx? + ex + f = 0 = No formula!

e Ifthe order of polynomial is = 5, there is no explicit zero formula

Bolzano's Theorem (Theorem 1.1)

e Statement
o Let f be areal-valued continuous function on the interval [a, b]
o Iff(a)f(b) <0,then3¢ € [a,b]st.f(§)=0

¢ Explanation
o Ifa continuous function has values of opposite sign inside an interval
o Thenithas aroot in that interval

e Proof
o By the Intermediate Value Theorem

¢ Note

o This theorem does not guarantee the uniqueness of solution
Brouwer’s Fixed Point Theorem (Theorem 1.2)
e Statement
o Ifg € C,and g(x) € [a,b] forx € [a, b], then 3¢ € [a,b] s.t. g(§) =¢&

o Here, the real number ¢ is called the fixed point of g




¢ Proof
o Letf(x):=x—g(x)
o Then, f(a)f(b) = (a - g(a)) (b - g(b)) <0
>0

<0

o By the Intermediate Value Theorem, 3¢ € [a,b] s.t. f(§) =0

o Thereforeé —g(é§) =0 g(&) =¢
e Why care about fixed point?

o Finding fixed point is numerically easier in the sense of iteration

Simple lteration
e Algorithm
o Initial guess: x, € [a, b]
o Iterate: x;,; = g(x)
o Stop when |x,;1 — x| < & where ¢ is a small number

¢ Example
1 1
o Giveng(x) = > x? + > , the fixed point of g should satisfy

_1! 2+1 o x2 -2 +1—0
x—2x 2 X X 2—

1
o Letf(x):=x?—-2x+ > then we need to find the roots of f

o Analytical method

2
= x=1i\/7_z1.70r0.3
o Numerical method
u x0=1
3
" x1=g(x0)=g(1)=1=0.75
() = 3 _17 0.53
=g(x,) = 17 0.39
x3_gx2 _g 32 ~ .

¢ Counter-example
o Suppose f(x) = x%2 -2
o Then the roots of f should satisfy f(x) =0 © x? =2 x = o

2
o Letxgyq =g0xy) = - andx, = 1,thenx; =2,x, =1,x3 =2+
k

2
o Here, the sequence {x; } diverges for g(x) = o
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Two Main Questions Over This Chapter
e When does x;,.; = g(x;) converge?
o Iftheiteration is unstable
" xppq = g(xp) diverges
o Iftheiteration is stable
* The contraction argument guarantees convergence
* And the convergence rate is linear
e Given f(x), how to find g(x)?
o There are infinitely many g for a given f aslongas f(x) =0 & g(x) = x
o Possible choice for g(x)
" gx) =x+f(x),or
m g(x)=x+In(f(x)+1)

o Newton's method (and secant method) will guarantee a contracting g(x)

Contractions

e Definition
o Let g be areal-valued continuous function on the interval [a, b]
o Then g is a contraction on [a, b] if 3L € (0,1) s.t.
o |g(x)—gW)| < Llx —y|,Vx,y € [a, b] (Lipschitz condition)
o Here, L is called Lipschitz constant

¢ Remark on Lipschitz condition
o |g(x) =g <Llx—yl,Vx,y € [a,b]

=>I‘_q(x}—‘_q(y)l<
lx =yl —
Ig(x)—g(y)l<

L

o = lim L

y-x  |x =yl

o = |g'(x)] £L <1 (assume g is differentiable)

Contraction Mapping Theorem (Theorem 1.3 & 1.4 & 1.5)

e Statements
o Let g be a contraction on [a, b]
o Suppose g(x) € [a,b],Vx € [a, b]. Then
(1) 3¢ €elab]stg)=¢
(i.e. There exists a fixed point)
(2) {x}4+1 = g(x;)} convergesto &, Vx, € [a, b]
(i.e. The iterative algorithm works)

(3) Ifthe iteration stop at |x; — é| < &, then
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In|x; — xo| — ln(s(l - L))
ksl In(1/L)

where [x] is the largest integer less than or equal to x
¢ Proof for (1)
o See Theorem 1.2

¢ Proof for (2)
O |xp41 — &l =19(Cx) — g(§)l

~—
Ext1

o < L|x, — &| by Lipschitz condition
Ex

o < L?|xp_q —&|,since |x;, — &| < L |x,_; — &| by induction
N—— N—— N ——
Eg-1 Ep Ep—1

o <Ll |xy—¢&| > 0ask > o
E,
0

e Proof for (3)
o From the proof for (2), we know that
» B, <LFE,<¢

o Takinglog on both side, we obtain
k < log, —
= logy, E,

o Calculate E,
" Ey=Ixo—&l=1Ixo—x1 + 2, — &I
< lxo — x4 + x4 — & < [x0 — 21| + Llxo — €|
- iEosle_xll‘l‘L'Eo

|21 — xol

s S F <
0= 1-1L
o Therefore

e(1—L) Inlx; — x| — ln(s(l — L))
X, — %0l In(1/L)

" k> logLﬁ = log,,
1-1L

¢ Corollary

o Given g:[a,b] = [a,b],and g € C'[a, b]

o If|g’'(x)|] £ L < 1, then the sequence {x;, = g(x;_1)} converges to ¢
¢ Remark on Corollary

o Ifwerelax|g'(x)] < 1tobejust|g'(é)| <1

o Then when xj is close to &, {x; } will converge to ¢

o Since in a small neighborhood of &, g’ (x)~|g'(¢)| < 1
Stability of Fixed Point (Theorem 1.3)
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e Stable Fixed Point
o Ifé =g(&),and|g'(¢)| < 1, then ¢ is a stable fixed point
o A stable fixed point can be found via {x;,; = g(xx)}
¢ Unstable Fixed Point
o Ifé =g(&),and |g’'(¢)| > 1, then ¢ is a unstable fixed point

o If¢ is an unstable fixed point, then {x;,,; = g(x;)} won't converge to ¢

Rate of Convergence (Definition 1.4 & 1.7)

e Supposeé = l}im Xy, and define Ej, = |x;, — &|

An algorithm is said to converge linearly if

Ej41

o lim = u, for some constant u € (0,1)

k—oo

k

An algorithm is said to converge superlinearly if

. Exiq
o lim =

0
k—co Ek

An algorithm is said to converge quadratically if

;’1 = u, for some constant u > 0
k

o lim
k—oo

An algorithm is said to converge with order q if

E
o lim k—Zl = u,for some constant u > 0
k— oo Ek

f(x) =e* —x — 2 (Example 1.7)
¢ Define g(x) =e* -2

o We observed that g(x) maps [1,2] to [1,2]
» By the Fixed Point Theorem, 3¢ € [1,2]s.t. g(§) = ¢
» We need to check whether g(x) satisfies the Lipschitz condition
= g'(§) =€l elet,e?]

=1g9'I>1

» = unstable fixed point
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* = the algorithm won't work
o And g(x) also maps [-2,—1] to [—2,—1]
» By the Fixed Point Theorem, 3¢ € [1,2] s.t. g(§) = ¢
=g @) =elele?e]
" =>g'@l<1
= = stable fixed point
* =run{xg; = g(x)}foré

¢ Define g(x) = In(x + 2)

I i
P
3 -2 21 I 1 2 3
/ I — log (2 +x)
—2-. X
4l
—e6lL
o We observed that g(x) maps [1,2] to [1,2]
SN B 1
I8 =3¢ |3

= = g'@@I<1
» = stable fixed point
" > run{xg4q = g(x,)} forg

o And g(x) also maps (—2,—1) to (—2,—1)

1
" g (f)=€+—26(1,+°°)

=1g'O1>1

» = unstable fixed point

» = the algorithm won't work
e Remark
o x=e*-2=f(x)=e*—x—-2
» We have a stable fixed point § € [—2,—1], and a unstable ¢ € [1,2]
o x=Inx+2)=2e*=x+2=>fx)=e*—x—-2
» We have a stable fixed point ¢ € [1,2], and a unstable ¢ € [-2, —1]
o Therefore the choice of g will affect the convergence behavior

o So how can we design a function g(x) s.t. every fixed point is stable?

Newton’s Method (Definition 1.6)

e In Newton's method, g(x) is defined as
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f(x)
f'(x)
e It'sobviousthatf(§) =0 g(§) =¢

o gx)=x-

¢ Why the fixed points of g is stable
o We want to show that |[g'(§)| < 1
PACOIN ' <f(X)>
e fr(x)
i (f) flf=ff . ff

o gx)=x-

2 LTy

@Y 0
A <1 FeoT )‘ FeOT

s lg@ =L 0

Convergence of Newton's Method (Theorem 1.8)

fl

o

o

e Statement

¢ Assumption
o f(§)=0
f€C%in[é —6,& + 8] = Is,since we need to use f' and f"’

o

o

f' (&) # 0, since it will appear at the denominator
|f "(%)

© !
'

<A (Vx,y€ls)

1
[xo — & < 1 (i. e. The initial guess is not too far away from &)

O

e Proof

o Expand f(§) at x;, to obtain f(x;) and f'(x)
= f) =flr+§—x)
= FO0)+ F G =2 5 () e — O +
(by Taylor expansion of f)

1
= = f0g) + )€ —x) + Ef”(ek)(xk —$)?
(for some constant 6;, € (xy, ), by the Mean Value Theorem)

()
')

1

in x; 44 using F, since we already know <A

o Express

(x1)
f'(xx)
= Byassumption, f(§) =0

1
= = flg) + fOa) € —xi) +Ef”(9k)(xk -&)*=0

12
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1
" = fxg) = __f”(ek)(xk — &2 = f(x) (€ — x)

f(xk) 1f”(9k)
f fe)  2f ()

o Compute E; 4, and express it with E},

(€ =2 = —x)

* Epyr = |xger — &l =1gl) — €|

_ <x _f(xk)>_€|
)

”9
- {xk—[ 1706 )—(s‘—xk)]}—f’

2 f' ()
11"(6k) ‘
= |xp +5 —xp)*+&—x
3 e € M HE =€
11" (6x)
o e
2[f"(xr)
1I£760)| o
2| f )
o Show the algorithm converges
= Byassumption, |x; —&| < —,and ‘f”(x)‘ <A (Vx,y €ls)
A ')
So,E, f”(gk)EE Lol = tp Soasko+
. - c—- == - — +00
T < A

» Therefore x;, converges to &

o Show the algorithm converges quadratically

L Bea _17760] 1
E;? 21f" )|~ 2
* Ask — 4o, both x; and 6, converge to
Epyr  1|f7 () < A]
= Thus, lim == = u,where u € | 0,=| is a constant
kove B2 2|f/@)| K 2

Secant Method (Definition 1.8)

e Motivation
o Sometimes f' can be hard to find in Newton's method

o Butwe can approximate f' using a difference quotient

fOa) — f(xk-1)

Xk — Xk-1

o ief'(xy) =

¢ Definition

Xk — Xk-1

O Xpy1 = X — f(xk)/<

e Note

fOa) — fxk-1) X — Xg—1
) Sl <f(xk) - f(xk_1)>

o The secant method requires two initial values x, and x;
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Convergence of Secant Method (Theorem 1.10)
e Statement
o Letf €CHE—6,6+8]st.f(§)=0andf'(§) #0
o Ifxg,x; is close to &, then {x;.; = g(x;)} converges at least linearly
e Proof
o WLOG, assume a = f'(§) > 0 in a small neighborhood of ¢
o Choose I be a neighborhood of ¢ such that

3 5
. 0<Za<f’(x)<zaf,\7’xel

o Compute x4

" Xg41 = Xg — f(xk)/<f(xk) _ f(xk—1)>

X — Xk-1

= By the Mean Value Theorem

0
fGo) - F©

o = =10 = f@) = () (o~ §), and
feo) = fGimd) _ o,
I T A

o forsome 0 € [xy, Xk—11, Mk € (xx, &)

) (x =9

» Therefore, x;,1 = xi

f'(6x)
o Check iax! <1
k
" Exi1 = X1 —§ = E _;'EZS Be=11 _;'EZS] g
Epy1 f'(me) Sa/4\ _2
"2 Ex [1_f'(9k) <<1_3a/4>_§<1

o Therefore secant method converges at least linearly
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Ch 2: Solution of Systems of Linear Equations

Friday, December 7, 2018 10:52 PM
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LU Decomposition

Monday, September 17, 2018 9:56 AM

What is Matrix

¢ A matrixis alist of numbers

ai1  Adgz Ain

A _ | Q21 Q22 Qon
© Amxn = | : :
Om1  Am2 Amn

¢ A matrixis a list of column vectors
—_— —
o A= [all as, -, an]
¢ A matrixis a list of row vectors
—_—
by
b,

—

b
e A matrixis a function

o Given A, xn: R™ > R™ and y,,x1 = AmxnXnxi- Then

X1 n
o §=A%=[a...al|: =2xi5[
Xn =1
— —
b, b, %
Oj}’:A)_C): b.Z .')_C)= bZ.x
) B

Gaussian Elimination (Section 2.2)
e Introduction
o Gaussian elimination is an algorithm for solving systems of linear equations

o A sequence of elementary row operations is performed to modify the matrix into the
upper-triangular form

e Example
1 1 1 . 6 .
o GivenA=|2 4 2 ]andb=[16],find5c’s.t.A5c’=b
-1 5 —4 -3
o We want to generate as many zeros as possible below the diagonal
1 1 17 _ [6
= A=1|0 2 0], b=|4
0 6 -3 3
(1 1 1], [6
* A=|0 2 O0|[,b= 4]
0 0 -3l [—9
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x1+xZ+X3=6 x1=1
o Therefore, X, =2 =>x, =2
X3 = X3 =

e Remark

o Digging holes downwards is the same as multiplying by lower-triangular matrices

b, | [ by | [b] [0O]
bS row operation bS bS 0
o A=| i |—— : =|:i|+c|l:|=A+CcEs- A=+ CcE A
b, b, +cbs| |b| B,
b bp 1 byl 10

o where [Ers]ij = {(]5 ife =0TV,VS =],and7' >s

o Note that (I + cE,) is alower-triangular matrix

o Inthe example above, we are indeed multiplying lower-triangular matrices

=

A =b
(I — 2E,)A% = (I — 2E,,)b
(I + E3)) (I — 2E51)A% = (I + E3))(I — 2E5,)b
(I = 3E32)(I + E3y)(I — 2E51)A% = (I = 3E3,) (I + E3,)(I — 2Ep1)b
¢ Proposition 1: The product of lower-triangular-matrices is also lower-triangular

o Statement
* Given two lower-triangular matrices L;j and Ly, ({ > j,and p > q)

* Their product L;;L,, is also lower-triangular

o Proof
* LijLyq = (I +cE;j)(I + dEyq) =1 + cEjj + dEpg + cdEjjE,,

Omxn J#P

* where E;jEpq = { Eq J=p is also lower-triangular

o Corollary

= Given a list of lower-triangular matrix L; , L

1J17 0 Mgk

* Their productL; j X -+ X Ly j, isalso lower-triangular
¢ Proposition 2: The inverse of lower-triangular-matrix is also lower-triangular
o IfL;; is alower-triangular matrix, then Ll-_jl is also lower-triangular
o Claim:IfL;; = I + cE;j, then L} = (I — cEy;)
o Proof: Li;Lij' = (I + cEyj)(I — cEy) =1 —c*Ef; =1
0
LU Decomposition (Section 2.3)
e Goal

o We want to decompose A into L X U, where
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o L is alower-triangular matrix, and
o U is an upper-triangular matrix
¢ General Idea
o The elimination process for A can be written as follows
* Lpn-1ln-1n-2"L31L1A=U
o Moving L's to the other side, we obtain
" A=L31L31 Lyl nalanoaU
o Hence
» A=LU,whereL = L3{L31 - Lyl n_oLnk 1 is a lower-triangular matrix
e Motivation for LU decomposition
o GivenAx = b, findx = A~ 1b
o Approach 1
A Ay o Apg
= A7l = ﬁ A.12 A.ZZ A?Z ,where 4;; = (=1)"*/Cof(a;;), and a;; = [A];;
Ain A o Apy
» ((n!) operations needed to find x
o Approach 2
= Given the equation A% = b, we want to solve for %
= Suppose we have already obtained the LU decomposition A = LU
» Then A% = b becomes LU% = b
» Lety = UZ thenly =b

= We first solve the equation Ly = b for y in time O(n?)

Y b
Liz Ly [f _|%
: : - y b
Lin Lyn - Lpn " "
= Then solve the equation y = UX for X in time O(n?)
U U ee U
V1 11 U21 N UTLl X1
o i l= 2z Uzl
y i,
n Unn n

= The time complexity for LU decomposition is O(n3)

= After that, O(nz) operations are needed to get the final result
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QR Factorization

Friday, December 7, 2018 10:51 PM

Least-Square Fitting (Section 2.9)

e Example

o Find the solution for AX = B, where 4 =

3 11 [t
1 1|,b=|o
4 2 2

o There are 3 constraints for 2 variables, so this system is over-determined

o In general, such a system will have no solution

. 3x;1+x, =1 x;=1/2 . ' . )
{x1+x2=0 {xz:_1/2;bUt1tW0ntsatley4x1+2x2_2
o We can instead find a solution that best fit the equation

= e Find a vector & such that A% — b is as small as possible

e 2-Norm
Zq

o Ifz= ["'],then IZll, = ,/zlz + ---+ z2 is called the 2-norm of a vector
ZTL

e Least-Square Fitting
o We want to find min ”A?c’ - E”
XeR? 2
o Square ”AJ'C’ - B” , and expand the result
2
- 2 - -
+ |laz-5| = <A3? _ A7 — b), since [IZ]12 = (3, 7)
- X T - e
= (Ax—b) -(Ax—b)
= (fTAT - BT) . (Aa? - B), note that (AB)T = BTAT
= ¥TATA% — bTAX — XTATh + bb
= ¥TATA% — 2XTATh + b"b,  since bTA¥ = ¥TATh
o Hypothetically, suppose x,a,b € R

* Suppose we want to minimize f(x) = a’?x? — 2abx + b?

* Then we need to solve the root of f’
ab b
. f’(x)=2a2x—2ab50=>x=¥=—
o Now, back to the problem
= LetF(%) = ¥TATA% — 22TATh + bTh
» SetVyF =24TA% —2ATh =0

= Then (ATA)% = ATh = % = (ATA) 'ATb
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¢ Summary
o If Apxm 1S @ square matrix, then
" AR=b=>%=A4"1D
o If Ay« is over-determined (i.e. m > n), then
» AZ~b == (4TA) ATh
= Here, (ATA)_IAT is called the pseudo-inverse of A

Gram-Schmidt Orthogonalization
e Motivation
o A =[aj,..,a,| maps the i-th standard basis ¢e; to a;
o But the resulting vectors {a;, ..., a,, } may not be orthonormal
o Gram-Schmidt process is a method to orthonormalize the vectors

o Later on, we can use this method to compute the QR Factorization of A

e Gram-Schmidt Process

Orthogonalization Normalization
G=a &
gl
G =G — (@)% &
27 g1,
=G - @~ @TE T
> gl
k-1 Tr
Gr = G — Z(a_k’,@ﬁ T =720,
i=1
e Remark

o (ay,q;)q; is the projection of a; onto g; (assuming g; is normalized)

Proof: ||q;ll; = 1

o This is obviously true by the normalization process

Proof: span{ay, ..., a;} = span{qy, ..., qx}
o qy € span{ay, ..., a;}
o ay € span{qy, ..., qx}

Proof: q; 1 q;

o Fori=2,j =1,weneed to show that(q;,q;) = 0
* (q2,q1) = c{a; — (a2, 91), q1)
= ¢(az, q1) — c{az, q:(q1, 1)
= c(az,q7) — c(az,q1) = 0

o More generally, we can show that (gy,q;) = 0,for k # j
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k

-1
" (@) =c{| @&~ ) (@, @) |.4)

i=1

k-1
= (@, @) - ¢ ) (@ (@ F)

e N e
i=1 51'1'

= o(@,qj) — c{a, q;) = 0
QR Factorization (Theorem 2.12 & 2.13)
e Goal
o We want to factorize 4 into Q X R, where
o @ is a unitary matrix, and
o0 R isan upper-triangular matrix

e Unitary Matrix

. — —_ . . - . —_— — 1 i= j
o Matrix Qmxn = [q1, -, @n] is said to be unitary if (g;, q]-) =0, = { i ;t;.

y 0
ai|
o IfQisaunitary matrix, then QTQ = | : | [q7, ... @n] = Inxn
T
qn

o Note: §;; is called Kronecker delta function
¢ How to Use Gram-Schmidt Process to Compute QR Factorization

o Perform the Gram-Schmidt process to matrix A = [ay, ..., a,]

q1=a; 7= @
AR

G =a;— (@G a0 )
q2 ==

||CI2||2
G=G-@GWG - @GOG . G
q3 = 7=

||Q3||2

= e _n
T =T - ) @@ I = il

i=1
o We can express a; in terms of our newly computed orthonormal basis q;

" ay = (@, q)q
" 4y = (02,910 + (a2, 92)9;

" a3 = (a3 q1)q1 +(a3,q2)9z + (a3, q3)q3

n
T = D @
i=1

o This can be written in matrix form
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(a,q97) (a2, q1) (@zq7) - (an qq)

(a2,q2) (a3,qz2) - (a3, qz)
* [ag,...,ay] = [q1, -, 0l (as,q3) - (an, q3)
A Q :
(@n, qn)
R

¢ Motivation for QR Factorization

o Recall in least-square fitting, we obtain ¥ = (ATA)_IATB

o Ifwe have factorized for A4 into QR, then
= 2= (ATA) AT
» ATA% = ATD, by multiplying A”4 on both sides
= RTQTQR% = RTQTD, by substituting 4 = QR
= RTRX = RTQTh, since QTQ = I
* RX = QTB, if we assume R is not singular

o Here, R is an upper-triangular matrix, and QTE is a column vector

o It’s easy to solve for X, once we are given the QR Factorization of A
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Norm & Condition Number

Wednesday, September 26, 2018 10:49 AM

Norm (Definition 2.6)
e LetV be alinear space, and ||-[|: V = Ry
¢ |||l is said to be a norm if
o ||l = 0 © ¥ = 0 (positive definite)
o |lav|l = |alllV]
o |[lv+w| < |9l + [[W] (triangle inequality)

Vector Norm (Definition 2.7 & 2.8 & 2.9)

e Vector norms

Name Formula

2-norm 1/2
Euclidean norm 1V, = /Vlz +otvp = [ZULZ]

1-norm 5
Taxicab norm I1Dlly = lva] + -+ [vu| = ) vyl

Manhattan norm

©o-norm IVl =  max |v;
. ie{1,..,n}
maximum norm

p-norm 1/p
51 =Y 1o

¢ Minkowski’s inequality
o |ld+7ll, < IlHll, + 17l
o This proves the triangle inequality for p-norm

Matrix Norm (Definition 2.10)

¢ Frobenius norm

o We can view matrix as a list of number, and define ||A||r =

¢ Operator norm / induced norm

, 14,
o ”A”p,q = R Sup_} ”)—C)”
xeR™\{0} p

o The matrix is viewed as a linear transformation
o Operator norm is a means to measure the "size" of linear operators

o Note that the operator norm has two parameter p and q
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A S
® T
b TCe) ll'[;ll Iml s
let @ be Mo ol ot
‘W X whicl, contains TCB)
¢ In particular, if both parameters are equal to p, we simply call it p-norm
|AX|
IAll, = sup .

XeR™M\{0} 11l
o 1-norm, 2-norm and co-norm are defined similarly
¢ Triangle inequality for p-norm
o Without loss of generality, suppose || x|, = 1
o By triangle inequality of vector, [|(A + B)X||,, < ||AX|l, + ||BX]l,
I(A + B)Xll, - A%, = 1IBXIl, sup
WX, = WX, X,

* lIABll, < llAll,lIBll,

o Thus, = |4+ Bll, < l|All, + lIBll,

o By triangle inequality of vector, ||ABx||,, < IAll,lIBll,lI%]l,

4Bl _
I

|All; = Maximum Absolute Column Sum (Theorem 2.8)

o Thus < |14l IIBI|p=>||AB||p Al 1Bl

e Statement

o Given Ay = [@1, .., @], then [l4lly = max [[g]], = ,.gg;afn}ZIaul
=

e Note

o The 1-norm of matrix is also called maximum absolute column sum

¢ Proof
m
o LetC:= max ||, = max Z|ai]-|
i=1

o Show that ||AX||; < C||X||;,Vx € R™\ {6}

|AX], = El(AJ'c’)il , by definition of 1-norm of vector

i=1

m n
Z Z a;jx;j|, by definition of AX
i=1 '=
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n

Z|au | |x] | by triangle inequality
j=1

M= E‘MS

m
Zlaijl |xj| ,since only |al-j| depends on i

j=1\i=1
n
<C Z|xj| , by maximality of C
j=1

= C||x]|;, by definition of 1-norm of vector

o Look foran X s.t. ||AX||; = C||X||,

= Let):= z}ig{glm%(”af”l' then ||5i||1 =

1 k=]

n v n v frd
Let X € R" s.t. [X], {0 k+]

then ||X|[; = 1
» Therefore ||AX]|; = ||E]’||1 =C = C||xX]|,

|A]|.c = Maximum Absolute Row Sum (Theorem 2.7)

e Statement

by
o Given Apypm = b_' cthen f|Alle, =, max ”bi = i m}2|"u|
m

e Note
o The co-norm of matrix is also called maximum absolute row sum

¢ Proof

n

o Let(C = max ” ” Z|aij|
ie{1,...m} Le{l
j=1

o Show that [|A%le, < C1Zll.s, Vx € R™\ {0}

n
A% = max 2 a;;x;|, by definition of co-norm
1S

< max a;;:||x;|, by the triangle inequali

< 105y D] by he angenequaey

< | max Z|a”| 1% o, by definition of co-norm
ie{1,...

= ClIX|los

o Lookforan# s.t. [|[A¥]le = ClI%|| e

= Letl = argmax ”_)” ,then ”b,” Z|a,]| =C

ie{1,..

1j
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1 b;>0

~1 b, <0 then [[X||, =1

= LetX € R"s.t.[x]; =

—T
- Then [AJ_C)]I = bI .72) =

n n
ay| = ) lay| = € = Cllzll
= j=1

j=1

||A||, = Largest Singular Value (Theorem 2.9)

¢ Positive-definite
o A matrix A is said to be positive-definite if
o Allits eigenvalues are positive, and all the eigenvector is orthonormal
o ie l; € R and ”ii”i %1 = (x;,%}) = §;; = {(1) i zj:forAf{ = A;iX;

e Symmetric
o A matrix 4 is said to be symmetricif AT = 4

¢ Statement (special case)
o Assume A,y is a positive-definite symmetric matrix

1A%,
o Then ”AHZ = sup = = max |)'l|
0 1
xeR™\{0} |E3IP ie{1,..,n}

¢ Proof (for special case)

1A%,
o LetC= sup -
XeR™\ (0} 121l

o Show(C < max |4;]
ie{1,...n}

» Express X as a linear combination of the orthonormal vectors {x;}

0 F= ) =, = | )

» Similarly, express Ax using {x;}

0 AX = Z ciAX; = Z cidiX; = ||AX|l, = ’ZCLZALZ
AX c2 )2 =
n Thus,” _)llZS Z lzl S'max |){l|’v£ERn\{0}
11112 X ¢ i€{1,..,n}

o Lookforan X s.t. ||AX]|, = C||x]|,

» Let] = argmax|4;|, then |4;]| =C
ie{1,..,n}

lA%Nl, 1A%l cf A
» LetZ = X, then ——b = ——1=2 = L= 41 =c =l
(PP P Ci

¢ Statement (General Case)

o Define B, = Al 1mAmxn, then B is a positive-definite symmetric matrix
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o LetS; = \/A_L then §; is called the singular values of A

o The previous statement can be generalized to ||A4||, = I{I}aX }lS,-l
i€{1,..n

Conditioning of Function (Example 2.5 & 2.6)
e Motivation
o Suppose the input x has a perturbation of T (because of machine percision)
o We'd like to know how the output f will be affected by ©
o Condition measures the sensitivity of the output to perturbations in the input

¢ Absolute conditioning

o Cond(f) = sup LX) SO

x,yED |x — )’I
XEy

o If f is differentiable, then Cond(f) = sup|f’'(x)|
x€D

¢ Absolute local conditioning

If(x + 8x) — f(x)|

|6x]-0 | 8x|
x+8xeD

o Cond,(f) =

|f'(x)| if f is a scalar function

o 1f/is differentiable, then Cond, (f) = {|Vf (x)| if f is a vector function

¢ Relative local conditioning

o Condy(f) = su [f G+ 8%) = fFCOl/IfF G _ “u If (x +6x) — fF()] x|
* |5x|EO |6x|/|x| |6x|I—)>o 16| GOl
x+8x€D x+8x€D
If' ()

o In particular, If f is differentiable, then Cond, (f) =

| x|

If (0l
o Motivation
" f(x)=1,f(x+6x)=2
» g(x) =100,g(x + 6x) = 101
* Both f and g increased 1, but the effects are different!
e Example: f(x) = +/x
o Absolute
» IfD = [0,1], then Cond(f) = +

1
» IfD = [1,2],then Cond(f) = 5

o Absolute local

, 1 oo (ill-conditioned asx -0
« Condy(f) = f'(x) = —— { ( )

2/x 0 (well-conditioned) asx — +oo
o Relative local

If'Gl _1/(2vx), 1
T R A

= Cond,(f) = >
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Condition Number of Matrix (Definition 2.12)
¢ Definition
o K(A) = ||A]l|[A7?]| is called the condition number of 4
o Ifk(A4) > 1, then we say 4 is ill-conditioned
e Note:k(4) = k(A Y and k(4) > 1

e [x(+6x)] = [b(+3D)|

Ax=b
° {A(x +8x) = b+ 8(p) 7 O =A%
o Cond, (4) = IS2I/IIBI by definition
x ll6x1/11x])”
_lsbl_ il
IBIl 116x]|
_NAS Xl e b = Ax and b = Ax
Ax|l (5|’
_ [|ASx|| . [Ed| assuming A is not singular
I6xll bl

< |lAll||A~|| by definition of matrix norm

o [AGT6A)] 5 [x(#6x)]

o Ax=b»
o Ax = (A+ 6A)(x + 6x), since b is viewed as the function here

o Ax = Ax + 6Ax + Adx + 6Adx, since 6A8x is a second order turbulence
=0

o 0Ax+ Adéx =0
o Sx=—-A"1-84-«x
o l1sxll < [[4=*[|lIsAllllxll since [PQIl < IPIIQIl for any matrix P, Q

loxll/Nxll _ Nsxll NAllL_ [a~[lIsAllllxI 1Al
sAl/NAI - Tlxll - [SAI— [l lI5All

O

= [[a= {4l

¢ We can similarly analyze |b(+6b)| 4 |x(+6x) | and |A(+6A)|f> |b(+6b)|

¢ Note: The choice of norm will affect the condition number

1 1
o A= 1 1 ! >A1= _:1 1 :
1 1 -1 1

Il = [|47],, =2 _ | Cond,, (4) = Al [|A~]], = n?
lAll, = |47l =n | Cond, (4) = lAllo[|A7"|| = 4

Example for Condition Number

_[2 1
LetA—1 2
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e 1norm

¢ oOnorm

e 2norm

o s (i =afle

b, b x c1 [bisc +byod
-1 _ 11 12 — a-1 _ 11 12
© LetA™ = [b21 bzz]'the“ [y] =47t ] = [b21c+b22d

o Sincex? +y? = 1,we have ac? + fcd + yd? = 1, where
» a=bh% +b%
" B =2by1byz + 2by1 by
"y =bf, + b3,
o Since discriminant = $? — 4ay < 0, the graph S is an ellipse

length of major axis  Spax

o k(A) = ,where § is the singular value

length of minor axis  S;,in
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Ch 3: Special Matrices

Friday, September 28, 2018 10:37 AM

Symmetric Positive Definite Matrix
¢ Definition
o Matrix 4 is called symmetric positive definite (s.p.d) if
o A = AT (symmetric)
o xTAx > 0,vx € R™™"\ {0} (positive definite)
¢ Proof: a;; >0

1 ifk=i

o ay; = el Ae; > 0, where [e;];, = {0 ik = i

e Proof: A; € R* for Ax; = A;x;
o Use 4; to denote the conjugate of A;, we first need to show that 1; = 4;

o Taking conjugate on both sides of Ax; = A;x;, we obtain Ax; = 1;x; (note: A = A)

ym S x5 =4x[%5 =>4 =4>4€ER

Tpv — +T(T.5) — T.uT o
5 x; AX; = x; (Aixi)—ll-xl- X;

Tpy SYM T AT _ T — T

x;i Ax; = x; A'x; = (Axy) ' x; = Aix; X;
T
xij Ax;
T

Xi

o xTAx;=AixIx; = A; = > 0,since x] Ax; > 0and x] x; > 0

Xi
o Note: A; € R holds for all symmetric matrices
¢ Proof: (xi,xj) = 0for 4; # 4;
xiTij = xL-T(ijj) = ijl-ij 1 — 1) x = 0
AT ATx; = (Ax)Tx, = ATy, — B~ A% =
i j = i j = MAL A
o IfA; # 4;, thenxx; = (x;,x;) =0
¢ Proof: det(4) >0

A4
— — — — — — — — — A
o AlX], Xz i, Xp) = [A1X7, 2K oo, AnXip] = [X7, X oons K] 2
An
A4
o LetX = [x], X3, ..., Xpl,A = A2 . ,then AX = XA = A = XAX!

An

n
o Therefore, 4] = [XAX~*| = [X|[AlIX|" = 1A = | [4:> 0
i=1
e Proof: Let] < {1,2,...,n}, then B = Aj; is also s.p.d.
O A=AT2AII=A’{123=BT

o Definey € R"s.t.[y]; = {[J(c)]i :.)ewl' then xTBx = yTAy > 0,vx € Rl \ {0}
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¢ Cholesky Decomposition
o IfAiss.p.d, then 3L lower diagonal s.t. A = LLT

o Note: This is saying that after LU decomposition, U = LT

Ordinary Differential Equation (Boundary Value Problem)

u’ +2u' =-1
e Suppose u(x) € €2[0,1], find the solution for{ u(x =0) =0
u(x=1)=0
1
e We can evenly sample N points on [0,1]: Ax = NN iAx

Compute first derivative u' (xj) using u(xj+1) and u(xj_l)
i+ 0)— R . _ '_
o u'(xj) _ (lsi_r)r(l)u(x] )ZSU(XJ ) ~ u(x]+1)2Axu(x] 1)

"(xi+1) - u(xj_l)
2Ax

is called the discrete derivative of u at j

o Note: Du|_ =
J

Compute second derivative u"’ (xj) using u(xj+2), u(xj) and u(xj_z)

w(x+8) —uw(x=08) w(x)—w(x-)

u”(xj) = (lsim

-0 26 2Ax
(u(xj+22)A; u(xj)) 3 (u(xj) Z—Ali(xj—Z))
~ T , by substituting u'
_ u(xiez) — 2u(x) +u(x-2)
4Ax?

¢ Compute second derivative u”(xj) using u(xj+1), u(xj) and u(xj_l)
o In practice, we want to only use neighboring points to have a local approximation

W (1) =W (-12)  w(xjeq) — 2u(x;) +u(x;_y)
Ax - Ax?

o Thus,u”(xj) =

e Substitute u’,u’’ into the ODE

o W) m2ule) vuls) (o) —uC))

Ax? 2Ax
o Define U = u(?l) ,then Upra = ZUQ * Ui + Y1 ~ Ui =-1
u(x,) Ax Ax
(Ax?) 7 — (a0t i=j-1
-1 ..
o LetA € R™"s.t.[A];; = —2(Ax?) Y=J ,thenAU = -1
(Ax?) "+ (Ax)7t i=j+1
0 o.w.
* ok
* k%
o Note: A is said to be a tri-diagonal matrix ko ok ok
* * *
* ok
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Ch 4: Simultaneous Iteration

Wednesday, October 3, 2018 10:24 AM

Continuous Functions Preserve Convergence For Cauchy Sequence

e Cauchy sequence

o InD € R, {55(")};00 is called a Cauchy sequence if

o Ve>0,3k,>0s.t. ||J_r'(m) - J_r'(”)”oo <& (Vmn>k,)

o Note: R™ is complete since every Cauchy sequence converges to some point in R"
e Continuity

o Given¢ € D € R", f: D - R" is said to be continuous if

o Ve > 0,36, > 0s.t|[f(x) — f(D)llo < & (Vx € B(§;6,))

o Here, B(§; 8,) is an open ball at £ with radius 6,

e Lemma
o If f:D(S R™) - R" is continuous, and {#(*} - & € D is a Cauchy sequence

o Then f (¥19) also converges to f (g? )

Introduction to Simultaneous Nonlinear Equations
fi

. Givenf =| i [, where f;: R" - R, we want to look for X =

fn

¢ In general, we don't know whether such root exists, but we can solve for some special cases

X1

: ] st.f(%) =0

Xn

o lff is linear (i. e.f(y'c’) = AX — l_;), we can use the knowledge from Chapter 2

o 2o |AGLx)] | #F+xE-1 ] o %] [+v3)2
For f{&) = fz(xl,xz)] B [lez + 21x3 — 9] B [O] = [xz] - [ +1/2 ]

15 E

| RN
e

0.0

-05

-1.5

-1.5 -1.0 -0.5 0.0 05 1.0 1.5

¢ Solving f(ic’) = 0 is the extension of solving f(x) = 0 from Chapter 1
e In Chapter 1, we are given f(x): D(S R) = R, and asked to findax € Rs.t. f(x) =0

o We transformed this problem to a fixed point finding problem
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: _ _ < _ _ f(x)>
o Definegs.t.g(x)=xe f(x)=0(eg gx)=x—f(x)orgx)=x—

f)

o Start with initial guess x, and iterate x;, = g(x;_1)

o We used contraction mapping theorem to show the iterative method converges to §
¢ In order to solve for f(a'c’) = 0, we need to

o Designa functiongs.t. f(¥) =0 © (%) = %

o Startwith ¥(® € D € R", and iterate ¥ = g(xk-V)

o Show the sequence {x} converge to &

Simultaneous Iteration
e Given g: D(S R™) - R"s.t.g(D) € D,and letx° € D
* The recursion defined by ¥ = g(¥*~V) is called a simultaneous iteration

¢ Forn = 1, this is just simple iteration in Chapter 1

Example of Simultaneous Iteration
1
e Given g: (0,1)2 > R™ defined as g(¥) = o (X + 1), where i = G)
« We'd like to find a fixed point & € D := [0,1]?

—
u

 Algebraic method: g (5) = 1(5 + 17) ={=¢
2
e Numeric method: Do simultaneous iteration with initial value of ¥(® = (8)

e Check#®*Vep=xkep

k 1 1 k-1 k=179 41
o X <yk> 2 (X + u) 2 <<yk—1> + 1 yk—l/z +1

k-1 g (_ k—1 ke (=
o 20D g p o xk_1 € (-11) N xk_l/Z +1€(0,1) xk € (-11) S>30 cp
y*re(-11) (¥y*/2+1€(01) (y*e(-11)

¢ Check sequence converge to the fixed point

. N o N 1., . . 1.0 .
o [ - = o - = [ v - = e -
Ex Ek-1
k k
o Ek:%Ek‘1:<%> E0:<%> >0ask > o

Contraction Mapping Theorem
¢ Lipschitz continuity
o Given g:D(€ R") - D(S R"™)
o We say g is Lipschitz continuous if ||g(®) — §3)|le < L||% — ¥l|co, VX, Y € D
o Here L is called Lipschitz constant

o IfL < 1,then we say g is a contraction map

Page 28



¢ Contraction mapping theorem
o Suppose D € R" closed, g: D —» R" is a contraction map in o-norm and g(D) < D
o Then3!éeDstyg (?) =§ and {0 = g(F*D)} - §vx® e D

¢ Proof

o Note: In the proof below, we assume the existence of ¢ for the first two parts.

o Uniqueness of fixed points
= Suppose 7, € are both fixed points of § (i.e. §(7}) = 7 and § (5) =&
* Then ”ﬁ - §||oo = ||g(ﬁ) -g (5)”00 <L ”ﬁ - 5”00 by Lipschitz condition

* Therefore, (1 —L) ||ﬁ—§||ooso=> ||ﬁ—g||oo=0:7_i=?

>0
=0

-

xk) _ &

o If ? exists, then {55(")} converges to g?

= lats)-50

Ek+1 Ek

Fk+1) _SE’

<L

» Expand the inequality, we have E¥*1 < LE¥ < ... < [¥*1E0
» Compute E° (optional)
o -
EO

S R

= ”32(0) IO NI COI 4

o)

< 5 - 20, +L

@ _ ¢

~—_—

EO
0 Ep < ||x® - 2@+ LE,

O f% <

RO - 30,

1
» Therefore EF*1 < [*+1 -1 | — 2O
» Sincel € (0,1),as k - oo, we have EX - 0 & x®) - &
o Existence ofg? (by showing {55(")} is a Cauchy sequence)

= Assumem >n

. ||,z(m) — f(n)” = ”,z(m) — xm=1) 4 p(m-1) _ 2(m-2) 4 p(m-2) 4 ... _ *(n)”

= [ =D [FD Dt [0 = 5O,

=Lt gO-£O L2 gO-£O) =L|RO-xO]|
S (LMt LM 4 )| #0 - 2O
= ML L2 g 1) || - 2O

1
1-1L

= Therefore ||#™ — ™| - 0asn - +ooie {x*}is a Cauchy sequence

<L"

2 - 50
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* Due to completeness of D, it converges to some point; call it 5

o Note: In 1D, the existence ofg is guaranteed by the Intermediate Value Theorem
Jacobian Matrix
¢ Definition

ag; 5
o Suppose g = [gq, ...,gn]T: R* > R", g € C!,and a—;gcl exists at&,Vi,j € {1, ...,n}
j

o Then Jacobian matrix J; (5) of g is defined as []y (?)]” = Z.Zz (?)
' j

e Theorem
o Suppose §:D(S R™) - R"and § € C1. Let € € D be a fixed point of §

o If ”]y (?) ” . < 1 (in a small neighborhood of ¢, g is a contraction map)

o then {Z*+D = G(7¥)} converges to € given ¥ is close enough to ¢

¢ Example

- 91 (x1,x3) xf+x3 -1 [le 2x, ]
= = = [z =
° 4t [gz(xl,xz)] [lez +21x2 -9 Ja 10x;  42x;

o ||]§||m = max{2|x;| + 2|x,|,10]|x; | + 42|x,|} = 10|x; | + 42|x,|

Newton’s method
e Definition

o §@®=%-[;®] f®

e Example
§ [x% +y?+2% -1 2x 2y 27]
o f(X) =] 2x®2+y?—4z =J;=|4x 2y —4
| 3x%2 — 4y + 2?2 6x —4 2z
X 2x 2y 2z7M[¥*+y*+z7-1]
o g@) = y] - [4x 2y —4] 2x% +y% — 4z
¥ 6x —4 2z 3x2 — 4y + z% |

e Theorem
o Suppose g:D(S R") » R"and g € C*
o Let& € D be a fixed point of §
o Ifall aiajf is continuous, and Jg (?) is non-singular

o Then {Z*+D = G(Z®)} converges to € given ¥© is close enough to §
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Ch 5: Eigenvalue Decomposition

Wednesday, October 10, 2018 9:58 AM

Eigenvalue Decomposition

¢ Introduction
o If A, xn has eigenvectors x7, ..., x,, with corresponding eigenvalues 4, ..., 1,,
44
o Then Ax; = 4;x; © A[Xq, ..., Xp] = [X{, ., Xn]
X X A,
~—
A

o This gives the eigenvalue decomposition A = XAX~! (assuming X is not singular)

o Inthis chapter, let's further assume that 4 is symmetric, then x; L xj,and 4; € R

¢ List of Matrix Decompositions

Name Formula Procedure
LU decomposition A=LU Gauss-elimination
QR decomposition A=QR Gram-Schmidt process

Eigenvalue decomposition 4 = XAX~1 77?7
¢ "No-Go Theorem" (Abel Theorem)
o There is no finite procedure that provides eigenvalue decomposition
o Finding the eigenvalues is equivalent to solving the characteristic equation
s A=A A-ADi=0sXeNullA—A) o pd)=det(A—A) =0

o Abel-Ruffini Theorem: No explicit root formula for polynomial of degree 5 or higher

Power lteration

e General Idea

o Suppose Ax; = A;x; fori € {1..n},and [A;] > [1;] = = |1,]
e ———
strictly larger

o Choose arbitrary ¥ € R", then v = ¢;x7 + -+ + ¢, x,, for some coefficients cy, ..., ¢,

n n n
o Akp = Ak 2 CiX; = Z ci(Akx;) = Z ckx; = oAk + -+ ik,
N e’
i=1 i=1 i=1 »others

c1/1’1‘| is signficiently larger than the rest

o Since |1,| the the largest eigenvalue,
¢ Algorithm

o Choose v® € R"s.t. ||v(0)||2 =1

o Fork=1,2,..
ow « Apk-1) Apply A
v — w/|lwll, Normalization

e A0 « (v, Ay} Compute Rayleigh quotient

* Convergence rate for v¥)
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2

2 k
1

o Claim: ||v(k) - (x| = 0( z
o v = g, A*$©® for some normalization constant a,
= ap (1577 + 255, + -+ + ¢, A8 x;,) for some stretching coefficients ¢y, ..., ¢,

— AZ k—> A’Tl k—)
C1X1 + ¢y /1—1 Xy + o+ cpy /1—1 Xn

= “kllf

k
= ) given thatc; # 0
A4

o Therefore the error term is approximately O (

* Convergence rate for AK)

2 2k
o Claim: [A® — 24| = 0(_2 )
A
X, AX
o If||¥ —x7|| = 0(¢),then ﬁ—ll = 0(?)
H %, A%) | lled Rayleigh quotient
O J—
ere, (f,f) 1S calle ayleign quotien

Variations of Power Iteration
¢ Power iteration only picks the largest eigenvalue. What if we want to find other ones?
¢ [f we want to find the smallest eigenvalue, then can use inverse power iteration

¢ For finding a eigenvalue closest to some number, we can use shifted power iteration

Simultaneous Iteration and QR Iteration
e Goal
o Obtain the full set of eigenvalues and eigenvectors simultaneously
¢ General idea for simultaneous iteration

o Suppose Ax; = A;x; fori € {1..n},and [A;] > [A;] = = |1,]

strictly larger
o Arbitrarily choose V = [v5, ..., v,] € R™", then

0 V] = CqiX1 + CpiXq + -+ + cpiXy, for some stretching coefficients ¢y, ..., Cp;

n n n

kyy — k. = k. = k -

o A"V = Z /1i C1iXi ,Z Ai CriXi, ,2 /‘li CniXi
i=1 i=1 i=1

o Ifwe use [AkV]i to denote the i-th column of A*V, then

- [Av] -

o\
- [Av],>% +o (—) x;

"
= [AV], >+ 0 (—2> G +0
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n
o We can use QR factorization to obtain x7, ..., x;,
¢ Algorithm: Simultaneous iteration

o LetQ@ <1

o Fork < 1,2,..
o7 « AQ*-D Apply A
o7 —» QUORK) Normalization by QR factorization

o 400 [Q(k)]TAQ(k) Compute Rayleigh quotient
e Algorithm: QR iteration
o LetA©® « 4
o Fork «1,2,..
o Ak=1) _ oK) R(k) QR factorization
e AU « RO Recombine factors in reverse order
o Q(k) - Q(l)Q(Z) ...Q(k)
e Convergence rate

Ak+1
Ak

5 ”‘Zi(k) _ (ixi)” =0(C*) and |A(k) - Ai| = 0(C?*) where C = ke

u e{1,..,n—1}

* Note
o For the two algorithms above, Q(k) converges to X, and A% converges to A

o In practice we often prefer QR iteration

Equivalence of Simultaneous Iteration and QR lteration

¢ QRiteration is equivalent to simultaneous iteration, in the sense that both generates
o The QR factorization: A®) = [Q(")]TAQ(")
o The projection: A¥ = QWR®, where R := RIRKD) ... p(1)
¢ Note: I added additional parentheses in the proof below for clarification
¢ Proof: QR iteration gives AU = [Q(")]T AQ(")
o Usinginduction, assume A®~1 = [Q(k_l)]TAQ(k_l)
o A® = R Q&) by the algorithm of QR iteration
= ([Q(k>]T A(k—l)) . Q®, since A®k~D = QUOR(O = RO =[] 4lk-D)
=[Q®@]" . ak-1 . ®

= [@®]"- ([Q(k—l)]TAQ(k—l)) QU by IH A1 = [Q(k—l)]TAQ(k—l)

_ ([Q(k)]r [Q(k—l)]T)A (Q(k—l)Q(k))
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T
= [Q(k)] AQ(k), by definition of @

* Proof: QR iteration gives A¥ = Q%) . R(®)

o Using induction, assume A¥~* = (k=) . (k=)

o Ak =A. Ak1

I I
[

Il
/N

|

A (Q(k‘l)ﬁ(k‘l)), by inductive hypothesis A¥~* = Q=1 . p(k=1)

(Agac—n) . RG=D)
(

Q(k—l)A(k—l)) - RU=D gince AU—D = [Q(k—l)]TAQ(k—l) > 4Q(-D) = k1) 4(e=1)

Qk—1) . g(k=1) . plk=1)

Q(k—l)Qac)) - (R RU—1))

&) . RW), by definition of Q) and R™)
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Midterm Review

Monday, October 22, 2018 9:56 AM

Chapter Summary
e Chl:f(x)=0
Ch2: LU, QR, norm, conditioning

Ch3: symmetric positive definite

Ch4: f(®) =0

Ch5: Eigenvalues: power/simultaneous/QR iteration

Zero-Finding Problem
¢ [terative method

look for g simple iteration (initial guess x
Xe+1 = g (xg)

5 .. —lookforg , , simultaneous iteration ( initial guess ¥(©
o f)=0——gx) =x "V 2(k+1) _ o (2(K)
xEHD = g (x4

¢ (Contraction Mapping Theorem in R

o |xpe1 =&l = 1gla) — g < Llx — &| < L¥|xg = &| » 0as k — oo
3¢ by IVT g contraction

¢ Contraction Mapping Theorem in R"

o [l — 2O = [lg(E®) - gE VI, < LlE® -2V

g contraction

o {55(")} is a Cauchy sequence, so it converges to ¢
¢ Relaxation
o Ifg € Ctand|g'(¢)| < 1, then {x;} converges to ¢ if x, is close to &

o Ifg€ctand ”]g (5)”00 < 1, then {®} converges to & if £ is close to &

¢ Newton's method

o gx)=x-— ]]:,((3;)) = g'(¢) = 0 = g is contracting at ¢

o gx)=x- []f(f)]_l f@ = ”]g’ (5)”00 = 0 = § is contracting at &

¢ Example
S ([x 2 2 _
() 7

o Provex =+ [ﬂ is a zero

<7 (a)=7(=D =7
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o Find g(X) defined by Newton's method

. ]f( %) = [le 2x2

1 Xy
[]f(x)] 2(x11+ X2) X ‘:sz
2(x1 + x3) _x1 + x;
Xy x? + x2
. G(@) = [ ] lz(xl +x) X1+ [xlz+x22—2] _ 2(9;1+x22)
X X1 — X3 xi + x5
201 +x3)  x+ 2(x, + x3)

o Ifxq,x, € <2 > show that

9|1l <

[1]” NG R

H]H forsome(C < 1

(|x1 — 1%+ |x, — 1|2)

2]x1 + x|
2 2 S L,
< max{|x; — 1|4, |x, — 1|*} = x—[l SE x—[l]”00
Norm, Condition Number, and QR Factorization
* Definition of ||A]l,,
1A - %I,
lAll, = sup——
P e NIE,
¢ Explicit formula for ||A||» and ||A]|;
m
Il = max|g], = max > oy
i=1
n
1Al = max||Bi]] | =max ) |ay|
=1
. 12 1 _ _
o Givend = [_3 1 ,then ||A||; = 5,and ||A||, = 4
¢ Computing [|A]l,
a2 3[2 1_[13 5]
o DefineB =4 A—[l Ul 11515 3
o Then B isas.p.d matrix,so A; € R* and X; L X;
1
o BE=A%= det(B—Al) =0 =>,1=§(15J_r\/221)
o |lAll, = max /2 = (15 +v221)
e Show cond, (4) < k(A4)
o Supposedx =hbh o x=A"1b
ll&bIl/1BIl ||5b|| lxll _NlA-6x|l ||A™'b _
o condy(4) = - A2 sy = eca

loxll/lxll — Wbl Tisxll — (1]l ll5xl
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¢ Find the QR factorization of A

2 q1 112
w-si-[ R Y
3 LT FAE A E

)

=i~ =[] S V-5 -l

o Q—[‘h.‘h]—ﬁ[?’ _2],andR—[ _[0 1]

@ @)| Vi3
Eigen-Decomposition
¢ Power iteration
o Initialize v(® € R s.t. ||v(0)||2 =1
o Fork=1,2,..

= w e Ap*-D

lIwll
- AW (p®), Ap®)

o v® converges the eigenvector with the largest eigenvalue

)

o A% converges to the largest eigenvalue

Az
M

2

1 k
) and [A%) — 2| = 0(

o [l ~ G =0<_
M

¢ Simultaneous iteration
o Initialize Q) « I
o Fork=1,2,..
" 7« AQ(R—l)

» 7 - QURK
n AR [Q(k)]TAQ(k)

o Then Q™ converges to X with rate 0(C*), and A®) converges to A with rate 0(C%¥)

max | Ages1l
ke(l,..n—1} |Ag|

o qi(k)—(ifi’) = 0(C*) and Ag‘)—li = 0(C?*) where C =
(c*) (c*)

¢ (QRiteration
o Initialize A® « A
o Fork=1,2,..
Ak 5 U RGO
n AK)  RUD QU
o Then Q¥ = Q... Q) converges to X and A®) converges to A

¢ Simultaneous iteration and QR iteration are equivalent
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Ch 6-10: Approximation & Integration

Friday, December 7, 2018 10:50 PM
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Polynomial Approximation Theory

Monday, October 15, 2018 9:57 AM

Approximation Theory
¢ (Goal
o Given f(x), we want to find a numerical representation p(x) s.t. f(x) — p(x) is small
o In this case we can store the function f using finite number of coefficients
e How to find p(x)
o Local methods
= Spline interpolation (using piecewise polynomial)
o0 Finite difference method
o Finite element method
= Padé approximation (using rational function)
o Global methods
= Orthogonal polynomial
= Fourier approximation (using sin and cos)

¢ How to quantize the approximation

O Le: sup |f(x) —p(x)l
x€la,b]

b
o Ly: [f (x) — p(x)|?2dx (numerically easier to compute)
2 p y p
a

Main Questions about Polynomial Approximation
e Why can we use a polynomial g(x) to approximate a complex function f (x)?
o Weierstrass Approximation Theorem
o Best approximation theory
¢ How to do the polynomial approximation
o Projection
o Interpolation

e How to analyze the approximation error

Weierstrass Approximation Theorem
e General idea
o We can use a polynomial p(x) to approximate f € C[a, b] with |f| < M
e Theorem
o Suppose f € Cla,b]and |f| <M
o Ve>0,3p €Pst[|f(x) —p)lle = sup |[f(x) —px)| <e

x€[a,b]

e Review: Gaussian distribution
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h
o The standard deviation ¢ = — is controlled by h

V2

o The function decays very fast when x is far from u

¢ Define a new function Sy f (x)

1 (® (u—x)?
o Spf(x) :=h—\/1_tj_ f(u)exp( h—)du

o Note: Each point of S;, f (x) is a local approximation of f(x) with Gaussian weight

e S,f(x)isagood approximation

1 (u—x)? :
o Since — exp —————)du = 1,we can write f as

N8 h2
. f(x)— f f(x)exp( (u ; )>
1 (u —x)?
o So |Spf(x) — f(x)I =ﬁj |f(u)—f(x)|exp<—T>du=A+B,Where
R If(u) f(x)lexp< (- ))
h\/— |x—u|<é _’— h?

< 1 oM < (u—x)2>d
— exp| ———— | du
hym |x—ul<6 h?

<1
< L 2M du
hym |x—u|<6
26
= L 2M26 = ﬂﬁ
hm Jmh
o We can choose § small enough such that 4 < ;
cB=—[ @ -f@lew (— (”_—x)z> du
AT ) j—u)zs h?
(u —x)? (u—x)> 62
o exp <— T) decays very fast whenT = 7z > 1
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€
o We can choose h small enough such that B < >

o Therefore |S,f(x) — f(x)| < ; +-=c¢

€
2
e Apply Taylor expansion to Sj, f (x)
Then Spf(x) = — foo ()i( 1)n(“_X)2nd +
O = — — P S—
en Spf(x e _Oofu 0 Tpandute
n=

taylor expan. of exp term

(u _ )Zn

o Define p(x) = h\/_f f(u) Z( D —>— T du,then [p(x) — f(x)| < 2¢

o ie The approximation error can be arbitrarily small

Best Approximation Theory
¢ General idea

o There exists an N-th degree polynomial p* that leads to an error curve p* — f oscillating
back and forth between € and —¢, a total of N + 2 times, giving a worse-case error €

¢ Theorem

o Suppose f € Cla,b]and |f| <M

o VPy:={p €Pldegp < N},3!p* € Py s.t.

o [If(x) =p* (e < If(x) = q(X)lleo, Vg € Py
¢ Property of p*

o E(x) =f(x) —p*(x) has N + 2 extremas (x4, ..., Xy42)

|E(x;)| are equal Vi € {1, ..., N + 2}

o E(x)has N + 1roots (v, ...,yn+1) © f(y;) = p*(y;) © p*(x) iterpolates f(x) aty;
e Remarks

o The existence is not numerically tractable

o p*(x) interpolates f(x) at N + 1 points (unknowns)
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Lagrange Interpolation & Chebyshev Nodes

Wednesday, October 31, 2018 9:59 AM

Polynomial Interpolation
¢ Assume we have information at N points of f: f(x;), ..., f (xn)

e We look for a k-th order polynomial py (x) = ay + a;x + --- + a;x* to interpolate f(x)

ag + asx; + a,x? + -+ akx1 = f(x1)

ap + a;xy + azxﬁ, + o+ apxf = f(xy)

1 x x% - x [ ] f(x1)
1 xy x2 - x f(xN)

X

b

==

¢ Relation between N and k
o If N = k + 1, then the equation is uniquely solvable: @ = X‘lf

o IfN < k + 1, then the equation has infinite solutions: min||d||; s.t. Xd = f
o If N > k + 1, then the equation has no exact solution: use least square fitting
¢ Property of Vandermonde matrix X

o cond(X) » 1 & X isill-conditioned, so X~! is inaccurate numerically
o e Ifthere exists a small error in f, it is magnifiedin d = X‘lf

Lagrange Interpolation

¢ Lagrange polynomial

Il
o Define (N — 1)-th order polynomial [;(x) = li]( *) .Then
ij(x5 — 1)
—E#]E - l;=0 fori #j
. _ izj\Xj — Xi o [0 ifi#j
y) = Iiz; (% — x1) R L A (I TR
=1 fori=j

z:tj(xj x)

o Define p(x) = z f(x)li(x).Then
i=1

N N
f p(y) = Y () = YO8y = f(x), V] € {1,..,N}
i=1 i=1

* Therefore, p interpolate f at xq, ..., xy
¢ Error analysis for Lagrange interpolation

o Define the error function E(x) := f(x) — p(x)
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' . . Hliv=1(x — x;)
o Define the axillary function G;(x) = E(x) — W E(t)
=1\ =X

o G¢(x) has (atleast) N + 1 zeros, since

N .
* G(x) = E(x)) —%E(o =0-0-E(t)=0,vj€{l,..,N}
i=1 X
N p— .
G = B0 ~ SR ) = BO) ~ F©) =0
o Taking N-th derivaties of G;, we have Gt(N) (x) = EM(x) — % E(t)
=1 = X;

o By Rolle’s Theorem, Gt(N) has (at least) one zero
= 1169 (a) = 6 (b) = 0, then 3x € (a,b) s.t. 6V (x) = 0

» jie The number of zeros decrease by 1 each time we take the derivative

o Choose§ € Rs.t.6M (&) =0 o EM(¢) = %E(t)
—x
o Then = E(t) = EM () = fM(E) - p™ (&) = FM (&)
i=1(t = x1) deg(@)<N
o Therefore, E(t) = f“‘”(f)%
e Remark
o If f(x) € Py_q, then fM (&) =0
l_[L 1( )

o So,E(t) = f<N>(§) =0,Vt € [a,b]

o iepx) = f(x),Vx € [a, b]

Runge's Phenomenon and Chebyshev Nodes
¢ Motivation

T
N!

~———
const

o From the previous analysis, we know that E(t) =
i=1

o Inorder to have a good approximation, we want min sup —[(t 1))
Xij t€la,b] |+
L

o Butif we sample {x;} evenly in [a, b],then sup | |(t —x;)| could be large
t€la,b] |4
i=1

¢ Runge Phenomenon

o Equispaced interpolation with high degree polynomial may result in oscillation at
the edges of interval
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L ® Nodes \9
2.0 A % —— Interpolant ’(

R PP fix) = (1 +25x2)"! f
15 \

1l |
A1 N ]

0.0 1 \ /

-1.00 -0.75 -0.50 —-0.25 0.00 0.5 050 075 1.00
¢ Chebyshev grids

o For interval [—1,1], we can pick the Chebyshev grids {xi = cos 6;

Gi = %Tt}

o So the distribution of x; is concentrated at the ending points of the interval

1.0 A

0.8 A

0.6

0.4

0.2 A

0.0

Chebyshev nodes

-1.0 -0.8 -0.6 -0.4 -0.2 00 02 04 06 08 10
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Polynomial Projection & Quadrature Method

Wednesday, October 31, 2018 9:59 AM

Polynomial Projection
e Goal
o Letf € €®[—1,1] be fixed, we look for p € Py s.t. p is "closest" to f
¢ Relation with interpolation

o Recall the equation we want to solve in polynomial interpolation

1 x; x2 . xk (xl)
o : : : : : [ ]
1 xy x§ - xF f(xN)
X
o Each column of X is determined by the sample points x;, x5, ..., Xy
o Eachrow of X is defined by the monomials 1, x;, xl-z, e xik

o In projection, we replace the monomial polynomials by orthogonal polynomials
* Analogy of projection in R3
o Let® = v;7+ v,] + v3k, then B = v41 + v,J is the closest point to ¥ in the x-y plane
o Letd € x-y plane be arbitrary, then
o lF-qli=W-47-@=(@-D+F-DG-p+@— )
=@ -pI-D+2@-BP-O+ F-4p—4 =175l
20

I5-pl13 0

o Therefore |7 — p|l, < ||V — G|, VG € x-y plane
¢ Polynomial projection

(1) Py is asubspace of C®
* Letp,q € Py, thena-p(x)+f-q(x) € Py

(2) Build alist of orthogonal polynomials ¢, ¢4, ...
= See definition below

(3) VfeC™[a,b], f(x) =copo(x) + ci¢p1(x) + -+ for some constant ¢y, ¢y, ...
» This is guaranteed by Weierstrass Approximation Theorem

(4) Then the best approximation of f in Py is p(x) = copo(x) + c1p1(x) + - cyPn(x)
» Letq € Py be arbitrary, then
" f—al=f-af-=XF-D+@-0.F-p+@-D)

={f-pf-p+2(-pp-—)+ P-apr—q)

0 >0
2({f-p.f-p=If —pl:
» This proves the optimality of p(x)
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b
= Note: IIgIIz=\/(g.g)=\/f g2 (x)w(x)dx

Orthogonal Polynomials
e Definition
» Given an interval [a, b] and a weight function w(x) (used in function dot product)
= Orthogonal polynomials sequence is a list of polynomials {¢, ¢4, ..., Pn, ... } S.L.
* degop; =i
- (Bu ), = j by Cow(dx {2 o i

= Moreover, if (¢;, (I)j)w = &8;j, then {¢g, $4, ..., Py, ... } is said to be orthonormal

¢ Recurrence relation of orthonormal polynomials

O @Pmi1 = (@mX + Br)Pm + YmPm—1 Where ayy, B, ¥m € R

On the LHS, ¢,,+1 has (m + 2) degrees of freedom, so we need (m + 2) contraints
" (Pmr1 Pmir) =1
* (Pt P) =0,Vie{0,..,n—1}

o However on the RHS, (a;,x + Bin) ®m + Vin®Pm—1 has only 3 degrees of freedom

o

o

Only the first 3 constraints will be used, and the rest will be automatically satisfied

* Fori<m—2,{pms1, ®i) = am (XPim, ®i) + B (P, ®i) + Vin (Pm-1,P:) =0
0 0 0

= Note: (x¢m, ¢;) = (pm, x¢;) where x¢; € span{y, ..., prm_1} L P,
<¢m+1'¢m+1) =1

In order to determine @, B, ¥m, We only need to solve{ (@Pmi1, Pm) =0

(¢m+1:¢m—1) =0

o

¢ Examples of orthogonal polynomials

Name Domain Weight Function Recurrence Relation
Legendre [—1,1] 1 2n+1 n
8 wx) =3 brar = 7 X0 — 7 Pna
Chebyshev [—1,1] wix) = 1 Tpy1 = 2xTy, — Tp_y
V1 — x?
Hermite (—%0,0) w(x) = e—x* Hyyq1 =xH, —nH,_4

Gauss Quadratures
¢ Definition
o The roots of ¢,, are called Gauss quadratures for ¢,,
¢ ¢,, has m Gauss quadratures
o ¢y is a constant not equal to 0, so it has no root
o ¢, hasazeroin[a,b]

» Assume ¢, has no zero in [a, b]. WLOG, assume ¢, (x) > 0,Vx € [a, b]. Then
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b
" (1, P0) = f d1(x) ¢po(x) w(x)dx > 0,which contradicts (¢, pg) = ¢ 1

a >0 >0 >0

o ¢, hastwo rootsin [a, b]
= Assume ¢, has only one root &, then (x — §)¢,(x) is eitherall > 0 or < 0
* WLOG, assume (x — §)¢,(x) > 0,Vx € [a, b]. Then

b
(= 62,90 = [ 900G =) $ox) ) dx > 0

>0 >0 >0

But ((x — )2, o) = (P2, (x — E)pg) = 0, since (x — {)Ppg € span{y, P41} L ¢,

» Therefore ¢, has at least two roots
¢ Computing Gauss quadratures using recurrence relation
o Given the recurrence relation
" Pni1 = (X + Br)dn + VnPn-1

. Yn Bn .
Define a,, = ——, b, = ——, ¢;, = —, then we can rewrite the recurrence as
a a

n n n

" Xy = Andp_1 + bpdn + CrPnia

o Written in matrix form,

o

$o(x) by ¢ $o(x) 0
$1(x) ap by o $1(x) 0
.y : = : + :
Pn-_1(x) An1 bpoy g || Pn—1(x) 0
¢n(x) an b, Pn(x) Cn P (X)
; z 7

O

For ¢,,,+1(x) = 0, we have x$ = A(E

o Therefore, Gauss quadratures are the eigenvalues of A

Chebyshev Polynomials
¢ Chebyshev polynomials can be defiend using either one of the equations below
O Tpi1(x) = 2xT,(x) =Ty 1 (%), To=1,T; =x
o T,(x) = cos[n - arccos(x)]
¢ Prove the equivalence
o Define C,,(x) = cos[n - arccos(x)]
o Base case
" Cy=cos(0)=1=T,
» (C; =cos(arccos(x)) =x=T,
o Inductive step
» AssumeC,_, = T,,_4 and C,, = T,,, then we want to show that C,,,; = T),;1
" Cpi1(x) = cos[(n+ 1) arccos(x)]
= cos[(n + 1)0], where 6 := arccos(x) © x = cosf

= cos 0 cos(nf) — sin(nf) sin
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= 2cos 0 cos(nf) — (cos B cos(nf) + sin(nh) sin 9)
= 2 cos 0 cos(nf) — cos[(n — 1)0]
= 2x cos(nB) — cos[(n — 1)0]
= 2x cos(narccosx) — cos[(n — 1) arccos(x)]
= 2xCp(x) = Cp—1 (%)
= 2xTy (x) — Tp—1(x)
= Th1(x)
o Byinduction, C, =T,,Vn € N
o Thus two definitions are equivalent

¢ Find the recurrence matrix and zeros

1
O Thy1(x) = 2xT(x) — Ty (x) © xT (%) = E(Tn+1(x) + Tn—l(x))

o Written in matrix form, we have

To 0 1 To 0
T, 1/2 0 1/2 T, 0
o x : = : + :
Tpey 12 0 1/2||Ty 0
T, 12 o]l T, 1/2Tpss
T A T

0 Ty =0 xT = AT & zeros of Thi1(x) = eig(A)

Using Numerical Integration to Compute the Projection Coefficients

e Motivation

n
o InR"givenv € R", v = 2 vie; =
i=1 i=1

!
INgE
S
Kl
3

+ 0o + oo + 00 b
o Similarly,for f € C®[a,bl.f = ) iy = Y (F. ¢ = ) [ [ reosoweax|
i=0 i=0 i=0 '@
b
o But the integration ¢; = J f(x)p;(x)w(x)dx is sometimes hard to perform
a

]
o We can compute a; = z f (x1) @i (xp)w(xy) for samples {x,, ..., x;} to approximate c;

i=0
¢ Theorem
b N
o Iff € Pyy,q,then J fOw(x)dx = Z (X)W, , where
a m=0

* {xy,..., Xy} are the Gauss quadratures of ¢, determined by w(x) and [a, b]

b
. Wm=f L ()w(x)dx

e Proof

o Case1l: When f € Py
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N
o f canbe written as f(x) = z f )l (x)
m=0

b b| X
o Thenf fw(x)dx = f [z ) ln (x)‘w(x)dx
a a m=0

N b N
= > fm [ f zm(x>w(x)dx] = > FCom) W
m=0 a m=0

o Case2: When f € Pyy4q \ Py

N
o Define p(x) = Z )l (x), thenp € Py

m=0
o Definer(x) == f(x) — p(x) € Pyy4q,thenr(x,,) = 0,vm € {0, ..., N}
N

o Therefore, we can write r as r(x) = q(x) H(x — X,,),for some g € Py

m=0

b b
o f (f(x)—p(x))w(x)dx=f r(xX)w(x)dx

| N N
= j []_[(x - m‘ aewdx = (] |G- xm).q)=0
a |m=o0 m=0

N
since H(x — Xm) = CPpy,q forsomec € R,and g € Py L dpyiq

m=0

b b | N
o Thus,f f)w(x)dx =f p()w(x)dx =f [Z )l (x)‘ w(x)dx
a a a m=0

N b N
= > fm) [ f zm(x>w(x)dx] = > FCom) W
m=0 a m=0

¢ Corollary

o For f € Py,1, the projection coefficients c; is equal to the numerical apprixmation «;

b N
o Sincec; =(f,¢;) = f [ Pi(x) wx)dx = Z fa)di(wy = a;, Vi € {0, ..., n}
a k=0

EP2N+1

Summary and Error Analysis for Polynomial Projection

e Let{¢po, ¢1,P3, ... } be alist of orthogonal polynomials
+00

e Given f € C®[a, b], it can be written as f(x) = Z Cndn(x), for some constants ¢, € R
n=0

¢ We first project f to Py by truncating the summation to N

N + 00

o f() = p) = ) (@) witherror = > 66, (1)

n=0 n=N+1
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o By regularization theory, if f € CV[a, b], thenc, = 0(n™")

o Therefore for {cy11,Cnsz, 1, = 0(M7Y) S cy = O(N7Y) is small

¢ Since ¢, is hard to obtain directly, we use a,, to approximate them by numerical integration

N
o P() % F) = ) dndn(x) with error~(ay = ¢,) for f & Py

n=0

o a, = z f (x) $n (xx )Wy , by numerical integration
k=0

+ oo

N
Z Z Cm®Om (X)) | dn(x )Wy |, by substituting f

= i Cm i On (x1) P (i )Wy
m=0| k=0

+0o N

m Z Dl PmCI Wi+ D |em D bu)mCudw

k=0 EPZNCP2N+1 m=N+1 k=0

m=N+1

N
= i -chb¢n(x)¢m(x)w(x)dx] Z CT”E W (i) P i)Wy
m=o0 "t a
N
2,

O + Z Z¢n<xk>¢m(xk)wk

m=0 m=N+1
+00
=c, + Z kncm,where k,,, = z Gn () P (x5 )Wy is a constant
m=N+1 =
O(N7V)«K1

o Therefore a,, — ¢, = O(N~V) is small

Relation with Polynomial Interpolation

¢ Recall polynomial interpolation

o Given f,we want to find p(x) = a,x™ such that p(xy) = f(xx),Vk € {0, ..., N}

M=

n=0

Uoxp g | %] [rGo)
o Then we want to solve | : : : : = : fora
1 xy x5 - xN|lan f(xn)
= ~———
X a f

o Since the X is ill-conditioned, computing @ = X‘lf will result in large numeric error
¢ How to design the matrix X so its condition number is minimized
o We can replace the monomials by orthonormal polynomials {¢y, ..., pn}

o And choose the Gauss quadratures of ¢y, to be the sample points {x,, ..., Xy}
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Po(xg) -+ Pn(xp) [a.O] f(xo)
o Then we want to solve : : | = : fora
Polxy) -+ Pdylxp)| Lan f(xn)
A a %f_/

o Inthis case, A is almost unitary and cond(4) ~ 1

e Proof

b
o LetW = diag(wy, ..., wy), where w;, = f L, (x)w(x)dx.Then ATWA = I, since
a

N b

o [ATWA]mn = Z D (i) P () Wy = f Gm ()P OW(x)dx = (P, P) = Oy
k=0 €EPminCPan4+1 a

max{w;} _

o Therefore A is almost unitary and cond(4) =~ — ~
min{w; }
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Integration Rules & Undetermined Coefficients

Wednesday, November 7, 2018 4:12 AM

Composite Integration Rules

¢ Introduction

o We divide [a, b] into N intervals {x, ..., Xy}, where x;, = a + kAx and Ax = ——

N
b Nt Xk+1 Xk+1
o Then J flx) = Z f(x)dx,and we can use polynomials to approximate f(x)dx
a k=0 "Xk Xk
e Methods
Rule Type of Function Polynomial used in [xy, Xy 41] Error
Midpoint piecewise constant X + Xjq1 0(Ax?)
p() = f (=5
Trapezoidal piecewise linear fperr) — fQxx) 0(Ax?
p() = fu) +——— (x—xp ()
Xk+1 — Xk
Simpson's  piecewise quadratic 0(Ax*)

o In general, for piecewise polynomial with order 2i + 1 or 2i, the error term is 0(Ax?'*2)

¢ Error analysis

b
o Forf € CV][a, b],J flx)dx — Ef(xi)wi = O(N7V),so the error decrease as N increase
a

i=0
Trapezoidal Rule

e Procedure

o For interval [xy, x4 1], we look for a linear polynomial p that interpolates f at xj, and x4,

' { PO 2100 pay = plag + TS SO (s

P(Xr41) = f(xps1) Xk+1 — Xk
o Integrate p in the interval [x, x4 1], then
fQresn) = fxge) [Fhe Ax
el TR [ = mdx = 5 (£ + £ )

Xe+1 — Xk Xk
Ax Ax2/2

. f " p()dx = Flx)bx +

o Summing up all intervals, we have

N—- 1

. f p(x)dx = Z Jxkﬂp(x)dx = Z —(f(xk) + f(xp41)) = Ax f( ) —+ Z fl) +——

k=0

1
o Note that f(a) and f(b) have weight > and f(x1), ..., f (xy_1) have weight 1

e Error analysis

o Recall the error analysis in interpolation
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(N+1) N
» Ifp € Py interpolates f at {x, ..., x5}, then f(x) — p(x) = f(NTl()f!)L_O[(x - X;)

o Inthe interval [x;, X;41]:

1
" Sincep € P interpolates f at {xy, Xi+1} f(x) = p(0) = 2 f7(§:) (6 = 2) (X — Xpe41)

Xk+1 Xk+1

Xk+1 1
After integration, f(x)dx — f p(x)dx = 3 f(ED) (x — x ) (x — Xpyq)dx
Xk

Xk Xk

= Recall the Mean Value Theorem for Integrals

o If f € C®[a, b],and g is an integrable function that does not change sign on [a, b]

b b
o Thenf f)g(x)dx = f(n)f g(x)dx for somen € [a, b]

Xk+1 Xk+1 f”(n) Xk+1
» Define E == f f(x)dx — f p(x)dx = (6 — x3.) (6 — Xpep1)dx = O(Ax3)
XK XK JT Xk
const

0(Ax3)
b b N-1

o Therefore, the error over the entire interval isf f(x)dx — f p(x)dx = Z E, = 0((b — a)sz)
a a k=0

o When N increases, Ax decreases, so does the error
e Summary

o Wedivide [a, b] into {xy, ..., xy }, and approximate f by a linear function p in each [xy, x; 41]

o Ineach interval [x, xk+1],f k+1f(x)dx O(Azx3) f k+1p(x)dx = % (f(xk) + f(xk+1))

Xk

o b o(ax?) (P Ax =
o For the entire 1nterval,f fx)dx = f px)dx = > fla) +2 z f(xx) + f(b)
a a k=1

¥

X * Xy %z X x; X
Midpoint Rule

X+ Xg+1

e In[xg, Xy41], we use the constant function p(x) = f(Xy41/2) = f( 5

) to approximate f

Xk+1 Xk+1
0 j F()dx ~ f p()dx = f(xs1/2)Ax
Xk Xk

e Then the approximation for the entire interval [a, b] is
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b N-1 Xier1 N-1
° f f(x)dx = Z f)dx = Z f(k41/2)0x = Ax (f(xl/z) + f(xz)2) + -+ f(xzv—1/2))
a k=0 k=0

Xk

¢ (Invalid) Error analysis using Mean Value Theorem

FOE@ T
o Recall the error formula in interpolation: f(x) — p(x) = T H(x —-Xx;)
) i=0

o In the case of midpoint rule, we have N = 1, so f(x) — p(x) = f’(f)(x — xk+1/2)

Xk+1 Xk+1 Xk+1
o After integration, f(x)dx —f p(x)dx = f f’(f)(x - xk+1/2)dx
Xk Xk XK
Xk+1 2 Xk+1
o By the Mean Value Theorem, &) (x— xk+1/2)dx = f’(n)f (x — xk+1/2)dx =0
XK Xk

0
o But the equal sign does not hold, since MVT requires g(x) > 0 or g(x) < 0,Vx € [a, b]

¢ Error analysis using Taylor expansion

1
o By Taylor expansion, f(x) = f(%kr12) + ' (¥icrr/2) (% = Xicrry2) + 5 " (Sres1/2) (% = Xiewn/2)” -

Xk+1 Xk+1 Xk+1
o [ Treodx= [ Tpedr= [ 1) - peolax
Xk Xk Xk
Xk+1 1 2
= f [f(xk+1/2) + ' (r12) (X = Xper1/2) + Ef”(xk+1/2)(x — Xgp1y2) o= p(x) | dx
Yk p(x)
Xk+1 1 2
= [ )= ) + 7 ) = )
XKk
Xk+1 1 Xk+1 2
= Fn) [ =) 4 () [ (= saga) ot
Xk Xk
0 0(Ax3)
) ) Xk+1 0(Ax3) Xk+1
o Soin each interval [xy, x;41], fx)dx = f p(x)dx
Xk Xk
b [ Xk+1 o0(ax?) Nl X
o J f(x)dx = 2 J f(x)dx "= Z J p(x)dx = Ax[f(xl/z) + f(xg/z) + -+ f(xN_l/Z)]
a k=0 "Xk k=0 "%k

¥

/
p
S

Simpson's Rule

2N
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2N

e For each [x,;, x5;42], we look for a quadratic polynomial p that interpolates f at x3;, X2;41, X242

e We divide [a, b] to even number of intervals {x, ..., x5}, where x;, = a + kAx and Ax =

X2i+2 x5 X2i+1 A
o [Trwar S [ awar| = Y r@on | = S 1000 + 4 (o) + FGaina)]

X2i X2i K

Lagrange interpolation

¢ Then the approximation over the entire domain [a, b] is

o(ax*) Ax

b
o [ G "EV R o) + 47 G) + 27G) e 2 Cean) + 4 G ) + f )]

1 2 4
o Note: f(a), f(b) get weight 3 even terms get weight 3’ and odd terms get weight 3

o

z0=a T+ T

Richardson Extrapolation

¢ Introduction
_ @ f(b) . : -
o LetTr(f;N) = Ax |[——+ flx) + - be the trapezoidal integration of f with N intervals

o The error of Tr(f; N) is
N-1 N-1

b N-1
s EM = | fx)dx—=Tr(f;N)= Y Ey,=c » f"(n)Ax3 =c¢ " (n)Ax| Ax?
=Y ' (xip)—f'(xp)
= cAx?[f"(x) = f'(xo) + f'(x2) = f'(xg) + -+ fxn) = fley-1)] + 0(Ax*)
= cAx*[f'(b) - f'(a)] + 0(Ax*)
o The error of Tr(f; 2N) is
2
= ECN) =¢ <%> [f'(B) — f'(@)] + 0(ax™) = %sz[f'(b) — f' (@] +0(ax*)
o Comparing E™ and E@?M), we have

= FCN = %E(N) +0(Ax*)
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b 1 b
. (f f)dx — Tr(f; 2N)> = Z(f f(x)dx — Tr(f; N)) + 0(Ax*)

b
+ [wax= 3 (4Te(f,2V) — Tr(7; 1) + 0(ax?)

o Summary
= Do trapezoidal for N + 1 points
= Do trapezoidal for 2N + 1 points

1
= Compute §(4Tr(f; 2N) — Tr(f; N))
o Note: Richardson extrapolation also extends the accuracy to higher orders

Undetermined Coefficients Method

¢ Introduction

b N
o For f € P,y4q,if we know f(xp), ..., f (xy), then J flx) = Ef(xi)wi
a i=0

o For f of higher degrees, how can we choose {x,, ..., xy } to have the best accuracy?
o On the right hand side, x; and w; each contributes for N + 1 degress of freedom
o We can solve for the coefficients x; and w; to obtain approximation with error O(xZN )

¢ Example
1
o Compute f f(x)dx = wyf(x1) + wyf(x;) for the following f
-1

» Iff(x) =1,then2 =wy +w;

= Iff(x) = x,then 0 = xowy + x;w;
2 2 2 2

» Iff(x)=x ,then§=xowo+xlwl

» If f(x) = x3,then 0 = x3wy + 3w,
o Solving the system of equations above, we have

W0+W1=2

x0W0+X1W1 =0 Wqo = 1 Wi = 1
, , 2> 1, 1
x0W0+x1W1=§ x0=—ﬁ X1 :ﬁ

xgwy + x3w; =0

1 1 1
o Therefore,f f)dx=f <— E) +f <E> for f € P
-1
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Review for Approximation & Integration

Monday, November 12, 2018

Polynomial Interpolation

e Goal

o Given N + 1 grid points

o Welookforp(x) =ag+ag ...

10:52 AM

xy} and their evaluation {f (x,), ..., f (xn)}

+ ayxV € Py st.p(x;) = f(x;),Vi € {0, ...,

{x0, e’

N}

e Method 1: Directly compute the coefficients (numerically inaccurate)

1 x xg
2

o 1 X1 X1 ees
1 xy x3
A

O

o

o

f(xo)
f(xl)

(xN)

If matrix A is not singular, then we have a unique solution for a

But since A4 is Vandermonde matrix, it is ill-conditioned

So solving Ad = f directly will result in large numeric error in d

e Method 2: Lagrange interpolation

x
o For each sample point x, define I;(x) = | | p
2

N

o Define p(x) = z Fx)L(x), then p(x;) = f(x;), Vi € {0, ...,

i=1

n

1
0

_x.

j

,then l;(x;) = 6;; =
L then 1xy) = 8 = |
j=0 J
j*k

N}

¢ Example of Lagrange interpolation

o Given{x, = —1.5,x; = —0.5,x, = 0.5,x3 = 1.5}, find the explicit formula for [,
X—X1 X—Xy3 X—X3 1

o ly= . . =——(x+0.5)(x—0.5)(x—1.5)
Xg— X1 Xo— Xy Xg— X3 6

¢ Error analysis

o E()=f(x)—pkx) =

@) FOI‘fE]P’N

FADE
———| |(x —x;) forsome & € R
(N + 1)! 1:0[

n fNHDE) =03 E(x) =02 f(x) = p(x), Vx

o Example

N N
+ Let/(x) = Lthen1=f(x) = p(0) = ) fGliG) = ) i)
i=0 i=0

o For f(x) =xN*t1 + cyxV + -+ ¢y € Pyyq
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N
= fDEO =+ DI E@) =] [(x—x)
[

N n
£ 20 =E@+p@ = Je-x+ ) FE@
i=0 i=0

o Example

N N
= Letf(x) =(x— D" Lthen ) flxli(x) =f0x)—| |Gx—x)
2 L

= Evaluate both sides at x = 0, then

N

N N
= ) =DY0) =0 -DY* =] [(0—x) =DV 1-| | x
2 L i

i=0
¢ (Chebyshevnodes
N
T
© min sup l_[(x —x;)| = x;, = cos;,,where 8, = k—
xi} x€la,b] =1 N
Polynomial Projection
¢ (Goal
o Given f € €%, we look for p € Py s.t. p best approximate f in L?
¢ Orthonormal polynomials

o Given domain [a, b] and weight function w(x) > 0

o {¢pr}tS, is said to be a sequence of orthonormal polynomials if

b —
o deg¢; =iand (P, ¢,) = f P ()P, (X)W(x)dx = 6y = {(]'; z ; Z

¢ Properties of orthogonal polynomials

o Recurrence relation

* Pni1 = (@yx + By)Py + YNyPn-1 for some ay, By, vy E R
(¢N+1J¢N+1) =1

» The coefficients are determined by { (¢py11,Pn) =0
(dn+1,Pn-1) =0
* Then ¢yyq L Py_z,-.., Do is satisfied automatically

o ¢u has N zeros called Gauss quadratures

o eig(A) = Gauss quadratures of ¢y, 1

1
" Pre1 = (X + Bi) P + ViPr-1 = xPy = a—k (Pr+1 — BxPr — Y Pr-1)
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$o(x) by co $o(x) 0

¢y (x) a; by €1 ¢1(x) 0
$Pn-1(x) Ano1 bpor o || Pn-1(x) 0
¢hn(x) an by, P (x) Cn¢n+1(x)
; 7 ;

= Pp1(X) =0 & x¢ = A, 50 eig(4) = GQ(Pp1)

¢ Example: Hermite polynomials

1
o Hermite polynomials {H,, Hy, ... } are defined on (—o0, ©) with weight w = T e=*’
T
1
o Given Hy = 1,H; = V2x,H, = — (4x? — 2
0 1 2 \/g( )
@ 1
o J 2x2e % dx = \/ﬁf le(x)Te‘xzdx =m(H, H) =1
—o I
o f (4x2 —2x — Z)e_xzdx = f (\/§H2HO - \/leHo)e_xzdx =0
e Bestapproximation
+00 N
o Given a function f(x) = Z ap ¢y (x), define the projection p(x) = 2 ardr(x)
k=0 k=0

o Then p is the best approximation in L? norm. Let g € Py, be arbitrary, then
o llf=gall:=(-af-a={F-D+@-.F-p+@-9)

={f—-pof-0)+2{(f-pp—-q@)+ (P—qD—q)
0 >0

2(f-po.f =)= lf =0l

b
o Note: |IgI|z=\/<g.g>=JJ g2 (x)w(x)dx

¢ (oefficients approximation

N

o px) = Z ardr(x),but a is hard to compute, so we use ¢, to approximate it
k=0

b N
o @ = (0 = | F@BCOWEIdx = Y FldCxw; = o, where
a i=0

b
" w; = f l;(x)w(x) dx and {xy, ..., xy} are the Gauss Quadratures of ¢,
a

b N
o Theorem: If f € [P’ZNH,thenf fwx)dx = Zf(x,-)wi,where
a i=0

o Corollary:If f € Py,q,then a, = ¢, Vk € {0, ..., N}

¢ Error analysis

truncation
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+0oo N

truncation
= —_— =
O F() =) () st () = ) @)
k=0 k=0
N N
numerical integration _
0 PO = ) @) TR () = ) ()

k=0 k=0

Numerical Integration

¢ Trapezoidal rule
o [“reode~allr@+ S e+ i)
a 2 e Y2

e Simpson'srule

f(a) f(b)

b
© Jf(x)dxz —+ f( 1)+ = f( 2) + +T

¢ Undetermined coefficients

1
o [ redx = aro) + Bren)
-1

o How can we choose 4, B, x;, X1 s.t. the approximation is the best?
2=A+B iff(x)=1 A=1
0 = Axg + Bx, iff(x)=x B=1
2/3=Ax2 +Bx? iff(x)=x%" |%=-1/V3
0=Ax3+Bx} iff(x)=x3 x, =—1/V3

Page 60



Ch 12: Numerical ODE

Friday, December 7, 2018 10:50 PM
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Introduction to Numerical ODE

Monday, November 12, 2018 10:36 AM

Numerical ODE

¢ Introduction

y' = f(x)

o Given
{y(a) =A

b
,we can compute y(b) = A + f f(x)dx by numerical integration
a

1 _ b
o Innumerical ODE, we are given {yy(_a{(—x’z) and want y(b) = y(a) + f f(x,y)dx
- a

o But for f(x,y), we don't know the exact value for parameter y
o Instead, we can take small steps in x and approximate y,, = y(x,,) in each step
¢ Initial value problem

o Givenu'(t) = f(t, u) and initial condition u(t = 0) = uy, we want to find u(t = T) for some T

Reducing N Order Non-Autonomous ODE

¢ Autonomous
o Ifthe force f has no explicit dependence on ¢, then we call the ODE autonomous

o System of first order autonomous ODE

f1(u1» ey Up) uy(t=0)
with initial condition U(t = 0) = U, := :
fn(ulJ .- un) un(t =0)
(u)
¢ Reducing to first order autonomous ODE
o Given any higher order, non-autonomous ODE ™ = f(¢t,u,u/, ..., u»D)
o We can reduce it to first order autonomous ODE system u' = fQ) and find u(t)

Ut =0) =,

o Therefore numerically, we only study first order autonomous ODEs

e Example
u(t=0) =u,
o We want to solve u’"” = u'u — 2t(u’)? with initial conditions{ u'(t = 0) = u,
u'(t=0)=u,
Yo(t) = u(t) Yo(t =0) =y
o Define{ y;(t) = u'(t), then we have y; = y,y; — 2ty? with{y;(t = 0) = u,
y2(6) = u"(t) y2(t=0) =1u,
o To reduce to an autonomous ODE system, define y;(t) =t
Y0 V1 Ug
Y1 V2 e e u
o Sowe only need to solve|” ;| = , | with initial condition y(t = 0) =
Y2|  |Yo¥1— 2Y3¥i Uz
Y3 1 1
5 {E))
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Existence and Uniqueness of First Order ODE (Picard's Theorem)
¢ Different types of continuous
Continuous at x* Ifx - x* then |f(x) — f(x*)| =0
Lipschitz continuous at x* 3JL,« € Rs.t. |f(x) — f(x*)| < Ly|x — x*| for x € Bo(x*)

Uniformly Lipschitz L, is bounded Vx*
o Note: In the case of Lipschitz continuity, if f'(x*) exists, then L, = f'(x™)

¢ Picard's Theorem

o If f(u) is uniformly Lipschitz, then the equation has a unique solution
¢ Example 1

o Givenu' = u? with initial condition u(t = 0) =7

o Here f(u) = u? is not uniformly Lipschitz since L,, = |f’(u)| = 2u is not bounded
1
o u has an explicit solution u(t) = 1—L17t’ butitblowsup att = E

e Example 2
o Givenu’' = \/u with initial conditionu(t = 0) = 0

1
o Since L, = |f'(w)| = —= does not exist at u = 0, f () is not uniformly Lipschitz

2Ju

1
o Itturns out that there exist multiple solutions, such as u(t) = 2 t2oru(t) =0

Three Key Concepts

¢ Consistency
o Local truncation error measures how much the true solution fail to satisfy the scheme
o Iflocal truncation error t,, = 0 as h = 0, then we say the method is consistent

o Stability
o The error E, = u(t,) — U, in each step should not be amplified in the future

e Convergence
o We say a method converges if the numerical solution Uy » u(t =T)as h - 0

o Lax theorem says that for linear ODE, consistency and stability imply convergence

General Methodology
¢ First approximate the differential operator by a difference operator using
o Finite difference method (Euler method, Trapezoidal rule, etc.)
o Interpolation + differentiation
" p(0) = f(xo)lo(x) + f(xo + W11 (x) + f(xo + 2h) 1, (x), then p’(xo) = f'(xo)
e Then solve the resulting discrete system using
o LU decomposition or QR decomposition (for linear system)

o Newton's method (for non-linear system)
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Euler & Trapezoidal & Runge-Kutta

Friday, December 7, 2018 10:39 PM

Euler's Method

e Forward Euler method for f'(x,)

o Welookfora,b,cs.t. f'(xg) = af(xg) + bf(xg + h) + cf(xq + 2h) is best approximated

h2
f(xo +h) = f(x0) + f'(xo)h +7f”(x0) + -
o By Taylor expansion,

! (Zh)z 144
f(xo + 2h) = f(x0) + f'(x0)2h + > [ (o) + -
! ! h2 14 ! (Zh)z n
o f'(x0) = af (xo) + b [f(xo) + f'(x0)h +7f (xo) [+ ¢ |f(xo) + f'(x0)2h + > f"(x0)
f(xo+h) f(xo+2h)

Oia+b+c a=—3/2h"1

_ - L, o 1=>bh+ 2ch !

o Collecting the coefficients of f, f', f'', we have 2 2=>13b=2h"1

bh= c(2h) B

3 2 1
o The error termis f'(xq) — —ﬁf(xo) + Ef(xo +h) — ﬁf(xo + Zh)] = 0(h?)

difference operator

1 1
o Similarly, If we only take one step, then f'(xg) — |— Ef(x()) + Ef(xo + h)] =0(h)

difference operator
¢ Central Euler method for f" (x,)
o Welookfora,b,cs.t f'"(xg) = af(xg — h) + bf(xg) + cf(x¢ + h) is best approximated
O=a+b+c a=h-2

o Collecting the coefficients of f, f’, f", we have 0 =1h(a =) S lp— _op-2
1=Eh2(a+c) c=h"2

2
o Due to symmetry, the fourth equation 0 = 3 (a — c) is automatically satisfied

) 1 2 1 ,
o Therefore f" (xq) — ﬁf(xo —h) - ﬁf(xo) + ﬁf(xo + h)] = 0(h?)

¢ Example of one-step forward Euler method
o We want to solve u’ = f(u) = Au with initial condition u(t = 0) = u,

o Denote u, = u(t,) to be the true solution at t,, and U,, the numerical solution at t,,

1 1 1
o Thenu'(t,) = At (Uns1 = Up) = f(Up) = AUy = = Upyq — <A + _> Up=0

At At
. 1 Uil [t + DU,
o Define u = 14t + 1, then At K 1 . U:Z = 0
—u 111Uy 0
—— —_—
A i S
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[ 1
u 1
2
o Computing the inverse of A, we have A1 = Mg ,u
: u 1
[t @ oo 1l

o Thus, U, = [A71S]y = At(1 + AN (At™Y + Duy = uy(1 + 240N

T ar\" o
o LetT=NAt<:>At=N,thenUN=u0 1+W - uge* asN - o

o Thisis the same as the analytical solution u(T) = uye?”

Analysis for Euler Method

¢ Consistency

o We want to show that the local truncation error z,, - 0 as At - 0

Upi1 — Uy 1 , 1 5
O Ty = T_f(un) = A_t Up +u (tn)At‘l'Eu (tn)At + T Uy _f(un)

=u'(t,) + %u”(tn)At +o—f(uy = %u”(tn)At + - =0(At)

u'(tn)
o Therefore one-step forward Euler method is consistent
e Stability

o We want to show that the error E,, = u(t,,) — U,, is not amplified in the future

o Inthe example above,{ AU =S =>A(17—l7)=‘?=>§=A‘1‘F
T=Au-S ~ 7

S M|

-1
o ”1’?”oo < [|A7Y|_NIZlleo, where [|A7H| = At » uk <
k=0

1
(eAAt)N - Zeﬂ and ||7]|» = O(At)

D

o Since ”E')”oo < 0(At) > EE}) E = 6, one-step forward Euler method is stable
¢ (Convergence (for non-linear case)
o If f(u) is Lipschitz (with constant 1), then Euler method is linearly convergent
o The numerical solution at each step is
* Ups1 =Upt+h-f(Uy)
o The true solution at each step is
" Uppy = Utpyr) = ulty + h) = u(ty) + v/ (t)h + 0(h?) = u(t,) + hf(u(ty)) + 0(h?)
O Ens1 = WUnsr = naal = |(Un + B F(WUD) = (w(tn) + b+ f(u(tn)) + 0(r%))|

= En + hIf (Uy) — )| + 0(h?)

< Ep + hA|Up — up| + 0(h?)
En

= (1+ Ah)E, + 0(h?)
o Ep <(1+ Ah)E,_4 + O(h?)
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< (1 +2h) ((1 + AW)E,—; + 0(h?)) + 0(h?)
< (1+ Ah)2E,_, + 0(h?) + 0(h?)
< <1+ AR E; + 0(h?%) + -+ 0(h?)

n copies

< (1 4+ AR 1E; + 0(h), since O(nh?) = O(Th) = O(h)

T AT n—1 N
o Letnh=T(:>h=;,then(1+lh)"‘1: 1.|.7 < AT
Uy — U

"
—2 = f(uo) + O(R)

o Since E, < (1 + Ah)™1E; + O(h) = O(h), Euler method is linearly convergent

=f(U _
o B = 0(k?) since F (o) ﬁ{ul hf Wo) + Uy

Uy uy = hf (up) + up + 0(h?)

Trapezoidal Rule

e Scheme
U,.1—-U 1
o Approximate u' = f(u) using —"=—"= = (f(Up) + f(Ups+1))
e Example: f(u) = u?
Upy1—Up, 1 1 1
unknown known

o Since the relation is implicit, we need to use Newton's method to solve for U,,,; at each step

¢ Consistency
u —-u 1
o T, = % —3 (f(un) + f(un+1)), where

Uppr — Uy 1 1 1
o n+1h Tl=E<un+uhh+§u;{h2+..._un>=u;1+zu;{h+0(h2)

1 1 1
© E(f(un) + f(uns1)) = > [f(un) +f (un +ulh+ Eu;{hz + )]

1 1
=3 [f(un) + £ Qun) + £ ) @ph + --) + 5 ' () (unh + w2+ ]

= Fl) +5 e + O ()

1
=u, + Eu;{h + 0(h?),since uy, = f(uy) © uy = f'(u)up,

u —-u 1
o Thus,t, = % - E(f(un) + f(un+1)) = O(hz)
e Convergence

o If f(u) is Lipschitz (with constant 1), then trapezoidal rule is 2" order convergent

o The numerical solution and true solution at each time step is

h
* Upy1 =Uy +E (f(Un) + f(Un+1))
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h
" Uy = Uy +E(f(un) + [ (Ups1)) + O(h?)

o Subtract two equations and apply Lipschitz condition, we have

h 3
» Epo <E,+ E(AEn + AEp41) + O(h®)

n—-1
1+%Ah 1+%Ah
" B S—5—E,+0(R) < |—5—| Ei+0(nh*)=0(r?)
1-52h 1-52h

o Therefore, trapezoidal rule converges quadratically

Runge-Kutta Method

¢ Introduction

tht1

o The keyidea of IVPis to find U1 = U, + f f(u(t)) dt

t
n unknown

o Inforward Euler method, we replace the integral by hf (U,,)

h
o Intrapezoidal rule, we replace the integral by 3 (FU + f(Uny1))

o In Runge-Kutta method, the integral is replaced by summation ¥}, f(Upq,n)W;

¢ Example of RK-2: midpoint method / modified Euler method

o General idea

y(x)

X1 X2 X3 X

= Use Euler method to calculate midpointlocation U* (open dots 2) (4))
= Evaluate slope f(U*) at the midpoint (arrow after (2) (4))
= Use the slope the calculate full step location (filled dots (3) (5))

o Formula

h
U =Un+§f(Un) :)Un+1=Un+hf<Un+ﬁf(UTl)>
Ups1 = Un + hf(UY) ’

o Example

» Suppose u’ = u, then the analytical solution is u(t) = Ce®

h h? h 3
* Upy1=Up+h Un+§Un = 1+h+7 U,=e Un-l-(?(h)

¢ Common Runge-Kutta methods
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Name Butcher tableau Scheme

Classical o | o0 y1=Uy
1
RK-4 1/, | 1/, Y2 = Un +=hf(n)
1 o 1 1
/2 | /2 { ¥z =Up+5hf(y2)
1 | o o 1 2
- 4+ - - - - Ya = Up + hf (y3)
R VAR VAR VA Uypor = Uy +h f(zl)+f(?}’12)+f(§3)+f(g4)
\
Midpoint o | o0 y, = Uy,
®Rk2) 1y |1 U e = Utz o)
- T o (Unss = Un + 1/ (72)
Heun o | y1=Un
RK-2) 1 | 1 J Y2=UnthfOn)
1 1
- T 1; 1; \Un+1 = Un +h [Ef()ﬁ) +Ef(y2)]
2 /2
Ralston o | 0 y1=Uy
2
RK-2) 2/3 | /3 | y2=UntShfO)
- + - - 1 3
| 1, 3/4 \Un+1 =Up+h [Zf(yl) +Zf()’2)]
Generic o | 0 y1=Un
RK2 a | «a Y2 = Un + ahf (y1) ,or
-+ - - Ups1 = Up + h[Bf(y1) + (1 = B)f (¥2)]
| B 1-5 Dni 200 _ e (U,) + (1= B (Uy + ahf (U)

fora(1—-B8)=1/2 h

¢ (Consistency for generic RK-2

Upy1 — Up
O Tp =~ Bf (uy) + (1 — B)f (un + ahf (uy,)), where

Upyr —Up 1 1 1
o —"+1h L - [(un + huy, + Ehzu;{ + 0(h3)> - un] =u, + Ehu;{ +0(h?)

o Bf(un) + (1 —B)f (un + ahf (un))
= Bf (un) + (1 = B) [f (un) + ahf' (un)f (un) + O(h?)]

Taylor expan. of f(un+ahf(uy))
= Buy + (1 — Pluy, + ahuy ] + 0(h?)
= up(1 = B) + Bup + a(1 — Phuy + 0(h?)

1
=u, + Ehu;’ +0(h?)

o Thus,t, = 0(h?)
e Remark

o 4-th order Runge-Kutta is the highest order where the stage number = order of accuracy
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Linear Multistep Methods & Stability

Friday, November 30, 2018 11:20 AM

Linear Multistep Methods (LMM)
¢ Adams-Bashforth methods

o We can approximate f(u(t)) by polynomial interpolation at (t,,, f(U,,)), (tn_1, f(Un_1)), "+

o ie f(u®) = p®) = fWUIE) + fUn-1)lno1 () + fUn_2)lp—2(®) + -

. . t—th
o Interpolation at (t,, f(Uy)) and (t,—1, f (Up—1)) gives p(t) = A fU,)

n-1)

tnv1 tn+a

f(u(@®)dt = U, +f p(t)dt

tn

o Un+1=Un+f

tn

fUn) +

[ tnt1¢ — ¢
=U, + f 271 gt
tn h

tn+1 t. —t
f n dt]f(Un_l)
th h

th+1

— +)2
f(Un)+[(n )] f(Un-1)

tn

(£~ ta-)?| ™

2h 0

_(tn+1 - tn—l) (t - tn 1) ( n - (tn - tn+1)2
o ]f(Un) + [ - f(Up-)

:(Zh)z
| 2n

h2
- ﬁ]f(u,a ¥ [o - E]f(un_o

3h h
+ S fU) =5 FUn )

h
o Interpolation at 3 sample points gives U,,,1 = U, + - (23f(Un) —16f(U,_1) + 5f(Un_2))

e General LMM

r r
o A general LMM has the form Z ;Ui = hE Bif U,ii)

o IfweknowU,,U, .1, .., Unsr—1, then we can use the formula above to estimate U,,, -

¢ Explicit vs. implicit method

T

0 Y il = hi Bif Unsi) = hz Bif Uns) + hBrf (Unir)
i=0 i=0

i=0
o If B, = 0, then we have a explicit method
o If B, # 0, then the method is implicit, and we need to use Newton's method to solve for U,, .,

o Adams-Bashforth methods are examples of explicit linear multistep methods

Consistency of LMM

e Local truncation error
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U

o Ty, = _Z AjUpyj — Zﬂ]f(unﬂ)

3‘

hz a; [un + upjh + u n(jh)? + ] Zﬁ] [un +upjh+ = u”’(]h)2 +

T T T

1 , ,

o P3G R DRI FAR. 21 - 21/% it
j=0 j=0 j=0

need to be 0 so that 7,0 as h—0

T T r
o For consistency, we require Z aju, = 0and Zja]- = Z Bj
= ¢ —
¢ Characteristic polynomial

T

r
o Define p(§) = 2 a; & to be the characteristic polynomial for Z aiUpyi
i=0 i=0
T
o Define a(§) = Z B;&" to be the characteristic polynomial for 2 Bif Unyi)

i=0 i=0

1)=0
o Then the requirement for consistency is { (L)

p'(1)=0(1)

3 1
e Example 1: Upyy —Upy1 =h [Ef(Un+1) - Ef(Un)]

p(1)=0

o{a;=-1,{ By =3/2 = p'(1) = o(1) = 1 = Consistent method

1 3
=1 ( = o ="338

e Example 2: U,,;» — 3Up 41 + 2U, = —hf(U,)

=0 (Bo=-1/2 (p(§)=0-¢+¢? {

ap =2 (Bo=-1 2
=2-35+ 1)=0 _
o {ay =_—3, B i 0= {g%g _ 4 §+¢ = {p’?%l% = o(1) = -1 = Consistent method
a, =1 B, =0
Zero Stability of LMM
e Zero stability (informal)
o A scheme is said to be zero stable if perturbations remain bounded as n - o

¢ Test problem for zero stability

!

o We consider the test problem {u?0)==00’ where the analytical solution u(t) =0

o For zero stability, we need the numerical solution to be bounded (by some constant)

o Note that zero stability is called so since we assume the force term f to be zero
¢ Motivating example

!

o Compute the test problem {ul(io)==00 using the scheme U,,,, — 3U, 41 + 2U, = —hf (U,)

o Substitutein f(u) = u' = 0, then the scheme becomes U, — 3Up;1 + 2U, =0

10
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o With U, = 0,U; = h, we have Us = 4.2,U;( = 258.4, .., so this scheme is not zero-stable

o To better study zero stability, we want to get an analytical solution for this method

U -211U
o Write Up4, — 3Up 41 + 2U, = 0 in matrix form, we have [ nz) - [3 2] [ n+l
Un+1 1 0 Un
o The characteristic polynomial for this recurrenc relation is p(§) = §2 — 3¢ + 2

$1=1

o 52—3§+2=0=>{§2:2

= U, = & + &7 = ¢ + ¢, 2™ for some constant ¢y, ¢, € R

Uy = =2U,-U
o To determine the constant, we can use the initial values UO _ ate =14 _ 00 1
1 =Cy + 2¢, c, =U; — Uy
o Therefore, U, = (2Uy — Uq) + (U1 — Uy)2™, which blows up to 0 asn = 4+ if U; # U,
¢ Root condition

1€l<1 vsingle root ¢ of p

o A linear multistep method is zero-stable if and only if {|f*| <1 vrepeated root " of p

1 1
* Example: Upiy —2Up41 +Up =h [Ef(Un+2) - Ef(Un)]

= This method is consistent

=§82-28+1

p) =¢ §+ { p(l) =0

1 1 =1,

o) =5¢* -5 p'(1)=0(1)=0
2 2

o Since &, = &, = 1is a double root of p, this method is not zero-stable

o In particular, the analytical solution is U,, = Uy + (U1 — Ug)n, which blows up for U; # U,

¢ Dahlquist Equivalence Theorem

o A multistep method is convergent if and only if it is consistent and zero-stable

Absolute Stability

e Motivation
o So far we only considered the convergence of method as the grid is refined (h — 0)
o eg. Trapezoidal method is a second-order method & As h — 0,E,, — 0 at h? rate
o In practice, we want to choose the time step h as large as possible to reduce the computation
o Absolute stability is used to answer how big h can be to produce reasonable results

e Motivating example

u'(t) = A(u — cost) —sint

uy = 1.0001 ,where 1 = —2100

o We want to solve {

o Analytical solution

» y' =A(u—cost) —sint =>u’ +sint =A(u— cost)

v/ v

v =
vy = 0.0001

At At

= Letv(t) = u(t) — cost, then{ = v(t) = voe™ = u(t) = cost + vye

= Since A is very negative, u(t) goes to zero quickly
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o

1.0 R

05/

— cos(t)

L Lo L VR L Lo L T S T L I A 1 L L Lo L i t
1 2 3 4 5 6 cos(t)+vpe

-05¢

Numerical method

» Using forward Euler method with different step size h, we have

h ErroratT = 2

0.000400 0.396033 x 10~

0.000800 0.792298 x 1077

0.000950 0.321089 x 10~°

0.000976 0.588105 x 103¢

0.001000 0.145252 x 1077
* The error increases dramatically when we change h from 0.00095 to 0.000976
= Recall the error for forward Euler method, E,, = (1 + Ah)E,,_; + ht1,
» [fh cannot balance A (i.e.|1 + Ah| > 1),the error would be propagated
* For h =0.00095, |1+ Ah| =|-0.995| < 1
* For h =0.000976, |1 + Ah| = [-1.0496| > 1

¢ Absolute stability (informal)

o

Error introduced at each step does not grow in future steps

¢ Linear test problem

o

O

O

o

O

O

o

The test problem for absolute stability is u’ = Au with 1 € C

When Re(4) < 0, the exact solution u = uoe’“ - 0ast — 0,sowewantU,, - 0 as well
Apply a numerical method to it, we will obtain U,,,; = ¢(1h)U,, for some function ¢
Here ¢(z) is called the stability function for the secheme

A method is said to be absolutely stable for a given step size h if |¢p(z)| < 1

The region of absolute stable (or simply the stability region) is {z||¢(2)| < 1}

i.e. The set of all z € C for which the method is absolutely stable

¢ Example: forward Euler method

O

o

o

Upir —

U
Apply the forward Euler method to u’ = Au, we have — =AU, = Uy = (14 A0 U,

¢ (Ah)
The stability function is ¢p(z) = 1 + z, and the stability region is {z||1 + z| < 1}

2
For 1 € R,werequire |1+ Ah|<1=h< 1 for forward Euler method to be absolutely stable
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11+2z] <1

_2-| i i L L
-2 -1 0 1 2

Example: backward Euler method

r_ Un+1 - Un _ . 1
o Apply the forward Euler method to u" = Au, we have — = AUpir @ Upyq = 1-h Un
1

o The stability function is ¢(z) = =5 and the stability region is {Z 1 i z| < 1}

-

1L

or | 2| <1

1-z
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Review for Numerical ODE

Monday, December 10, 2018 9:58 AM

Reducing Higher Order Non-Autonomous ODE

=u Yo =1
1, then{”;
=u {Y1 = 2yoy1 — 301

Yo

e Foru" =2u'u—3u, let{
Y1

Existence and Uniqueness of Solution

¢ Unique solution & f(l_i) is uniform Lipschitz & Norm of]}:(ﬂ’) =

Common Schemes

Upi1 —U
Forward Euler : % = f(U,)

Upir — U
Trapezoidal: % =

1
S (FUD + fWnin)

of,
Juy
of
ouy

ofi

o
ou,

U, h
= f(Un+1/2):VVhere Un+1/2 =U, + Ef(Un)

is bounded

¢ Explicit midpoint: %
Upy1 = U U,+U
¢ Implicit midpoint: n+1h AP f <nTn+1>

Three Concepts in Numerical ODE

¢ Consistency

o Ift, » 0ash — 0, then we say the method is consistent

Upt+1 — Up .

h

o Forward Euler : 7,

f(un) = O(h)

¢ Convergence
o TheerrorE, = |U, —u,| >0ash -0
o We did this for FE and Trapezoidal

¢ Stability (zero stability and absolute stability)

Runge-Kutta

¢ We want to march from U,, to U, ,; with some stages in between

f1) n f(2) n f(rs) +f(3’4)

e RK-4
o | o [ n=0
1 1 1
o2 10T o1 e =Un 45O
N
| 1/6 1/3 1/3 1/6 Upy1=U,+h

6 3
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e RK-2

| o
a | a v, =U, 1
o B > vy, = Uy + ahf (y;1) ,fora(l—ﬁ):E
T Unss = Uy + RIBF(y0) + (1= BYF(32)]
| B 1-8
yO = Un

h
1 =U,+=fU
o Supposea=§,ﬂ=0=> Y1 =5 Zf( n)

Upns1 = Un + hf (y1) = Up + hf <Un +gf(Un)>

Upy1 — Up h
O Tn =T_f<un +§f(un)>

"y 2

= %[un +uph + unzh +0(h%) - un] - [f(un) + f’(un)gf(um) n O(hz)] = 0(h?)

LMM and Zero Stability

T

T
A general LLM has the form z a;Uyii=h Z Bif Unsi)

=0 =0

T T

Characteristic polynomials are p(§) = Z a; & 0(8) = z B; &t
' i=0

=0

p(1)=0
p' (1) =0a(1)

For consistency, we need {

|&] <1 & isasingle root
|&;]1 <1 & isarepeated root

Rood condition for zero stability: {

e Example
h( Uors) = FUD) p(§) =¢*-¢
O Upt1 = Un41 +5(3f(Uns1) = f(Un)) = _ 3 1
2 o@)=5¢-7
o {pp’gg Z 2(1) = consistent; {2 : (1) = zero stable

Absolute Stability

e Testproblem: u’ = Au for some Re(1) < 0
¢ Look for the range of h, so that the numeriacl solution decays

e Forward Euler

Upn+1 — Up _ _ _ .
o ——p— = fU,) = AU, = Upyq = (1 + Ah)U,, = stable region {z||1 + z| < 1}

e RK2

Y1 = Un y1 = (1 + arh)U,,

o y2 = Uy + ahf(y;) _ 252
Unis = Un + RIBFO) +7f ()] (Unen = (L4 B +V)2R+y P R2)U,

o Absolute stable region for RK2 is {z||1 + (B + )z + yz?| < 1}
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