# Ch 1: Simple Iteration Method

Wednesday, September 5, 2018 12:52 PM

#### Motivation

- Goal: given f(x) = 0, find x
- Motivation for numerical methods

$$\circ \quad ax + b = 0 \Rightarrow x = -\frac{b}{a}$$

$$\circ \quad ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 0
- o  $ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0 \Rightarrow \text{No formula!}$
- If the order of polynomial is  $\geq 5$ , there is **no explicit zero formula**

#### Bolzano's Theorem (Theorem 1.1)

- Statement
  - $\circ$  Let f be a real-valued continuous function on the interval [a, b]
  - If  $f(a)f(b) \le 0$ , then  $\exists \xi \in [a,b]$  s.t.  $f(\xi) = 0$
- Explanation
  - o If a continuous function has values of **opposite sign** inside an interval
  - Then it has a **root** in that interval
- Proof
  - o By the Intermediate Value Theorem
- Note
  - This theorem does not guarantee the uniqueness of solution

#### Brouwer's Fixed Point Theorem (Theorem 1.2)

- Statement
  - If  $g \in \mathcal{C}$ , and  $g(x) \in [a, b]$  for  $x \in [a, b]$ , then  $\exists \xi \in [a, b]$  s.t.  $g(\xi) = \xi$
  - Here, the real number  $\xi$  is called the **fixed point** of g



- Proof
  - $\circ \ \operatorname{Let} f(x) \coloneqq x g(x)$
  - $\circ \quad \text{Then, } f(a)f(b) = \underbrace{\left(a g(a)\right)}_{\leq 0} \underbrace{\left(b g(b)\right)}_{\geq 0} \leq 0$
  - By the Intermediate Value Theorem,  $\exists \xi \in [a, b]$  s.t.  $f(\xi) = 0$
  - Therefore  $\xi g(\xi) = 0 \Leftrightarrow g(\xi) = \xi$
- Why care about fixed point?
  - Finding fixed point is **numerically easier** in the sense of iteration

#### Simple Iteration

- Algorithm
  - Initial guess:  $x_0 \in [a, b]$
  - $\circ$  Iterate:  $x_{k+1} := g(x_k)$
  - Stop when  $|x_{n+1} x_n| < \varepsilon$ , where  $\varepsilon$  is a small number
- Example
  - Given  $g(x) = \frac{1}{2} \left( x^2 + \frac{1}{2} \right)$ , the fixed point of g should satisfy

• 
$$x = \frac{1}{2} \left( x^2 + \frac{1}{2} \right) \Leftrightarrow x^2 - 2x + \frac{1}{2} = 0$$

- Let  $f(x) := x^2 2x + \frac{1}{2}$ , then we need to find the roots of f
- o Analytical method

• 
$$x = 1 \pm \frac{\sqrt{2}}{2} \approx 1.7 \text{ or } 0.3$$

- Numerical method
  - $x_0 = 1$

• 
$$x_1 = g(x_0) = g(1) = \frac{3}{4} = 0.75$$

• 
$$x_2 = g(x_1) = g\left(\frac{3}{4}\right) = \frac{17}{32} \approx 0.53$$

• 
$$x_3 = g(x_2) = g\left(\frac{17}{32}\right) \approx 0.39$$

- •
- Counter-example
  - $\circ \quad \text{Suppose } f(x) = x^2 2$
  - Then the roots of f should satisfy  $f(x) = 0 \Leftrightarrow x^2 = 2 \Leftrightarrow x = \frac{2}{x}$

• Let 
$$x_{k+1} = g(x_k) := \frac{2}{x_k}$$
 and  $x_0 = 1$ , then  $x_1 = 2$ ,  $x_2 = 1$ ,  $x_3 = 2$ ...

• Here, the sequence  $\{x_k\}$  diverges for  $g(x) = \frac{2}{x}$ 

### Two Main Questions Over This Chapter

- When does  $x_{k+1} = g(x_k)$  converge?
  - o If the iteration is **unstable** 
    - $x_{k+1} = g(x_k)$  diverges
  - If the iteration is **stable** 
    - The contraction argument guarantees convergence
    - And the convergence rate is linear
- Given f(x), how to find g(x)?
  - There are infinitely many g for a given f as long as  $f(x) = 0 \Leftrightarrow g(x) = x$
  - $\circ$  Possible choice for g(x)
    - g(x) = x + f(x), or
    - $g(x) = x + \ln(f(x) + 1)$
  - Newton's method (and secant method) will guarantee a contracting g(x)

#### **Contractions**

- Definition
  - $\circ$  Let g be a real-valued continuous function on the interval [a, b]
  - Then *g* is a **contraction** on [a, b] if  $\exists L \in (0,1)$  s.t.
  - $|g(x) g(y)| \le L|x y|, \forall x, y \in [a, b]$  (Lipschitz condition)
  - Here, *L* is called **Lipschitz constant**
- Remark on Lipschitz condition

$$|g(x) - g(y)| \le L|x - y|, \forall x, y \in [a, b]$$

$$\circ \Rightarrow \frac{|g(x) - g(y)|}{|x - y|} \le L$$

$$\circ \Rightarrow \lim_{y \to x} \frac{|g(x) - g(y)|}{|x - y|} \le L$$

 $\circ$   $\Rightarrow$  |g'(x)| ≤ L < 1 (assume g is differentiable)

### Contraction Mapping Theorem (Theorem 1.3 & 1.4 & 1.5)

- Statements
  - $\circ$  Let g be a contraction on [a, b]
  - Suppose  $g(x) \in [a, b], \forall x \in [a, b]$ . Then
    - (1)  $\exists \xi \in [a, b] \text{ s.t. } g(\xi) = \xi$

(i.e. There exists a fixed point)

(2)  $\{x_{k+1} = g(x_k)\}\$  converges to  $\xi$ ,  $\forall x_0 \in [a, b]$ 

(i.e. The iterative algorithm works)

(3) If the iteration stop at  $|x_k - \xi| \le \varepsilon$ , then

$$k \leq 1 + \left\lceil \frac{\ln|x_1 - x_0| - \ln\left(\varepsilon(1 - L)\right)}{\ln(1/L)} \right\rceil$$

where [x] is the largest integer less than or equal to x

- Proof for (1)
  - See Theorem 1.2
- Proof for (2)

$$\circ \underbrace{|x_{k+1} - \xi|}_{E_{k+1}} = |g(x_k) - g(\xi)|$$

$$\circ \le L \underbrace{|x_k - \xi|}_{E_k}$$
 by Lipschitz condition

$$\circ \leq L^2 \underbrace{|x_{k-1} - \xi|}_{E_{k-1}}, \text{ since } \underbrace{|x_k - \xi|}_{E_k} \leq L \underbrace{|x_{k-1} - \xi|}_{E_{k-1}} \text{ by induction}$$

- 0
- $0 \le L^{k+1} \underbrace{|x_0 \xi|}_{E_0} \to 0 \text{ as } k \to \infty$
- Proof for (3)
  - From the proof for (2), we know that

• 
$$E_k \le L^k E_0 \le \varepsilon$$

o Taking log on both side, we obtain

• 
$$k \leq \log_L \frac{\varepsilon}{E_0}$$

 $\circ$  Calculate  $E_0$ 

• 
$$E_0 = |x_0 - \xi| = |x_0 - x_1 + x_1 - \xi|$$
  
 $\leq |x_0 - x_1| + |x_1 - \xi| \leq |x_0 - x_1| + L|x_0 - \xi|$ 

$$\bullet \Rightarrow E_0 \le |x_0 - x_1| + L \cdot E_0$$

$$\blacksquare \Rightarrow E_0 \le \frac{|x_1 - x_0|}{1 - L}$$

o Therefore

• 
$$k \ge \log_L \frac{\varepsilon}{\frac{|x_1 - x_0|}{1 - L}} = \log_L \frac{\varepsilon(1 - L)}{|x_1 - x_0|} = \frac{\ln|x_1 - x_0| - \ln(\varepsilon(1 - L))}{\ln(1/L)}$$

- Corollary
  - Given  $g: [a, b] \rightarrow [a, b]$ , and  $g \in C^1[a, b]$
  - $\circ \quad \text{If } |g'(x)| \leq L < 1 \text{, then the sequence } \{x_k = g(x_{k-1})\} \text{ converges to } \xi$
- Remark on Corollary
  - If we relax |g'(x)| < 1 to be just  $|g'(\xi)| < 1$
  - Then when  $x_0$  is close to  $\xi$ ,  $\{x_k\}$  will converge to  $\xi$
  - Since in a small neighborhood of  $\xi$ ,  $g'(x) \sim |g'(\xi)| < 1$

# Stability of Fixed Point (Theorem 1.3)

- Stable Fixed Point
  - If  $\xi = g(\xi)$ , and  $|g'(\xi)| < 1$ , then  $\xi$  is a **stable fixed point**
  - A stable fixed point can be found via  $\{x_{k+1} = g(x_k)\}$
- Unstable Fixed Point
  - If  $\xi = g(\xi)$ , and  $|g'(\xi)| > 1$ , then  $\xi$  is a **unstable fixed point**
  - $\circ \quad$  If  $\xi$  is an unstable fixed point, then  $\{x_{k+1}=g(x_k)\}$  won't converge to  $\xi$

# Rate of Convergence (Definition 1.4 & 1.7)

- Suppose  $\xi = \lim_{k \to \infty} x_k$ , and define  $E_k := |x_k \xi|$
- An algorithm is said to converge linearly if

$$\circ \lim_{k \to \infty} \frac{E_{k+1}}{E_k} = \mu, \text{ for some constant } \mu \in (0,1)$$

• An algorithm is said to converge **superlinearly** if

$$\circ \lim_{k \to \infty} \frac{E_{k+1}}{E_k} = 0$$

• An algorithm is said to converge quadratically if

$$\circ \lim_{k \to \infty} \frac{E_{k+1}}{E_k^2} = \mu, \text{ for some constant } \mu > 0$$

• An algorithm is said to converge with order q if

$$\circ \lim_{k \to \infty} \frac{E_{k+1}}{E_k^q} = \mu, \text{ for some constant } \mu > 0$$

$$f(x) = e^x - x - 2$$
 (Example 1.7)

• Define  $g(x) = e^x - 2$ 



- We observed that g(x) maps [1,2] to [1,2]
  - By the Fixed Point Theorem,  $\exists \xi \in [1,2]$  s.t.  $g(\xi) = \xi$
  - We need to check whether g(x) satisfies the Lipschitz condition
  - $g'(\xi) = e^{\xi} \in [e^1, e^2]$
  - $\quad \blacksquare \quad \Rightarrow |g'(\xi)| > 1$
  - ⇒ unstable fixed point

- ⇒ the algorithm won't work
- And g(x) also maps [-2, -1] to [-2, -1]
  - By the Fixed Point Theorem,  $\exists \xi \in [1,2] \text{ s.t. } g(\xi) = \xi$
  - $g'(\xi) = e^{\xi} \in [e^{-2}, e^{-1}]$
  - $\quad \blacksquare \quad \Rightarrow |g'(\xi)| < 1$
  - ⇒ stable fixed point
  - $\Rightarrow$  run  $\{x_{k+1} = g(x_k)\}$  for  $\xi$
- Define  $g(x) = \ln(x+2)$



- We observed that g(x) maps [1,2] to [1,2]
  - $g'(\xi) = \frac{1}{\xi + 2} \in \left[\frac{1}{4}, \frac{1}{3}\right]$
  - $\Rightarrow |g'(\xi)| < 1$
  - ⇒ stable fixed point
  - $\Rightarrow$  run  $\{x_{k+1} = g(x_k)\}$  for  $\xi$
- And g(x) also maps (-2, -1) to (-2, -1)
  - $g'(\xi) = \frac{1}{\xi + 2} \in (1, +\infty)$
  - $\quad \bullet \quad \Rightarrow |g'(\xi)| > 1$
  - ⇒ unstable fixed point
  - ⇒ the algorithm won't work
- Remark

$$\circ \quad x = e^x - 2 \Rightarrow f(x) = e^x - x - 2$$

- We have a stable fixed point  $\xi \in [-2, -1]$ , and a unstable  $\xi \in [1,2]$
- $\circ \quad x = \ln(x+2) \Rightarrow e^x = x+2 \Rightarrow f(x) = e^x x 2$ 
  - We have a stable fixed point  $\xi \in [1,2]$ , and a unstable  $\xi \in [-2,-1]$
- $\circ$  Therefore the choice of g will affect the convergence behavior
- So how can we design a function g(x) s.t. every fixed point is stable?

### Newton's Method (Definition 1.6)

• In Newton's method, g(x) is defined as

$$\circ g(x) = x - \frac{f(x)}{f'(x)}$$

- It's obvious that  $f(\xi) = 0 \Leftrightarrow g(\xi) = \xi$
- Why the **fixed points of** *g* **is stable** 
  - We want to show that  $|g'(\xi)| < 1$

$$g(x) = x - \frac{f(x)}{f'(x)} \Rightarrow g'(x) = 1 - \left(\frac{f(x)}{f'(x)}\right)'$$

$$\left(\frac{f}{f'}\right)' = \frac{f' \cdot f' - f \cdot f''}{(f')^2} = 1 - \frac{f \cdot f''}{(f')^2}$$

$$\Rightarrow g'(x) = 1 - \left(1 - \frac{f(x) \cdot f''(x)}{[f'(x)]^2}\right) = \frac{f(x) \cdot f''(x)}{[f'(x)]^2}$$

$$0 \Rightarrow |g'(\xi)| = \frac{f(\xi) \cdot f''(\xi)}{[f'(\xi)]^2} = 0 < 1$$

### Convergence of Newton's Method (Theorem 1.8)

- Statement
  - Newton's method **converges quadratically** *i. e.*  $\lim_{k\to\infty}\frac{E_{k+1}}{E_k^2}\leq\mu<1$
- Assumption

$$\circ \quad f(\xi) = 0$$

○ 
$$f \in C^2$$
 in  $[\xi - \delta, \xi + \delta] = I_{\delta}$ , since we need to use  $f'$  and  $f''$ 

$$\circ f'(\xi) \neq 0$$
, since it will appear at the denominator

$$\circ \left| \frac{f''(x)}{f'(y)} \right| \le A, (\forall x, y \in I_{\delta})$$

○ 
$$|x_0 - \xi| \le \frac{1}{4}$$
 (*i.e.* The initial guess is not too far away from  $\xi$ )

- Proof
  - **Expand**  $f(\xi)$  at  $x_k$  to obtain  $f(x_k)$  and  $f'(x_k)$

$$\bullet f(\xi) = f(x_k + \xi - x_k)$$

$$= f(x_k) + f'(x_k)(\xi - x_k) + \frac{1}{2}f''(x_k)(x_k - \xi)^2 + \cdots$$

(by Taylor expansion of f)

$$= f(x_k) + f'(x_k)(\xi - x_k) + \frac{1}{2}f''(\theta_k)(x_k - \xi)^2$$

(for some constant  $\theta_k \in (x_k, \xi)$ , by the Mean Value Theorem)

- **Express**  $\frac{f(x_k)}{f'(x_k)}$  in  $x_{k+1}$  **using**  $\frac{f''}{f'}$ , since we already know  $\left|\frac{f''(x)}{f'(y)}\right| \le A$ 
  - By assumption,  $f(\xi) = 0$

$$\Rightarrow f(x_k) + f'(x_k)(\xi - x_k) + \frac{1}{2}f''(\theta_k)(x_k - \xi)^2 = 0$$

,

$$\Rightarrow f(x_k) = -\frac{1}{2}f''(\theta_k)(x_k - \xi)^2 - f'(x_k)(\xi - x_k)$$

$$\Rightarrow \frac{f(x_k)}{f'(x_k)} = -\frac{1}{2}\frac{f''(\theta_k)}{f'(x_k)}(\xi - x_k)^2 - (\xi - x_k)$$

○ **Compute**  $E_{k+1}$ , and express it with  $E_k$ 

$$\begin{aligned}
& E_{k+1} = |x_{k+1} - \xi| = |g(x_k) - \xi| \\
& = \left| \left( x_k - \frac{f(x_k)}{f'(x_k)} \right) - \xi \right| \\
& = \left| \left\{ x_k - \left[ -\frac{1}{2} \frac{f''(\theta_k)}{f'(x_k)} (\xi - x_k)^2 - (\xi - x_k) \right] \right\} - \xi \right| \\
& = \left| x_k + \frac{1}{2} \frac{f''(\theta_k)}{f'(x_k)} (\xi - x_k)^2 + \xi - x_k - \xi \right| \\
& = \frac{1}{2} \left| \frac{f''(\theta_k)}{f'(x_k)} \right| (\xi - x_k)^2 \\
& = \frac{1}{2} \left| \frac{f''(\theta_k)}{f'(x_k)} \right| E_k^2
\end{aligned}$$

- Show the algorithm converges
  - By assumption,  $|x_k \xi| \le \frac{1}{A}$ , and  $\left| \frac{f''(x)}{f'(y)} \right| \le A$ ,  $(\forall x, y \in I_\delta)$

• So, 
$$E_{k+1} = \frac{1}{2} \underbrace{\left| \frac{f''(\theta_k)}{f'(x_k)} \right|}_{\leq A} \underbrace{E_k}_{\leq \frac{1}{A}} E_k \leq \frac{1}{2} \cdot A \cdot \frac{1}{A} \cdot E_k = \frac{1}{2} E_k \to 0 \text{ as } k \to +\infty$$

- Therefore  $x_k$  converges to  $\xi$
- Show the algorithm converges quadratically

• 
$$\frac{E_{k+1}}{E_k^2} = \frac{1}{2} \left| \frac{f''(\theta_k)}{f'(x_k)} \right| \le \frac{1}{2} A$$

• As  $k \to +\infty$ , both  $x_k$  and  $\theta_k$  converge to  $\xi$ 

• Thus, 
$$\lim_{k \to +\infty} \frac{E_{k+1}}{E_k^2} = \frac{1}{2} \left| \frac{f''(\xi)}{f'(\xi)} \right| = \mu$$
, where  $\mu \in \left(0, \frac{A}{2}\right]$  is a constant

### Secant Method (Definition 1.8)

- Motivation
  - $\circ$  Sometimes f' can be hard to find in Newton's method
  - $\circ$  But we can **approximate** f' using a difference quotient

$$o i.e. f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

• Definition

$$\circ x_{k+1} = x_k - f(x_k) / \left( \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \right) = x_k - f(x_k) \left( \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \right)$$

- Note
  - The secant method requires **two initial values**  $x_0$  and  $x_1$

#### Convergence of Secant Method (Theorem 1.10)

Statement

• Let 
$$f \in \mathcal{C}^1[\xi - \delta, \xi + \delta]$$
 s.t.  $f(\xi) = 0$  and  $f'(\xi) \neq 0$ 

- If  $x_0$ ,  $x_1$  is close to  $\xi$ , then  $\{x_{k+1} = g(x_k)\}$  converges at least linearly
- Proof
  - WLOG, assume  $\alpha := f'(\xi) > 0$  in a small neighborhood of  $\xi$
  - Choose *I* be a neighborhood of  $\xi$  such that

$$0 < \frac{3}{4}\alpha < f'(x) < \frac{5}{4}\alpha, \forall x \in I$$

 $\circ$  Compute  $x_{k+1}$ 

$$x_{k+1} = x_k - f(x_k) / \left( \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \right)$$

By the Mean Value Theorem

$$\frac{f(x_k) - \widetilde{f(\xi)}}{x_k - \xi} = f'(\eta_k) \Rightarrow f(x_k) = f'(\eta_k)(x_k - \xi), \text{ and}$$

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = f'(\theta_k)$$

$$\Box \text{ for some } \theta_k \in [x_k, x_{k-1}], \eta_k \in (x_k, \xi)$$

• Therefore, 
$$x_{k+1} = x_k - \frac{f'(\eta_k)(x_k - \xi)}{f'(\theta_k)}$$

$$\circ \quad \text{Check } \frac{E_{k+1}}{E_k} < 1$$

• 
$$E_{k+1} = x_{k+1} - \xi = E_k - \frac{f'(\eta_k)}{f'(\theta_k)} E_k = \left[1 - \frac{f'(\eta_k)}{f'(\theta_k)}\right] E_k$$

$$\Rightarrow \frac{E_{k+1}}{E_k} = \left[1 - \frac{f'(\eta_k)}{f'(\theta_k)}\right] < \left(1 - \frac{5\alpha/4}{3\alpha/4}\right) = \frac{2}{3} < 1$$

o Therefore secant method converges at least linearly

# Ch 2: Solution of Systems of Linear Equations

Friday, December 7, 2018

10:52 PM

# LU Decomposition

Monday, September 17, 2018 9:56 AM

#### What is Matrix

• A matrix is a list of numbers

$$\circ A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• A matrix is a list of column vectors

$$\circ$$
  $A = [\overrightarrow{a_1}, \overrightarrow{a_2}, \cdots, \overrightarrow{a_n}]$ 

• A matrix is a list of row vectors

$$\circ \quad A = \begin{bmatrix} \overrightarrow{b_1} \\ \overrightarrow{b_2} \\ \vdots \\ \overrightarrow{b_m} \end{bmatrix}$$

• A matrix is a function

• Given  $A_{m \times n} : \mathbb{R}^n \to \mathbb{R}^m$  and  $\vec{y}_{m \times 1} = A_{m \times n} \vec{x}_{n \times 1}$ . Then

$$\circ \quad \vec{y} = A\vec{x} = [\overrightarrow{a_1}, \dots, \overrightarrow{a_n}] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n x_i \overrightarrow{a_i}$$

$$\circ \quad \vec{y} = A\vec{x} = \begin{bmatrix} \overrightarrow{b_1} \\ \overrightarrow{b_2} \\ \vdots \\ \overrightarrow{b_m} \end{bmatrix} \vec{x} = \begin{bmatrix} \overrightarrow{b_1} \cdot \vec{x} \\ \overrightarrow{b_2} \cdot \vec{x} \\ \vdots \\ \overrightarrow{b_m} \cdot \vec{x} \end{bmatrix}$$

#### Gaussian Elimination (Section 2.2)

• Introduction

o Gaussian elimination is an algorithm for solving systems of linear equations

 A sequence of **elementary row operations** is performed to modify the matrix into the upper-triangular form

Example

o Given 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & 5 & -4 \end{bmatrix}$$
 and  $\vec{b} = \begin{bmatrix} 6 \\ 16 \\ -3 \end{bmatrix}$ , find  $\vec{x}$  s.t.  $A\vec{x} = \vec{b}$ 

We want to generate as many zeros as possible below the diagonal

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 6 & -3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\circ \quad \text{Therefore,} \begin{cases} x_1 + x_2 + x_3 = 6 \\ x_2 = 2 \\ x_3 = 3 \end{cases} \Rightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = 3 \end{cases}$$

- Remark
  - o Digging holes downwards is the same as multiplying by lower-triangular matrices

$$\circ A = \begin{bmatrix} \overrightarrow{b_1} \\ \vdots \\ \overrightarrow{b_s} \\ \vdots \\ \overrightarrow{b_r} \\ \vdots \\ \overrightarrow{b_m} \end{bmatrix} \xrightarrow{\text{row operation}} \begin{bmatrix} \overrightarrow{b_1} \\ \vdots \\ \overrightarrow{b_s} \\ \vdots \\ \overrightarrow{b_r} + c\overrightarrow{b_s} \\ \vdots \\ \overrightarrow{b_m} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b_1} \\ \vdots \\ \overrightarrow{b_s} \\ \vdots \\ \overrightarrow{b_r} \\ \vdots \\ \overrightarrow{b_m} \end{bmatrix} + c \begin{bmatrix} \overrightarrow{0} \\ \vdots \\ \overrightarrow{0} \\ \vdots \\ \overrightarrow{b_s} \end{bmatrix} = A + cE_{rs} \cdot A = (I + cE_{rs})A$$

- $\circ \text{ where } [E_{rs}]_{ij} = \begin{cases} 1 & \text{if } i = r, s = j \\ 0 & o.w. \end{cases}, \text{ and } r > s$
- Note that  $(I + cE_{rs})$  is a lower-triangular matrix
- o In the example above, we are indeed multiplying lower-triangular matrices

$$A\vec{x} = \vec{b}$$

$$(I - 2E_{21})A\vec{x} = (I - 2E_{21})\vec{b}$$

$$(I + E_{31})(I - 2E_{21})A\vec{x} = (I + E_{31})(I - 2E_{21})\vec{b}$$

$$(I - 3E_{32})(I + E_{31})(I - 2E_{21})A\vec{x} = (I - 3E_{32})(I + E_{31})(I - 2E_{21})\vec{b}$$

- Proposition 1: The **product of lower-triangular-matrices** is also lower-triangular
  - Statement
    - Given two lower-triangular matrices  $L_{ij}$  and  $L_{pq}$  (i > j, and p > q)
    - Their product  $L_{ij}L_{pq}$  is also lower-triangular
  - Proof

• 
$$L_{ij}L_{pq} = (I + cE_{ij})(I + dE_{pq}) = I + cE_{ij} + dE_{pq} + cdE_{ij}E_{pq}$$

- where  $E_{ij}E_{pq}= \begin{cases} 0_{m\times n} & j\neq p \\ E_{iq} & j=p \end{cases}$  is also lower-triangular
- Corollary
  - Given a list of lower-triangular matrix  $L_{i_1j_1}, \dots, L_{i_kj_k}$
  - Their product  $L_{i_1j_1} \times \cdots \times L_{i_kj_k}$  is also lower-triangular
- Proposition 2: The inverse of lower-triangular-matrix is also lower-triangular
  - $\circ$  If  $L_{ij}$  is a lower-triangular matrix, then  $L_{ij}^{-1}$  is also lower-triangular
  - $\circ$  Claim: If  $L_{ij} = I + cE_{ij}$ , then  $L_{ij}^{-1} = (I cE_{ij})$
  - Proof:  $L_{ij}L_{ij}^{-1} = (I + cE_{ij})(I cE_{ij}) = I c^2 \underbrace{E_{ij}^2}_{0} = I$

### LU Decomposition (Section 2.3)

- Goal
  - We want to decompose A into  $L \times U$ , where

- L is a **lower-triangular** matrix, and
- *U* is an **upper-triangular** matrix
- · General Idea
  - The elimination process for *A* can be written as follows

• 
$$L_{n,n-1}L_{n-1,n-2}\cdots L_{31}L_{21}A = U$$

• Moving *L*'s to the other side, we obtain

$$A = L_{21}^{-1}L_{31}^{-1}\cdots L_{n-1,n-2}^{-1}L_{n,n-1}^{-1}U$$

- Hence
  - A = LU, where  $L = L_{21}^{-1}L_{31}^{-1}\cdots L_{n-1,n-2}^{-1}L_{n,n-1}^{-1}$  is a lower-triangular matrix
- Motivation for LU decomposition
  - Given Ax = b, find  $x = A^{-1}b$
  - o Approach 1

- O(n!) **operations** needed to find x
- Approach 2
  - Given the equation  $A\vec{x} = \vec{b}$ , we want to solve for  $\vec{x}$
  - Suppose we have already obtained the **LU decomposition** A = LU
  - Then  $A\vec{x} = \vec{b}$  becomes  $LU\vec{x} = \vec{b}$
  - Let  $\vec{y} = U\vec{x}$ , then  $L\vec{y} = \vec{b}$
  - We first **solve the equation**  $L\vec{y} = \vec{b}$  **for** y in time  $O(n^2)$

$$\Box \begin{bmatrix} L_{11} & & & & \\ L_{12} & L_{22} & & & \\ \vdots & \vdots & \ddots & \\ L_{1n} & L_{2n} & \cdots & L_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

• Then solve the equation  $\vec{y} = U\vec{x}$  for  $\vec{x}$  in time  $\mathcal{O}(n^2)$ 

$$\square \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} U_{11} & U_{21} & \cdots & U_{n1} \\ & U_{22} & \cdots & U_{n2} \\ & & \ddots & \vdots \\ & & & U_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

- The time complexity for LU decomposition is  $\mathcal{O}(n^3)$
- After that,  $O(n^2)$  operations are needed to get the final result

### Least-Square Fitting (Section 2.9)

- Example
  - Find the solution for  $A\vec{x} = \vec{b}$ , where  $A = \begin{bmatrix} 3 & 1 \\ 1 & 1 \\ 4 & 2 \end{bmatrix}$ ,  $\vec{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$
  - There are 3 constraints for 2 variables, so this system is **over-determined**
  - o In general, such a system will have no solution

- We can instead find a solution that best fit the equation
  - *i.e.* Find a vector  $\vec{x}$  such that  $A\vec{x} \vec{b}$  is as small as possible
- 2-Norm

o If 
$$\vec{z} = \begin{bmatrix} z_1 \\ \cdots \\ z_n \end{bmatrix}$$
, then  $\|\vec{z}\|_2 = \sqrt{z_1^2 + \cdots + z_n^2}$  is called the **2-norm** of a vector

- Least-Square Fitting
  - We want to **find**  $\min_{\vec{x} \in \mathbb{R}^2} \|A\vec{x} \vec{b}\|_2$
  - Square  $\|A\vec{x} \vec{b}\|_{2}$ , and expand the result

$$\|A\vec{x} - \vec{b}\|_{2}^{2} = \langle A\vec{x} - \vec{b}, A\vec{x} - \vec{b} \rangle, \quad \text{since } \|\vec{z}\|_{2}^{2} = \langle \vec{z}, \vec{z} \rangle$$

$$= (A\vec{x} - \vec{b})^{T} \cdot (A\vec{x} - \vec{b})$$

$$= (\vec{x}^{T}A^{T} - \vec{b}^{T}) \cdot (A\vec{x} - \vec{b}), \quad \text{note that } (AB)^{T} = B^{T}A^{T}$$

$$= \vec{x}^{T}A^{T}A\vec{x} - \vec{b}^{T}A\vec{x} - \vec{x}^{T}A^{T}\vec{b} + \vec{b}^{T}\vec{b}$$

$$= \vec{x}^{T}A^{T}A\vec{x} - 2\vec{x}^{T}A^{T}\vec{b} + \vec{b}^{T}\vec{b}. \quad \text{since } \vec{b}^{T}A\vec{x} = \vec{x}^{T}A^{T}\vec{b}$$

- Hypothetically, suppose  $x, a, b \in \mathbb{R}$ 
  - Suppose we want to minimize  $f(x) = a^2x^2 2abx + b^2$
  - Then we need to solve the root of f'

• 
$$f'(x) = 2a^2x - 2ab \equiv 0 \Rightarrow x = \frac{ab}{a^2} = \frac{b}{a}$$

- Now, back to the problem
  - Let  $\vec{F}(\vec{x}) = \vec{x}^T A^T A \vec{x} 2 \vec{x}^T A^T \vec{b} + \vec{b}^T \vec{b}$
  - Set  $\nabla_{\vec{x}} F = 2A^T A \vec{x} 2A^T \vec{b} \equiv \vec{0}$
  - Then  $(A^T A)\vec{x} = A^T \vec{b} \Rightarrow \vec{x} = (A^T A)^{-1} A^T \vec{b}$

- Summary
  - If  $A_{m \times m}$  is a square matrix, then

• 
$$A\vec{x} = \vec{b} \Rightarrow \vec{x} = A^{-1}\vec{b}$$

- If  $A_{m \times n}$  is over-determined (*i.e.* m > n), then
  - $A\vec{x} \approx \vec{b} \Rightarrow \vec{x} = (A^T A)^{-1} A^T \vec{b}$
  - Here,  $(A^TA)^{-1}A^T$  is called the **pseudo-inverse** of A

#### **Gram-Schmidt Orthogonalization**

- Motivation
  - $\circ$   $A = [\overrightarrow{a_1}, ..., \overrightarrow{a_n}]$  maps the *i*-th standard basis  $\overrightarrow{e_i}$  to  $\overrightarrow{a_i}$
  - But the resulting vectors  $\{\overrightarrow{a_1}, ..., \overrightarrow{a_n}\}$  may not be orthonormal
  - Gram-Schmidt process is a method to **orthonormalize the vectors**
  - Later on, we can use this method to **compute the QR Factorization** of *A*
- Gram-Schmidt Process

| Orthogonalization                                                                                                                                                                                                 | Normalization                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\overrightarrow{q_1} = \overrightarrow{a_1}$                                                                                                                                                                     | $\overrightarrow{q_1} = \frac{\overrightarrow{q_1}}{\ \overrightarrow{q_1}\ _2}$ |
| $\overrightarrow{q_2} = \overrightarrow{a_2} - \langle \overrightarrow{a_2}, \overrightarrow{q_1} \rangle \overrightarrow{q_1}$                                                                                   | $\overrightarrow{q_2} = \frac{\overrightarrow{q_2}}{\ \overrightarrow{q_2}\ _2}$ |
| $\overrightarrow{q_3} = \overrightarrow{a_3} - \langle \overrightarrow{a_3}, \overrightarrow{q_1} \rangle \overrightarrow{q_1} - \langle \overrightarrow{a_3}, \overrightarrow{q_2} \rangle \overrightarrow{q_2}$ | $\overrightarrow{q_3} = \frac{\overrightarrow{q_3}}{\ \overrightarrow{q_3}\ _2}$ |
| :                                                                                                                                                                                                                 | :                                                                                |
| $\overrightarrow{q_k} = \overrightarrow{a_k} - \sum_{i=1}^{k-1} \langle \overrightarrow{a_k}, \overrightarrow{q_i} \rangle \overrightarrow{q_i}$                                                                  | $\overrightarrow{q_k} = \frac{\overrightarrow{q_k}}{\ \overrightarrow{q_k}\ _2}$ |

- Remark
  - $\circ (\overrightarrow{a_k}, \overrightarrow{q_i})\overrightarrow{q_i}$  is the projection of  $\overrightarrow{a_k}$  onto  $\overrightarrow{q_i}$  (assuming  $\overrightarrow{q_i}$  is normalized)
- Proof:  $\|\overrightarrow{q_i}\|_2 = 1$ 
  - This is obviously true by the normalization process
- Proof:  $\operatorname{span}\{\overrightarrow{a_1}, \dots, \overrightarrow{a_k}\} = \operatorname{span}\{\overrightarrow{q_1}, \dots, \overrightarrow{q_k}\}$ 
  - $\circ \overrightarrow{q_k} \in \operatorname{span}\{\overrightarrow{a_1}, \dots, \overrightarrow{a_k}\}\$
  - $\circ \overrightarrow{a_k} \in \operatorname{span}\{\overrightarrow{q_1}, \dots, \overrightarrow{q_k}\}\$
- Proof:  $\overrightarrow{q_i} \perp \overrightarrow{q_i}$ 
  - For i = 2, j = 1, we need to show that  $\langle \overrightarrow{q_2}, \overrightarrow{q_1} \rangle = 0$

o More generally, we can show that  $\langle \overrightarrow{q_k}, \overrightarrow{q_j} \rangle = 0$ , for  $k \neq j$ 

#### QR Factorization (Theorem 2.12 & 2.13)

- Goal
  - We want to factorize A into  $Q \times R$ , where
  - $\circ$  Q is a **unitary matrix**, and
  - R is an **upper-triangular matrix**
- Unitary Matrix

$$\circ \quad \text{Matrix } Q_{m \times n} = [\overrightarrow{q_1}, \dots, \overrightarrow{q_n}] \text{ is said to be } \mathbf{unitary} \text{ if } \left\langle \overrightarrow{q_i}, \overrightarrow{q_j} \right\rangle = \delta_{ij} = \begin{cases} \mathbf{1} & i = j \\ \mathbf{0} & i \neq j \end{cases}$$

$$\circ \quad \text{If $Q$ is a unitary matrix, then $\boldsymbol{Q}^T\boldsymbol{Q} = \begin{bmatrix} \overrightarrow{\boldsymbol{q}_1^T} \\ \vdots \\ \overrightarrow{\boldsymbol{q}_n^T} \end{bmatrix} [\overrightarrow{\boldsymbol{q}_1}, \dots, \overrightarrow{\boldsymbol{q}_n}] = \boldsymbol{I}_{n \times n}$$

- $\circ$  Note:  $\delta_{ij}$  is called Kronecker delta function
- How to Use **Gram-Schmidt Process** to Compute QR Factorization
  - Perform the Gram-Schmidt process to matrix  $A = [\overrightarrow{a_1}, ..., \overrightarrow{a_n}]$

| $\overrightarrow{q_1} = \overrightarrow{a_1}$                                                                                                                                                                     | $\overrightarrow{q_1} = \frac{\overrightarrow{q_1}}{\ \overrightarrow{q_1}\ _2}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\overrightarrow{q_2} = \overrightarrow{a_2} - \langle \overrightarrow{a_2}, \overrightarrow{q_1} \rangle \overrightarrow{q_1}$                                                                                   | $\overrightarrow{q_2} = \frac{\overrightarrow{q_2}}{\ \overrightarrow{q_2}\ _2}$ |
| $\overrightarrow{q_3} = \overrightarrow{a_3} - \langle \overrightarrow{a_3}, \overrightarrow{q_1} \rangle \overrightarrow{q_1} - \langle \overrightarrow{a_3}, \overrightarrow{q_2} \rangle \overrightarrow{q_2}$ | $\overrightarrow{q_3} = \frac{\overrightarrow{q_3}}{\ \overrightarrow{q_3}\ _2}$ |
| :                                                                                                                                                                                                                 | :                                                                                |
| $\overrightarrow{q_n} = \overrightarrow{a_n} - \sum_{i=1}^{n-1} \langle \overrightarrow{a_n}, \overrightarrow{q_i} \rangle \overrightarrow{q_i}$                                                                  | $\overrightarrow{q_n} = \frac{\overrightarrow{q_n}}{\ \overrightarrow{q_n}\ _2}$ |

- $\circ$  We can **express**  $\overrightarrow{a_i}$  in terms of our newly computed orthonormal basis  $\overrightarrow{q_i}$ 
  - $\bullet \quad \overrightarrow{a_1} = \langle \overrightarrow{a_1}, \overrightarrow{q_1} \rangle \overrightarrow{q_1}$
  - $\bullet \quad \overrightarrow{a_2} = \langle \overrightarrow{a_2}, \overrightarrow{q_1} \rangle \overrightarrow{q_1} + \langle \overrightarrow{a_2}, \overrightarrow{q_2} \rangle \overrightarrow{q_2}$
  - $\bullet \quad \overrightarrow{a_3} = \langle \overrightarrow{a_3}, \overrightarrow{q_1} \rangle \overrightarrow{q_1} + \langle \overrightarrow{a_3}, \overrightarrow{q_2} \rangle \overrightarrow{q_2} + \langle \overrightarrow{a_3}, \overrightarrow{q_3} \rangle \overrightarrow{q_3}$
  - •

$$\bullet \quad \overrightarrow{a_n} = \sum_{i=1}^n \langle \overrightarrow{a_n}, \overrightarrow{q_i} \rangle \overrightarrow{q_i}$$

o This can be written in matrix form

$$\underbrace{ \begin{bmatrix} \overrightarrow{a_1}, \dots, \overrightarrow{a_n} \end{bmatrix} }_{A} = \underbrace{ \begin{bmatrix} \overrightarrow{q_1}, \dots, \overrightarrow{q_n} \end{bmatrix} }_{Q} \begin{bmatrix} \langle \overrightarrow{a_1}, \overrightarrow{q_1} \rangle & \langle \overrightarrow{a_2}, \overrightarrow{q_1} \rangle & \langle \overrightarrow{a_3}, \overrightarrow{q_1} \rangle & \cdots & \langle \overrightarrow{a_n}, \overrightarrow{q_1} \rangle \\ & \langle \overrightarrow{a_2}, \overrightarrow{q_2} \rangle & \langle \overrightarrow{a_3}, \overrightarrow{q_2} \rangle & \cdots & \langle \overrightarrow{a_n}, \overrightarrow{q_2} \rangle \\ & & \langle \overrightarrow{a_3}, \overrightarrow{q_3} \rangle & \cdots & \langle \overrightarrow{a_n}, \overrightarrow{q_3} \rangle \\ & & & \ddots & \vdots \\ & & & & \langle \overrightarrow{a_n}, \overrightarrow{q_n} \rangle \end{bmatrix}$$

- Motivation for QR Factorization
  - $\circ$  Recall in least-square fitting, we obtain  $\vec{x} = \left(A^TA\right)^{-1}A^T\vec{b}$
  - $\circ$  If we have factorized for *A* into *QR*, then

$$\vec{x} = (A^T A)^{-1} A^T \vec{b}$$

- $A^T A \vec{x} = A^T \vec{b}$ , by multiplying  $A^T A$  on both sides
- $R^T Q^T Q R \vec{x} = R^T Q^T \vec{b}$ , by substituting A = QR
- $R^T R \vec{x} = R^T Q^T \vec{b}$ , since  $Q^T Q = I$
- $R\vec{x} = Q^T\vec{b}$ , if we assume R is not singular
- Here, R is an upper-triangular matrix, and  $Q^T \vec{b}$  is a column vector
- It's easy to solve for  $\vec{x}$ , once we are given the QR Factorization of A

# Norm & Condition Number

Wednesday, September 26, 2018 10:49 AM

### Norm (Definition 2.6)

- Let  $\mathcal V$  be a linear space, and  $\|\cdot\|:\mathcal V\to\mathbb R_{\geq 0}$
- $\|\cdot\|$  is said to be a **norm** if
  - $||\vec{v}|| = 0 \Leftrightarrow \vec{v} = \vec{0}$  (positive definite)
  - $\circ \|\alpha \vec{v}\| = |\alpha| \|\vec{v}\|$
  - $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$  (triangle inequality)

#### Vector Norm (Definition 2.7 & 2.8 & 2.9)

Vector norms

| Name                                     | Formula                                                                                |
|------------------------------------------|----------------------------------------------------------------------------------------|
| 2-norm<br>Euclidean norm                 | $\ \vec{v}\ _2 \coloneqq \sqrt{v_1^2 + \dots + v_n^2} = \left[\sum v_i^2\right]^{1/2}$ |
| 1-norm<br>Taxicab norm<br>Manhattan norm | $\ \vec{v}\ _1 \coloneqq  v_1  + \dots +  v_n  = \sum  v_i $                           |
| ∞-norm<br>maximum norm                   | $\ \vec{v}\ _{\infty} \coloneqq \max_{i \in \{1,\dots,n\}}  v_i $                      |
| <i>p</i> -norm                           | $\ \vec{v}\ _p \coloneqq \left[\sum  v_i^p \right]^{1/p}$                              |

- · Minkowski's inequality
  - $\circ \|\vec{u} + \vec{v}\|_p \le \|\vec{u}\|_p + \|\vec{v}\|_p$
  - This proves the triangle inequality for *p*-norm

#### Matrix Norm (Definition 2.10)

- Frobenius norm
  - We can view matrix as a **list of number**, and define  $||A||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2}$
- · Operator norm / induced norm

$$\circ \ \|A\|_{p,q} \coloneqq \sup_{\vec{x} \in \mathbb{R}^n \setminus \{\vec{0}\}} \frac{\|A\vec{x}\|_q}{\|\vec{x}\|_p}$$

- The matrix is viewed as a linear transformation
- Operator norm is a means to **measure the "size"** of linear operators
- Note that the operator norm has two parameter *p* and *q*



- In particular, if both parameters are equal to p, we simply call it p-norm
  - $\circ \|A\|_p \coloneqq \sup_{\vec{x} \in \mathbb{R}^n \setminus \{\vec{0}\}} \frac{\|A\vec{x}\|_p}{\|\vec{x}\|_p}$
  - o 1-norm, 2-norm and ∞-norm are defined similarly
- **Triangle inequality** for *p*-norm
  - Without loss of generality, suppose  $\|\vec{x}\|_p = 1$
  - o By triangle inequality of vector,  $\|(A+B)\vec{x}\|_p \le \|A\vec{x}\|_p + \|B\vec{x}\|_p$

$$\text{O Thus, } \frac{\|(A+B)\vec{x}\|_p}{\|\vec{x}\|_p} \leq \frac{\|A\vec{x}\|_p}{\|\vec{x}\|_p} + \frac{\|B\vec{x}\|_p}{\|\vec{x}\|_p} \stackrel{\sup}{\Longrightarrow} \|A+B\|_p \leq \|A\|_p + \|B\|_p$$

- $||AB||_p \le ||A||_p ||B||_p$ 
  - By triangle inequality of vector,  $||AB\vec{x}||_p \le ||A||_p ||B||_p ||\vec{x}||_p$

$$\circ \quad \text{Thus,} \frac{\|AB\vec{x}\|_p}{\|\vec{x}\|_p} \le \|A\|_p \|B\|_p \stackrel{\sup}{\Longrightarrow} \|AB\|_p \le \|A\|_p \|B\|_p$$

# $||A||_1 = \text{Maximum Absolute Column Sum (Theorem 2.8)}$

Statement

$$\circ \quad \text{Given } A_{n \times m} = [\overrightarrow{a_1}, \dots, \overrightarrow{a_n}], \text{ then } ||A||_1 = \max_{j \in \{1, \dots, n\}} ||\overrightarrow{a_j}||_1 = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^m |a_{ij}|$$

- Note
  - The **1-norm** of matrix is also called **maximum absolute column sum**
- Proof

$$\circ \operatorname{Let} C \coloneqq \max_{j \in \{1, \dots, n\}} \| \overrightarrow{a_j} \|_1 = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^m |a_{ij}|$$

- Show that  $||A\vec{x}||_1 \le C||\vec{x}||_1$ ,  $\forall x \in \mathbb{R}^n \setminus \{\vec{0}\}$ 
  - $||A\vec{x}||_1 = \sum_{i=1}^{m} |(A\vec{x})_i|$ , by definition of 1-norm of vector

$$= \sum_{i=1}^{m} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|$$
, by definition of  $A\vec{x}$ 

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| |x_{j}|, \text{ by triangle inequality}$$

$$= \sum_{j=1}^{n} \left( \sum_{i=1}^{m} |a_{ij}| \right) |x_{j}|, \text{ since only } |a_{ij}| \text{ depends on } i$$

$$\leq C \sum_{j=1}^{n} |x_{j}|, \text{ by maximality of } C$$

$$= C ||\vec{x}||_{1}, \text{ by definition of 1-norm of vector}$$

- $\circ \quad \text{Look for an } \vec{x} \text{ s.t. } ||A\vec{x}||_1 = C||\vec{x}||_1$ 
  - Let  $J := \underset{j \in \{1,...,n\}}{\operatorname{arg max}} \|\overrightarrow{a_j}\|_1$ , then  $\|\overrightarrow{a_J}\|_1 = C$
  - Let  $\vec{x} \in \mathbb{R}^n$  s.t.  $[\vec{x}]_k = \begin{cases} 1 & k = J \\ 0 & k \neq J \end{cases}$  then  $||\vec{x}||_1 = 1$
  - Therefore  $||A\vec{x}||_1 = ||\vec{a_J}||_1 = C = C||\vec{x}||_1$

### $||A||_{\infty} = \text{Maximum Absolute Row Sum (Theorem 2.7)}$

Statement

$$\circ \quad \text{Given } A_{n \times m} = \begin{bmatrix} \overrightarrow{b_1} \\ \vdots \\ \overrightarrow{b_m} \end{bmatrix}, \text{ then } \|A\|_{\infty} = \max_{i \in \{1, \dots, m\}} \left\| \overrightarrow{b_i} \right\|_1 = \max_{i \in \{1, \dots, m\}} \sum_{i=1}^m |a_{ij}|$$

- Note
  - The ∞-norm of matrix is also called maximum absolute row sum
- Proof

$$\circ \operatorname{Let} C \coloneqq \max_{i \in \{1, \dots, m\}} \left\| \overrightarrow{b_i} \right\|_{\infty} = \max_{i \in \{1, \dots, m\}} \sum_{j=1}^{n} |a_{ij}|$$

○ Show that  $||A\vec{x}||_{\infty} \le C||\vec{x}||_{\infty}$ ,  $\forall x \in \mathbb{R}^n \setminus \{\vec{0}\}$ 

$$\|A\vec{x}\|_{\infty} = \max_{i \in \{1, \dots, m\}} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|, \text{ by definition of } \infty\text{-norm}$$

$$\leq \max_{i \in \{1, \dots, m\}} \sum_{j=1}^{n} \left| a_{ij} \right| \left| x_{j} \right|, \text{ by the triangle inequality}$$

$$\leq \left[ \max_{i \in \{1, \dots, m\}} \sum_{j=1}^{n} \left| a_{ij} \right| \right] \|\vec{x}\|_{\infty}, \text{ by definition of } \infty\text{-norm}$$

$$= C \|\vec{x}\|_{\infty}$$

 $\circ \quad \text{Look for an } \vec{x} \text{ s.t. } ||A\vec{x}||_{\infty} = C||\vec{x}||_{\infty}$ 

• Let 
$$I = \underset{i \in \{1,...,m\}}{\operatorname{argmax}} \left\| \overrightarrow{b_i} \right\|_1$$
, then  $\left\| \overrightarrow{b_I} \right\|_1 = \sum_{i=1}^n |a_{ii}| = C$ 

Let 
$$\vec{x} \in \mathbb{R}^n$$
 s.t.  $[\vec{x}]_j = \begin{cases} 1 & b_{Ij} > 0 \\ -1 & b_{Ij} < 0 \end{cases}$  then  $\|\vec{x}\|_{\infty} = 1$ 

• Then 
$$[A\vec{x}]_I = \overrightarrow{b_I}^T \vec{x} = \left| \sum_{j=1}^n a_{Ij} x_j \right| = \sum_{j=1}^n |a_{Ij}| = C = C ||\vec{x}||_{\infty}$$

# $||A||_2 = \text{Largest Singular Value (Theorem 2.9)}$

- Positive-definite
  - A matrix *A* is said to be positive-definite if
  - o All its eigenvalues are positive, and all the eigenvector is orthonormal

$$\circ i.e. \ \lambda_i \in \mathbb{R}^+ \text{ and } \begin{cases} \|\overrightarrow{x_i}\|_2 = 1 \\ x_i \perp \overrightarrow{x_j} \end{cases} \Longrightarrow \langle \overrightarrow{x_i}, \overrightarrow{x_j} \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ for } A\overrightarrow{x_i} = \lambda_i \overrightarrow{x_i}$$

- Symmetric
  - A matrix *A* is said to be **symmetric** if  $A^T = A$
- Statement (special case)
  - Assume  $A_{n\times n}$  is a positive-definite symmetric matrix

$$\circ \quad \text{Then } \|A\|_2 = \sup_{\vec{x} \in \mathbb{R}^n \setminus \{\vec{0}\}} \frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2} = \max_{i \in \{1, \dots, n\}} |\lambda_i|$$

• Proof (for special case)

$$\circ \text{ Let } C = \sup_{\vec{x} \in \mathbb{R}^n \setminus \{\vec{0}\}} \frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2}$$

$$\circ \quad \text{Show } C \leq \max_{i \in \{1, \dots, n\}} |\lambda_i|$$

• Express  $\vec{x}$  as a linear combination of the orthonormal vectors  $\{x_i\}$ 

• Similarly, express  $A\vec{x}$  using  $\{x_i\}$ 

$$\Box A\vec{x} = \sum c_i A\vec{x}_i = \sum c_i \lambda_i \vec{x}_i \Rightarrow ||A\vec{x}||_2 = \sqrt{\sum c_i^2 \lambda_i^2}$$

Thus, 
$$\frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2} \le \sqrt{\frac{\sum c_i^2 \lambda_i^2}{\sum c_i^2}} \le \max_{i \in \{1,\dots,n\}} |\lambda_i|$$
,  $\forall \vec{x} \in \mathbb{R}^n \setminus \left\{ \vec{0} \right\}$ 

- $\circ$  Look for an  $\vec{x}$  s.t.  $||A\vec{x}||_2 = C||\vec{x}||_2$ 
  - Let  $I = \underset{i \in \{1,...,n\}}{\operatorname{arg max}} |\lambda_i|$ , then  $|\lambda_I| = C$

• Let 
$$\vec{x} = \overrightarrow{x_I}$$
, then  $\frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2} = \frac{\|A\overrightarrow{x_I}\|_2}{\|\overrightarrow{x_I}\|_2} = \sqrt{\frac{c_I^2 \lambda_I^2}{c_I^2}} = |\lambda_I| = C = C \|\vec{x}\|_2$ 

- Statement (General Case)
  - Define  $B_{n\times n}=A_{n\times m}^TA_{m\times n}$ , then B is a positive-definite symmetric matrix

- Let  $S_i = \sqrt{\lambda_i}$ , then  $S_i$  is called the **singular values** of A
- The previous statement can be generalized to  $||A||_2 = \max_{i \in \{1,...,n\}} |S_i|$

### Conditioning of Function (Example 2.5 & 2.6)

- Motivation
  - Suppose the input x has a **perturbation** of  $\tau$  (because of machine percision)
  - $\circ$  We'd like to know how the output f will be affected by  $\tau$
  - **Condition** measures **the sensitivity** of the output **to perturbations** in the input
- · Absolute conditioning

$$\circ \operatorname{Cond}(f) = \sup_{\substack{x,y \in \mathcal{D} \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|}$$

- o If f is differentiable, then  $Cond(f) = \sup_{x \in \mathcal{D}} |f'(x)|$
- Absolute local conditioning

$$\circ \operatorname{Cond}_{x}(f) = \sup_{\substack{|\delta x| \to 0 \\ x + \delta x \in \mathcal{D}}} \frac{|f(x + \delta x) - f(x)|}{|\delta x|}$$

- o If f is differentiable, then  $\operatorname{Cond}_{x}(f) = \begin{cases} |f'(x)| & \text{if } f \text{ is a scalar function} \\ |\nabla f(x)| & \text{if } f \text{ is a vector function} \end{cases}$
- · Relative local conditioning

$$\circ \operatorname{Cond}_{x}(f) = \sup_{\substack{|\delta x| \to 0 \\ x + \delta x \in \mathcal{D}}} \frac{|f(x + \delta x) - f(x)|/|f(x)|}{|\delta x|/|x|} = \sup_{\substack{|\delta x| \to 0 \\ x + \delta x \in \mathcal{D}}} \frac{|f(x + \delta x) - f(x)|}{|\delta x|} \frac{|x|}{|f(x)|}$$

- In particular, If f is differentiable, then  $\operatorname{Cond}_{x}(f) = \frac{|f'(x)|}{|f(x)|}|x|$
- Motivation

• 
$$f(x) = 1, f(x + \delta x) = 2$$

• 
$$g(x) = 100, g(x + \delta x) = 101$$

- Both *f* and *g* increased 1, but the effects are different!
- Example:  $f(x) = \sqrt{x}$ 
  - o Absolute

• If 
$$\mathcal{D} = [0,1]$$
, then  $Cond(f) = +\infty$ 

• If 
$$\mathcal{D} = [1,2]$$
, then  $Cond(f) = \frac{1}{2}$ 

Absolute local

• Cond<sub>x</sub>(f) = 
$$f'(x) = \frac{1}{2\sqrt{x}} \rightarrow \begin{cases} \infty \text{ (ill-conditioned)} & \text{as } x \to 0 \\ 0 \text{ (well-conditioned)} & \text{as } x \to +\infty \end{cases}$$

o Relative local

• Cond<sub>x</sub>(f) = 
$$\frac{|f'(x)|}{|f(x)|}|x| = \frac{1/(2\sqrt{x})}{\sqrt{x}}|x| = \frac{1}{2}, \forall x \in \mathcal{D}$$

### Condition Number of Matrix (Definition 2.12)

- Definition
  - $\kappa(A) = ||A|| ||A^{-1}||$  is called the **condition number** of A
  - If  $\kappa(A) \gg 1$ , then we say A is **ill-conditioned**
- Note:  $\kappa(A) = \kappa(A^{-1})$  and  $\kappa(A) \ge 1$

• 
$$x(+\delta x) \xrightarrow{A} b(+\delta b)$$

$$\circ \begin{cases} Ax = b \\ A(x + \delta x) = b + \delta(b) \end{cases} \Rightarrow \delta b = A \delta x$$

$$\circ \quad \text{Cond}_{x}(A) = \frac{\|\delta b\| / \|b\|}{\|\delta x\| / \|x\|}, \text{ by definition}$$

$$= \frac{\|\delta b\|}{\|b\|} \cdot \frac{\|x\|}{\|\delta x\|}$$

$$= \frac{\|A\delta x\|}{\|Ax\|} \cdot \frac{\|x\|}{\|\delta x\|}, \text{ since } \delta b = A\delta x \text{ and } b = Ax$$

$$= \frac{\|A\delta x\|}{\|\delta x\|} \cdot \frac{\|A^{-1}b\|}{\|b\|}, \text{ assuming } A \text{ is not singular}$$

 $\leq ||A|| ||A^{-1}||$  by definition of matrix norm

• 
$$A(+\delta A) \to x(+\delta x)$$

$$\circ$$
  $Ax = b$ 

o 
$$Ax = (A + \delta A)(x + \delta x)$$
, since *b* is viewed as the function here

$$\circ Ax = Ax + \delta Ax + A\delta x + \underbrace{\delta A\delta x}_{\approx 0}, \text{ since } \delta A\delta x \text{ is a second order turbulence}$$

$$\circ$$
  $\delta Ax + A\delta x = 0$ 

$$\circ \quad \delta x = -A^{-1} \cdot \delta A \cdot x$$

$$\|\delta x\| \le \|A^{-1}\| \|\delta A\| \|x\|$$
, since  $\|PQ\| \le \|P\| \|Q\|$  for any matrix  $P, Q$ 

$$\circ \frac{\|\delta x\|/\|x\|}{\|\delta A\|/\|A\|} = \frac{\|\delta x\|}{\|x\|} \cdot \frac{\|A\|}{\|\delta A\|} \le \frac{\|A^{-1}\| \|\delta A\| \|x\|}{\|x\|} \frac{\|A\|}{\|\delta A\|} = \|A^{-1}\| \|A\|$$

• We can similarly analyze 
$$b(+\delta b) \xrightarrow{A} x(+\delta x)$$
 and  $A(+\delta A) \xrightarrow{x} b(+\delta b)$ 

• Note: The **choice of norm** will affect the condition number

$$\circ A = \begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ \vdots & & \ddots & \\ 1 & & & 1 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ \vdots & & \ddots & \\ -1 & & & 1 \end{bmatrix}$$

$$\circ \begin{cases} \|A\|_{\infty} = \|A^{-1}\|_{\infty} = 2 \\ \|A\|_{1} = \|A^{-1}\|_{1} = n \end{cases} \Rightarrow \begin{cases} \operatorname{Cond}_{L_{1}}(A) = \|A\|_{1} \|A^{-1}\|_{1} = n^{2} \\ \operatorname{Cond}_{L_{\infty}}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty} = 4 \end{cases}$$

### **Example for Condition Number**

• Let 
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

#### • 1 norm





#### • ∞ norm





#### • 2 norm





$$\circ S = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} \middle| x^2 + y^2 = 1 \right\}$$

$$\circ \text{ Let } A^{-1} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}, \text{ then } \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} b_{11}c + b_{12}d \\ b_{21}c + b_{22}d \end{bmatrix}$$

- Since  $x^2 + y^2 = 1$ , we have  $\alpha c^2 + \beta cd + \gamma d^2 = 1$ , where
  - $\bullet \quad \alpha = b_{11}^2 + b_{21}^2$
  - $\beta = 2b_{11}b_{12} + 2b_{21}b_{22}$
- Since discriminant =  $\beta^2 4\alpha\gamma < 0$ , the graph *S* is an ellipse
- $\circ \quad \kappa(A) = \frac{\text{length of major axis}}{\text{length of minor axis}} = \frac{S_{max}}{S_{min}}, \text{ where } S \text{ is the singular value}$

### Symmetric Positive Definite Matrix

- Definition
  - Matrix *A* is called **symmetric positive definite** (s.p.d) if
  - $\circ$   $A = A^T$  (symmetric)
  - o  $x^T Ax > 0$ ,  $\forall x \in \mathbb{R}^{n \times n} \setminus \{0\}$  (positive definite)
- Proof:  $a_{ii} > 0$

$$\circ \quad \boldsymbol{a_{ii}} = \boldsymbol{e_i^T} \boldsymbol{A} \boldsymbol{e_i} > 0, \text{ where } [\boldsymbol{e_i}]_k = \begin{cases} 1 & \text{if } k = i \\ 0 & \text{if } k \neq i \end{cases}$$

- Proof:  $\lambda_i \in \mathbb{R}^+$  for  $Ax_i = \lambda_i x_i$ 
  - Use  $\overline{\lambda_i}$  to denote the conjugate of  $\lambda_i$ , we first need to show that  $\overline{\lambda_i} = \lambda_i$
  - $\circ$  Taking conjugate on both sides of  $Ax_i=\lambda_ix_i$ , we obtain  $A\overline{x_i}=\overline{\lambda_i}\overline{x_i}$  (note:  $A=\overline{A}$ )

$$\circ \begin{cases} x_i^T A \overline{x_i} = x_i^T (\overline{\lambda_i} \overline{x_i}) = \overline{\lambda_i} x_i^T \overline{x_i} \\ x_i^T A \overline{x_i} \stackrel{\text{sym}}{=} x_i^T A^T \overline{x_i} = (Ax_i)^T \overline{x_i} = \lambda_i x_i^T \overline{x_i} \end{cases} \Rightarrow \overline{\lambda_i} x_i^T \overline{x_i} = \lambda_i x_i^T \overline{x_i} \Rightarrow \overline{\lambda_i} = \lambda_i \Rightarrow \lambda_i \in \mathbb{R}$$

$$o \quad x_i^T A x_i = \lambda_i x_i^T x_i \Rightarrow \lambda_i = \frac{x_i^T A x_i}{x_i^T x_i} > \mathbf{0}, \text{ since } x_i^T A x_i > 0 \text{ and } x_i^T x_i > 0$$

- Note:  $\lambda_i \in \mathbb{R}$  holds for all symmetric matrices
- Proof:  $\langle x_i, x_j \rangle = 0$  for  $\lambda_i \neq \lambda_j$

$$\circ \begin{cases} x_i^T A x_j = x_i^T (\lambda_j x_j) = \lambda_j x_i^T x_j \\ x_i^T A^T x_j = (A x_i)^T x_j = \lambda_i x_i^T x_j \end{cases} \Rightarrow (\lambda_j - \lambda_i) x_i^T x_j = \mathbf{0}$$

- $\circ \text{ If } \lambda_i \neq \lambda_j, \text{ then } x_i^T x_j = \langle x_i, x_j \rangle = \mathbf{0}$
- Proof: det(A) > 0

$$\circ \ A[\overrightarrow{x_1},\overrightarrow{x_2},\ldots,\overrightarrow{x_n}] = [\lambda_1\overrightarrow{x_1},\lambda_2\overrightarrow{x_2},\ldots,\lambda_n\overrightarrow{x_n}] = [\overrightarrow{x_1},\overrightarrow{x_2},\ldots,\overrightarrow{x_n}] \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

$$\circ \text{ Let } X = [\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_n}], \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}, \text{ then } AX = X\Lambda \Rightarrow A = X\Lambda X^{-1}$$

• Therefore, 
$$|A| = |X\Lambda X^{-1}| = |X||\Lambda||X|^{-1} = |\Lambda| = \prod_{i=1}^{n} \lambda_i > 0$$

- Proof: Let  $I \subseteq \{1,2,...,n\}$ , then  $B = A_{II}$  is also s.p.d.
  - $\circ \ \ A = A^T \Rightarrow A_{II} = A_{II}^T \Rightarrow B = B^T$

- Cholesky Decomposition
  - If *A* is s.p.d., then  $\exists L$  lower diagonal s.t.  $A = LL^T$
  - Note: This is saying that after LU decomposition,  $U = L^T$

### Ordinary Differential Equation (Boundary Value Problem)

- Suppose  $u(x) \in \mathcal{C}^2[0,1]$ , find the solution for  $\begin{cases} u'' + 2u' = -1 \\ u(x=0) = 0 \\ u(x=1) = 0 \end{cases}$
- We can evenly **sample N points** on [0,1]:  $\Delta x = \frac{1}{N+1}$ ,  $x_i = i\Delta x$
- Compute first derivative  $u'(x_i)$  using  $u(x_{i+1})$  and  $u(x_{i-1})$

$$\circ u'(x_j) = \lim_{\delta \to 0} \frac{u(x_j + \delta) - u(x_j - \delta)}{2\delta} \approx \frac{u(x_{j+1}) - u(x_{j-1})}{2\Delta x}$$

- Note:  $Du|_{j} = \frac{u(x_{j+1}) u(x_{j-1})}{2\Delta x}$  is called the **discrete derivative** of u at j
- Compute second derivative  $u''(x_i)$  using  $u(x_{i+2})$ ,  $u(x_i)$  and  $u(x_{i-2})$

$$u''(x_j) = \lim_{\delta \to 0} \frac{u'(x_j + \delta) - u'(x_j - \delta)}{2\delta} \approx \frac{u'(x_{j+1}) - u'(x_{j-1})}{2\Delta x}$$

$$\approx \frac{\left(\frac{u(x_{j+2}) - u(x_j)}{2\Delta x}\right) - \left(\frac{u(x_j) - u(x_{j-2})}{2\Delta x}\right)}{2\Delta x}, \text{ by substituting } u'$$

$$= \frac{u(x_{j+2}) - 2u(x_j) + u(x_{j-2})}{4\Delta x^2}$$

- Compute second derivative  $u''(x_j)$  using  $u(x_{j+1})$ ,  $u(x_j)$  and  $u(x_{j-1})$ 
  - o In practice, we want to only use neighboring points to have a local approximation

$$\circ \text{ Thus, } u''(x_j) \approx \frac{u'(x_{j+1/2}) - u'(x_{j-1/2})}{\Delta x} = \frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{\Delta x^2}$$

• Substitute u', u'' into the ODE

$$\circ \frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{\Delta x^2} + 2\left(\frac{u(x_{j+1}) - u(x_{j-1})}{2\Delta x}\right) \approx -1$$

$$\circ \quad \text{Define } U \coloneqq \begin{bmatrix} u(x_1) \\ \vdots \\ u(x_n) \end{bmatrix}, \text{ then } \frac{U_{j+1} - 2U_j + U_{j-1}}{\Delta x^2} + \frac{U_{j+1} - U_{j-1}}{\Delta x} = -1$$

### Ch 4: Simultaneous Iteration

Wednesday, October 3, 2018 10:24 AM

### Continuous Functions Preserve Convergence For Cauchy Sequence

- · Cauchy sequence
  - In  $D \subseteq \mathbb{R}^n$ ,  $\{\vec{x}^{(k)}\}_{k=0}^{+\infty}$  is called a **Cauchy sequence** if
  - $\circ \quad \forall \varepsilon > 0, \exists k_{\varepsilon} > 0 \text{ s.t. } \big\| \overrightarrow{x}^{(m)} \overrightarrow{x}^{(n)} \big\|_{\infty} < \varepsilon \ (\forall m, n > k_{\varepsilon})$
  - Note:  $\mathbb{R}^n$  is complete since every Cauchy sequence converges to some point in  $\mathbb{R}^n$
- Continuity
  - Given  $\xi \in D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}^n$  is said to be **continuous** if
  - $\circ \ \forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0 \text{ s.t. } \| f(x) f(\xi) \|_{\infty} < \varepsilon \ \big( \forall x \in B(\xi; \delta_{\varepsilon}) \big)$
  - Here,  $B(\xi; \delta_{\varepsilon})$  is an open ball at  $\xi$  with radius  $\delta_{\varepsilon}$
- Lemma
  - If  $\vec{f}$ : D ( $\subseteq \mathbb{R}^n$ )  $\to \mathbb{R}^n$  is **continuous**, and  $\{\vec{x}^{(k)}\} \to \vec{\xi} \in D$  is a **Cauchy sequence**
  - Then  $\vec{f}(\vec{x}^{(k)})$  also **converges** to  $\vec{f}(\vec{\xi})$

# Introduction to Simultaneous Nonlinear Equations

- Given  $\vec{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$ , where  $f_i \colon \mathbb{R}^n \to \mathbb{R}$ , we want to look for  $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$  s.t.  $\vec{f}(\vec{x}) = \vec{0}$
- In general, we don't know whether such root exists, but we can solve for some special cases
  - o If  $\vec{f}$  is linear (i. e.  $\vec{f}(\vec{x}) = A\vec{x} \vec{b}$ ), we can use the knowledge from Chapter 2
  - $\circ \quad \text{For } \vec{f}(\vec{x}) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2^2 1 \\ 5x_1^2 + 21x_2^2 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \pm \sqrt{3}/2 \\ \pm 1/2 \end{bmatrix}$



- Solving  $\vec{f}(\vec{x}) = \vec{0}$  is the extension of solving f(x) = 0 from Chapter 1
- In Chapter 1, we are given f(x):  $D(\subseteq \mathbb{R}) \to \mathbb{R}$ , and asked to find a  $x \in \mathbb{R}$  s.t. f(x) = 0
  - We transformed this problem to a fixed point finding problem

- o Define g s.t.  $g(x) = x \Leftrightarrow f(x) = 0$  (e.g. g(x) = x f(x) or  $g(x) = x \frac{f(x)}{f'(x)}$ )
- Start with initial guess  $x_0$  and iterate  $x_k := g(x_{k-1})$
- $\circ$  We used contraction mapping theorem to show the iterative method converges to  $\xi$
- In order to solve for  $\vec{f}(\vec{x}) = \vec{0}$ , we need to
  - **Design a function**  $\vec{g}$  s.t.  $\vec{f}(\vec{x}) = \vec{0} \Leftrightarrow \vec{g}(\vec{x}) = \vec{x}$
  - Start with  $\vec{x}^{(0)} \in D \subseteq \mathbb{R}^n$ , and **iterate**  $\vec{x}^{(k)} = \vec{g}(\vec{x}^{(k-1)})$
  - Show the sequence  $\{\vec{x}^{(k)}\}$  converge to  $\vec{\xi}$

#### Simultaneous Iteration

- Given  $g: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$  s.t.  $g(D) \subseteq D$ , and let  $\vec{x}^0 \in D$
- The recursion defined by  $\vec{x}^{(k)} = \vec{g}(\vec{x}^{(k-1)})$  is called a **simultaneous iteration**
- For n = 1, this is just simple iteration in Chapter 1

#### **Example of Simultaneous Iteration**

- Given  $\vec{g}: (0,1)^2 \to \mathbb{R}^n$  defined as  $\vec{g}(\vec{x}) = \frac{1}{2}(\vec{x} + \vec{u})$ , where  $\vec{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- We'd like to find a fixed point  $\vec{\xi} \in D := [0,1]^2$
- Algebraic method:  $\vec{g}(\vec{\xi}) = \frac{1}{2}(\vec{\xi} + \vec{u}) = \vec{\xi} \Rightarrow \vec{\xi} = \vec{u}$
- Numeric method: Do **simultaneous iteration** with initial value of  $\vec{x}^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Check  $\vec{x}^{(k-1)} \in D \Rightarrow \vec{x}^{(k)} \in D$

$$\circ \vec{x}^{(k)} = \begin{pmatrix} x^k \\ y^k \end{pmatrix} = \frac{1}{2} (\vec{x}^{(k-1)} + \vec{u}) = \frac{1}{2} \left( \begin{pmatrix} x^{k-1} \\ y^{k-1} \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} x^{k-1}/2 + 1 \\ y^{k-1}/2 + 1 \end{pmatrix}$$

$$\circ \quad \vec{x}^{(k-1)} \in D \Rightarrow \begin{cases} x^{k-1} \in (-1,1) \\ y^{k-1} \in (-1,1) \end{cases} \Rightarrow \begin{cases} x^{k-1}/2 + 1 \in (0,1) \\ y^{k-1}/2 + 1 \in (0,1) \end{cases} \Rightarrow \begin{cases} x^k \in (-1,1) \\ y^k \in (-1,1) \end{cases} \Rightarrow \vec{x}^{(k)} \in \mathbf{D}$$

• Check sequence converge to the fixed point

$$\circ \quad \underbrace{\|\vec{x}^{(k)} - \vec{u}\|}_{E_k} = \|g(\vec{x}^{(k-1)} - \vec{u})\| = \left\|\frac{1}{2}(\vec{x}^{(k-1)} + \vec{u}) - \vec{u}\right\| = \frac{1}{2}\underbrace{\|\vec{x}^{(k-1)} - \vec{u}\|}_{E^{k-1}}$$

$$\circ \quad \mathbf{E}^{k} = \frac{1}{2} E^{k-1} = \left(\frac{1}{2}\right)^{k} E^{0} = \left(\frac{1}{2}\right)^{k} \to \mathbf{0} \text{ as } k \to \infty$$

### **Contraction Mapping Theorem**

- · Lipschitz continuity
  - $\circ \quad \text{Given } g : D(\subseteq \mathbb{R}^n) \to D(\subseteq \mathbb{R}^n)$
  - We say g is **Lipschitz continuous** if  $\|\vec{g}(\vec{x}) \vec{g}(\vec{y})\|_{\infty} \le L\|\vec{x} \vec{y}\|_{\infty}, \forall \vec{x}, \vec{y} \in D$
  - $\circ$  Here L is called **Lipschitz constant**
  - $\circ$  If L < 1, then we say g is a **contraction map**

- Contraction mapping theorem
  - Suppose  $\mathbf{D} \subseteq \mathbb{R}^n$  closed,  $\vec{g}: D \to \mathbb{R}^n$  is a contraction map in  $\infty$ -norm and  $\mathbf{g}(\mathbf{D}) \subseteq \mathbf{D}$

$$\qquad \text{o} \quad \text{Then } \exists ! \, \overrightarrow{\xi} \in \textit{\textbf{D}} \text{ s.t. } \overrightarrow{g} \left( \overrightarrow{\xi} \right) = \overrightarrow{\xi} \text{, and } \left\{ \overrightarrow{x}^{(k)} = \overrightarrow{g} \big( \overrightarrow{x}^{(k-1)} \big) \right\} \rightarrow \overrightarrow{\xi} \text{, } \forall x^{(0)} \in \textit{\textbf{D}}$$

- Proof
  - $\circ$  Note: In the proof below, we assume the existence of  $\xi$  for the first two parts.
  - Uniqueness of fixed points
    - Suppose  $\vec{\eta}$ ,  $\vec{\xi}$  are both fixed points of  $\vec{g}$  (i.e.  $\vec{g}(\vec{\eta}) = \vec{\eta}$  and  $\vec{g}(\vec{\xi}) = \vec{\xi}$ )
    - Then  $\|\vec{\eta} \vec{\xi}\|_{\infty} = \|\vec{g}(\vec{\eta}) \vec{g}(\vec{\xi})\|_{\infty} < L \|\vec{\eta} \vec{\xi}\|_{\infty}$  by Lipschitz condition
    - Therefore,  $\underbrace{(1-L)}_{>0} \underbrace{\left\| \vec{\eta} \vec{\xi} \right\|_{\infty}}_{\geq 0} \le 0 \Rightarrow \left\| \vec{\eta} \vec{\xi} \right\|_{\infty} = 0 \Rightarrow \vec{\eta} = \vec{\xi}$
  - If  $\vec{\xi}$  exists, then  $\{\vec{x}^{(k)}\}$  converges to  $\vec{\xi}$

$$\bullet \quad \underbrace{\left\|\vec{x}^{(k+1)} - \vec{\xi}\right\|_{\infty}}_{E^{k+1}} = \left\|\vec{g}\left(\vec{x}^{(k)}\right) - \vec{g}\left(\vec{\xi}\right)\right\|_{\infty} \leq L \underbrace{\left\|\vec{x}^{(k)} - \vec{\xi}\right\|_{\infty}}_{E^{k}}$$

- Expand the inequality, we have  $E^{k+1} \le LE^k \le \cdots \le L^{k+1}E^0$
- Compute  $E^0$  (optional)

$$\Box \underbrace{\left\|\vec{x}^{(0)} - \vec{\xi}\right\|_{\infty}}_{E^{0}} = \left\|\vec{x}^{(0)} - \vec{x}^{(1)} + \vec{x}^{(1)} - \vec{\xi}\right\|_{\infty}$$

$$\leq \left\|\vec{x}^{(1)} - \vec{x}^{(0)}\right\|_{\infty} + \left\|\vec{x}^{(1)} - \xi\right\|_{\infty}$$

$$\leq \left\|\vec{x}^{(1)} - \vec{x}^{(0)}\right\|_{\infty} + L\underbrace{\left\|\vec{x}^{(0)} - \vec{\xi}\right\|_{\infty}}_{E^{0}}$$

$$\Box E_0 \le \|\vec{x}^{(1)} - \vec{x}^{(0)}\|_{\infty} + LE_0$$

$$\Box E_0 \le \frac{1}{1-L} \| \vec{x}^{(1)} - \vec{x}^{(0)} \|_{\infty}$$

- Therefore  $E^{k+1} \le L^{k+1} \frac{1}{1-L} \|\vec{x}^{(1)} \vec{x}^{(0)}\|_{\infty}$
- Since  $L \in (0,1)$ , as  $k \to \infty$ , we have  $E^k \to 0 \Leftrightarrow x^{(k)} \to \xi$
- Existence of  $\vec{\xi}$  (by showing  $\{\vec{x}^{(k)}\}$  is a Cauchy sequence)
  - Assume m > n

$$\begin{split} & \quad \| \vec{x}^{(m)} - \vec{x}^{(n)} \|_{\infty} = \| \vec{x}^{(m)} - \vec{x}^{(m-1)} + \vec{x}^{(m-1)} - \vec{x}^{(m-2)} + \vec{x}^{(m-2)} + \cdots - \vec{x}^{(n)} \|_{\infty} \\ & \quad = \underbrace{\| \vec{x}^{(m)} - \vec{x}^{(m-1)} \|_{\infty}}_{\leq L^{m-1} \| \vec{x}^{(1)} - \vec{x}^{(0)} \|_{\infty}} + \underbrace{\| \vec{x}^{(m-1)} - \vec{x}^{(m-2)} \|_{\infty}}_{\leq L^{m-2} \| \vec{x}^{(1)} - \vec{x}^{(0)} \|_{\infty}} + \cdots + \underbrace{\| \vec{x}^{(n+1)} - \vec{x}^{(n)} \|_{\infty}}_{\leq L^{n} \| \vec{x}^{(0)} - \vec{x}^{(1)} \|_{\infty}} \\ & \quad \leq \left( L^{m-1} + L^{m-2} + \cdots + L^{n} \right) \| \vec{x}^{(1)} - \vec{x}^{(0)} \|_{\infty} \\ & \quad = L^{n} \left( L^{m-n-1} + L^{m-n-2} + \cdots + 1 \right) \| \vec{x}^{(1)} - \vec{x}^{(0)} \|_{\infty} \\ & \quad \leq L^{n} \frac{1}{1 - L} \| \vec{x}^{(1)} - \vec{x}^{(0)} \|_{\infty} \end{split}$$

• Therefore  $\|\vec{x}^{(m)} - \vec{x}^{(n)}\|_{\infty} \to 0$  as  $n \to +\infty$  i.e.  $\{\vec{x}^{(k)}\}$  is a Cauchy sequence

- Due to **completeness** of *D*, it **converges** to some point; call it  $\vec{\xi}$
- $\circ$  Note: In 1D, the existence of  $\vec{\xi}$  is guaranteed by the Intermediate Value Theorem

#### Jacobian Matrix

• Definition

$$\circ \quad \text{Suppose } \vec{g} = [g_1, \dots, g_n]^T \colon \mathbb{R}^n \to \mathbb{R}^n, \vec{g} \in \mathcal{C}^1, \text{and } \frac{\partial g_i}{\partial x_i} \text{ exists at } \vec{\xi}, \forall i, j \in \{1, \dots, n\}$$

• Then **Jacobian matrix** 
$$J_{\vec{g}}(\vec{\xi})$$
 of  $\vec{g}$  is defined as  $\left[J_{\vec{g}}(\vec{\xi})\right]_{i,j} = \frac{\partial g_i}{\partial x_i}(\vec{\xi})$ 

• Theorem

• Suppose 
$$\vec{g}: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$$
 and  $\vec{g} \in \mathcal{C}^1$ . Let  $\vec{\xi} \in D$  be a fixed point of  $\vec{g}$ 

o If 
$$\|J_{\vec{g}}(\vec{\xi})\|_{\infty} < 1$$
 (in a small neighborhood of  $\xi$ ,  $\vec{g}$  is a contraction map)

$$\circ \quad \text{then } \{ \vec{x}^{(k+1)} = \vec{g}(\vec{x}^{(k)}) \} \text{ converges to } \vec{\xi} \text{ given } \vec{x}^{(0)} \text{ is close enough to } \xi$$

Example

$$\circ \ \vec{g}(\vec{x}) = \begin{bmatrix} g_1(x_1, x_2) \\ g_2(x_1, x_2) \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2^2 - 1 \\ 5x_1^2 + 21x_2^2 - 9 \end{bmatrix} \Longrightarrow J_{\vec{g}} = \begin{bmatrix} 2x_1 & 2x_2 \\ 10x_1 & 42x_2 \end{bmatrix}$$

$$\circ \|J_{\vec{g}}\|_{\infty} = \max\{2|x_1| + 2|x_2|, 10|x_1| + 42|x_2|\} = 10|x_1| + 42|x_2|$$

#### Newton's method

• Definition

$$\circ \ \vec{g}(\vec{x}) = \vec{x} - \left[ J_{\vec{f}}(\vec{x}) \right]^{-1} \vec{f}(\vec{x})$$

Example

$$\circ \vec{f}(\vec{x}) = \begin{bmatrix} x^2 + y^2 + z^2 - 1 \\ 2x^2 + y^2 - 4z \\ 3x^2 - 4y + z^2 \end{bmatrix} \Longrightarrow J_{\vec{f}} = \begin{bmatrix} 2x & 2y & 2z \\ 4x & 2y & -4 \\ 6x & -4 & 2z \end{bmatrix}$$

$$\circ \quad \vec{g}(\vec{x}) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} 2x & 2y & 2z \\ 4x & 2y & -4 \\ 6x & -4 & 2z \end{bmatrix}^{-1} \begin{bmatrix} x^2 + y^2 + z^2 - 1 \\ 2x^2 + y^2 - 4z \\ 3x^2 - 4y + z^2 \end{bmatrix}$$

Theorem

• Suppose 
$$\vec{g}: D(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$$
 and  $\vec{g} \in \mathcal{C}^1$ 

• Let 
$$\vec{\xi} \in D$$
 be a fixed point of  $\vec{g}$ 

$$\circ$$
 If all  $\partial_i \partial_j \vec{f}$  is continuous, and  $J_{\vec{g}}(\vec{\xi})$  is non-singular

$$\circ \quad \text{Then } \{ \vec{x}^{(k+1)} = \vec{g}(\vec{x}^{(k)}) \} \text{ converges to } \vec{\xi} \text{ given } \vec{x}^{(0)} \text{ is close enough to } \xi$$

# Ch 5: Eigenvalue Decomposition

Wednesday, October 10, 2018 9:58 AM

#### **Eigenvalue Decomposition**

- Introduction
  - o If  $A_{n \times n}$  has eigenvectors  $\overrightarrow{x_1}, \dots, \overrightarrow{x_n}$  with corresponding eigenvalues  $\lambda_1, \dots, \lambda_n$

$$\circ \quad \text{Then } A\overrightarrow{x_i} = \lambda_i \overrightarrow{x_i} \Leftrightarrow A\underbrace{[\overrightarrow{x_1}, \dots, \overrightarrow{x_n}]}_{\widehat{X}} = \underbrace{[\overrightarrow{x_1}, \dots, \overrightarrow{x_n}]}_{\widehat{X}} \underbrace{\begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}}_{\widehat{A}}$$

- This gives the **eigenvalue decomposition**  $A = X\Lambda X^{-1}$  (assuming X is not singular)
- In this chapter, let's further assume that *A* is symmetric, then  $x_i \perp x_j$ , and  $\lambda_i \in \mathbb{R}$
- List of Matrix Decompositions

| Name                     | Formula               | Procedure            |
|--------------------------|-----------------------|----------------------|
| LU decomposition         | A = LU                | Gauss-elimination    |
| QR decomposition         | A = QR                | Gram-Schmidt process |
| Eigenvalue decomposition | $A = X\Lambda X^{-1}$ | ???                  |

- "No-Go Theorem" (Abel Theorem)
  - There is **no finite procedure** that provides eigenvalue decomposition
  - o Finding the eigenvalues is equivalent to solving the characteristic equation

• 
$$A\vec{x} = \lambda \vec{x} \Leftrightarrow (A - \lambda I)\vec{x} = 0 \Leftrightarrow \vec{x} \in \text{Null}(A - \lambda I) \Leftrightarrow p(\lambda) := \det(A - \lambda I) = 0$$

Abel-Ruffini Theorem: No explicit root formula for polynomial of degree 5 or higher

#### **Power Iteration**

- · General Idea
  - $\circ \quad \text{Suppose } A\overrightarrow{x_i} = \lambda_i \overrightarrow{x_i} \text{ for } i \in \{1 \dots n\}, \text{ and } \underbrace{|\lambda_1| > |\lambda_2|}_{\text{strictly larger}} \ge \dots \ge |\lambda_n|$
  - $\circ$  Choose arbitrary  $\vec{v} \in \mathbb{R}^n$ , then  $\vec{v} = c_1 \overrightarrow{x_1} + \dots + c_n \overrightarrow{x_n}$  for some coefficients  $c_1, \dots, c_n$

$$\circ A^{k} \vec{v} = A^{k} \sum_{i=1}^{n} c_{i} \vec{x_{i}} = \sum_{i=1}^{n} c_{i} (A^{k} \vec{x_{i}}) = \sum_{i=1}^{n} c_{i} \lambda_{i}^{k} \vec{x_{i}} = \underbrace{c_{1} \lambda_{1}^{k} \vec{x_{1}}}_{\text{sothers}} + \dots + c_{n} \lambda_{n}^{k} \vec{x_{n}}$$

- $\circ$  Since  $|\lambda_1|$  the the largest eigenvalue,  $|c_1\lambda_1^k|$  is signficiently larger than the rest
- Algorithm
  - Choose  $v^{(0)} \in \mathbb{R}^n$  s.t.  $||v^{(0)}||_2 = 1$
  - $\circ$  For k = 1, 2, ...
    - $w \leftarrow Av^{(k-1)}$  Apply A
    - $v^{(k)} \leftarrow w/\|w\|_2$  Normalization
    - $\lambda^{(k)} \leftarrow \langle v^{(k)}, Av^{(k)} \rangle$  Compute Rayleigh quotient
- Convergence rate for  $v^{(k)}$

$$\circ \quad \text{Claim: } \|v^{(k)} - (\pm \overrightarrow{x_1})\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

$$\begin{array}{l} \circ \quad v^{(k)} = \alpha_k A^k \vec{v}^{(0)} \text{, for some normalization constant } \alpha_k \\ \\ = \alpha_k \left( c_1 \lambda_1^k \overrightarrow{x_1} + c_2 \lambda_2^k \overrightarrow{x_2} + \cdots + c_n \lambda_n^k \overrightarrow{x_n} \right) \text{ for some stretching coefficients } c_1, \ldots, c_n \\ \\ = \alpha_k \lambda_1^k \left[ c_1 \overrightarrow{x_1} + c_2 \left( \frac{\lambda_2}{\lambda_1} \right)^k \overrightarrow{x_2} + \cdots + c_n \left( \frac{\lambda_n}{\lambda_1} \right)^k \overrightarrow{x_n} \right]$$

- Therefore the error term is approximately  $O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$  given that  $c_1 \neq 0$
- Convergence rate for  $\lambda^{(k)}$

$$\circ \quad \text{Claim:} \left| \boldsymbol{\lambda}^{(k)} - \boldsymbol{\lambda}_1 \right| = \boldsymbol{O} \left( \left| \frac{\boldsymbol{\lambda}_2}{\boldsymbol{\lambda}_1} \right|^{2k} \right)$$

$$\circ \quad \text{If } \|\vec{x} - \overrightarrow{x_1}\| = O(\varepsilon), \text{ then } \left| \frac{\langle \vec{x}, A\vec{x} \rangle}{\langle \vec{x}, \vec{x} \rangle} - \lambda_1 \right| = O(\varepsilon^2)$$

• Here, 
$$\frac{\langle \vec{x}, A\vec{x} \rangle}{\langle \vec{x}, \vec{x} \rangle}$$
 is called Rayleigh quotient

#### Variations of Power Iteration

- Power iteration only picks the largest eigenvalue. What if we want to find other ones?
- If we want to find the **smallest eigenvalue**, then can use **inverse power iteration**
- For finding a eigenvalue closest to some number, we can use shifted power iteration

#### Simultaneous Iteration and QR Iteration

- Goal
  - Obtain the **full set of eigenvalues and eigenvectors** simultaneously
- · General idea for simultaneous iteration

$$\circ \quad \text{Suppose } A\overrightarrow{x_i} = \lambda_i \overrightarrow{x_i} \text{ for } i \in \{1 \dots n\} \text{, and } \underbrace{|\lambda_1| > |\lambda_2|}_{\text{strictly larger}} \geq \dots \geq |\lambda_n|$$

- o Arbitrarily choose  $V = [\overrightarrow{v_1}, ..., \overrightarrow{v_n}] \in \mathbb{R}^{n \times n}$ , then
- $\circ \quad \overrightarrow{v_i} = c_{1i}\overrightarrow{x_1} + c_{2i}\overrightarrow{x_1} + \dots + c_{ni}\overrightarrow{x_n} \text{ for some stretching coefficients } c_{1i}, \dots, c_{ni}$

$$\circ \quad A^k V = \left[ \sum_{i=1}^n \lambda_i^k c_{1i} \overrightarrow{x_i}, \sum_{i=1}^n \lambda_i^k c_{2i} \overrightarrow{x_i}, \dots, \sum_{i=1}^n \lambda_i^k c_{ni} \overrightarrow{x_i} \right]$$

- If we use  $[A^k V]_i$  to denote the *i*-th column of  $A^k V$ , then
  - $\bullet \quad \left[A^k V\right]_1 \to \overrightarrow{x_1}$

- We can use QR factorization to obtain  $\overrightarrow{x_1}$ , ...,  $\overrightarrow{x_n}$
- Algorithm: Simultaneous iteration

$$\circ \ \ \text{Let} \, \underline{Q}^{(0)} \leftarrow I$$

 $\circ$  For  $k \leftarrow 1, 2, ...$ 

• 
$$Z \leftarrow A\underline{Q}^{(k-1)}$$
 Apply  $A$ 

• 
$$Z \rightarrow Q^{(k)}R^{(k)}$$
 Normalization by QR factorization

• 
$$A^{(k)} \leftarrow \left[\underline{Q}^{(k)}\right]^T A \underline{Q}^{(k)}$$
 Compute Rayleigh quotient

• Algorithm: QR iteration

$$\circ$$
 Let  $A^{(0)} \leftarrow A$ 

 $\circ$  For  $k \leftarrow 1, 2, ...$ 

• 
$$A^{(k-1)} \rightarrow Q^{(k)}R^{(k)}$$
 QR factorization

$$\bullet A^{(k)} \leftarrow R^{(k)} Q^{(k)}$$

•  $A^{(k)} \leftarrow R^{(k)}Q^{(k)}$  Recombine factors in reverse order

$$\circ \quad Q^{(k)} \leftarrow Q^{(1)}Q^{(2)}\cdots Q^{(k)}$$

Convergence rate

$$||q_i^{(k)} - (\pm x_i)|| = O(C^k) \text{ and } |A_{ii}^{(k)} - \lambda_i| = O(C^{2k}) \text{ where } C = \max_{k \in \{1, \dots, n-1\}} \left| \frac{\lambda_{k+1}}{\lambda_k} \right|$$

- Note
  - $\circ~$  For the two algorithms above,  $Q^{(k)}$  converges to X, and  $A^{(k)}$  converges to  $\Lambda$
  - o In practice we often prefer QR iteration

#### Equivalence of Simultaneous Iteration and QR Iteration

• QR iteration is equivalent to simultaneous iteration, in the sense that both generates

• The QR factorization: 
$$A^{(k)} = \left[\underline{Q}^{(k)}\right]^T A\underline{Q}^{(k)}$$

• The projection: 
$$A^k = Q^{(k)}\underline{R}^{(k)}$$
, where  $\underline{R}^{(k)} \coloneqq R^{(k)}R^{(k-1)}\cdots R^{(1)}$ 

- Note: I added additional parentheses in the proof below for clarification
- Proof: QR iteration gives  $A^{(k)} = \left[\underline{Q}^{(k)}\right]^T A\underline{Q}^{(k)}$

• Using induction, assume 
$$A^{(k-1)} = \left[\underline{Q}^{(k-1)}\right]^T A\underline{Q}^{(k-1)}$$

$$A^{(k)} = R^{(k)}Q^{(k)}, \text{ by the algorithm of QR iteration}$$

$$= \left( \left[ Q^{(k)} \right]^T A^{(k-1)} \right) \cdot Q^{(k)}, \text{ since } A^{(k-1)} = Q^{(k)}R^{(k)} \Rightarrow R^{(k)} = \left[ Q^{(k)} \right]^T A^{(k-1)}$$

$$= \left[ Q^{(k)} \right]^T \cdot A^{(k-1)} \cdot Q^{(k)}$$

$$= \left[ Q^{(k)} \right]^T \cdot \left( \left[ \underline{Q}^{(k-1)} \right]^T A \underline{Q}^{(k-1)} \right) \cdot Q^{(k)}, \text{ by IH } A^{(k-1)} = \left[ \underline{Q}^{(k-1)} \right]^T A \underline{Q}^{(k-1)}$$

$$= \left( \left[ Q^{(k)} \right]^T \left[ \underline{Q}^{(k-1)} \right]^T \right) A \left( \underline{Q}^{(k-1)} Q^{(k)} \right)$$

$$= \left[\underline{Q}^{(k)}\right]^T A \underline{Q}^{(k)}, \text{ by definition of } \underline{Q}$$

- Proof: QR iteration gives  $A^k = \underline{Q}^{(k)} \cdot \underline{R}^{(k)}$ 
  - o Using induction, assume  $A^{k-1} = \underline{Q}^{(k-1)} \cdot \underline{R}^{(k-1)}$

$$A^{k} = A \cdot A^{k-1}$$

$$= A \cdot \left( \underline{Q}^{(k-1)} \underline{R}^{(k-1)} \right), \text{ by inductive hypothesis } A^{k-1} = \underline{Q}^{(k-1)} \cdot \underline{R}^{(k-1)}$$

$$= \left( \underline{A} \underline{Q}^{(k-1)} \right) \cdot \underline{R}^{(k-1)}$$

$$= \left( \underline{Q}^{(k-1)} A^{(k-1)} \right) \cdot \underline{R}^{(k-1)}, \text{ since } A^{(k-1)} = \left[ \underline{Q}^{(k-1)} \right]^{T} \underline{A} \underline{Q}^{(k-1)} \Rightarrow \underline{A} \underline{Q}^{(k-1)} = \underline{Q}^{(k-1)} A^{(k-1)}$$

$$= \underline{Q}^{(k-1)} \cdot A^{(k-1)} \cdot \underline{R}^{(k-1)}$$

$$= \underline{Q}^{(k-1)} \cdot \left( Q^{(k)} R^{(k)} \right) \cdot \underline{R}^{(k-1)}, \text{ by the algorithm } A^{(k-1)} = \underline{Q}^{(k)} R^{(k)}$$

$$= \left( \underline{Q}^{(k-1)} Q^{(k)} \right) \cdot \left( R^{(k)} \underline{R}^{(k-1)} \right)$$

$$= \underline{Q}^{(k)} \cdot \underline{R}^{(k)}, \text{ by definition of } \underline{Q}^{(k)} \text{ and } \underline{R}^{(k)}$$

### Midterm Review

Monday, October 22, 2018

9:56 AM

#### **Chapter Summary**

- Ch1: f(x) = 0
- Ch2: LU, QR, norm, conditioning
- Ch3: symmetric positive definite
- Ch4:  $\vec{f}(\vec{x}) = \vec{0}$
- Ch5: Eigenvalues: power/simultaneous/QR iteration

#### Zero-Finding Problem

Iterative method

$$\circ f(x) = 0 \xrightarrow{\text{look for } g} g(x) = x \xrightarrow{\text{simple iteration}} \begin{cases} \text{initial guess } x_0 \\ x_{k+1} = g(x_k) \end{cases}$$

$$\circ \quad \vec{f}(\vec{x}) = \vec{0} \xrightarrow{\text{look for } \vec{g}} \vec{g}(\vec{x}) = \vec{x} \xrightarrow{\text{simultaneous iteration}} \begin{cases} \text{initial guess } \vec{x}^{(0)} \\ \vec{x}^{(k+1)} = g(\vec{x}^{(k)}) \end{cases}$$

• Contraction Mapping Theorem in  $\mathbb{R}$ 

$$\circ \underbrace{|x_{k+1} - \xi|}_{\exists \xi \text{ by IVT}} = \underbrace{|g(x_k) - g(\xi)| \le L|x_k - \xi|}_{g \text{ contraction}} \le L^k|x_0 - \xi| \to 0 \text{ as } k \to \infty$$

• Contraction Mapping Theorem in  $\mathbb{R}^n$ 

$$\circ \|\vec{x}^{(k+1)} - \vec{x}^{(k)}\|_{\infty} = \underbrace{\|\vec{g}(\vec{x}^{(k)}) - \vec{g}(\vec{x}^{(k-1)})\|_{\infty} \le L \|\vec{x}^{(k)} - \vec{x}^{(k-1)}\|_{\infty}}_{g \text{ contraction}}$$

- $\circ \ \{\vec{x}^{(k)}\}$  is a Cauchy sequence, so it converges to  $\xi$
- Relaxation
  - If  $g \in C^1$  and  $|g'(\xi)| < 1$ , then  $\{x_k\}$  converges to  $\xi$  if  $x_0$  is close to  $\xi$
  - If  $\vec{g} \in C^1$  and  $\left\| J_{\vec{g}} \left( \vec{\xi} \right) \right\|_{\infty} < 1$ , then  $\{\vec{x}^{(k)}\}$  converges to  $\vec{\xi}$  if  $\vec{x}^{(0)}$  is close to  $\vec{\xi}$
- · Newton's method

$$\circ \quad g(x) = x - \frac{f(x)}{f'(x)} \Longrightarrow g'(\xi) = 0 \Longrightarrow g \text{ is contracting at } \xi$$

$$\circ \ \vec{g}(\vec{x}) = \vec{x} - \left[J_{\vec{f}}(\vec{x})\right]^{-1} \vec{f}(\vec{x}) \Longrightarrow \left\|J_{\vec{g}}\left(\vec{\xi}\right)\right\|_{\infty} = 0 \Longrightarrow \vec{g} \text{ is contracting at } \vec{\xi}$$

Example

$$\circ \quad \text{Given } \vec{f} \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1^2 + x_2^2 - 2 \\ x_1 - x_2 \end{bmatrix}$$

• Prove 
$$\vec{x} = \pm \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is a zero

$$\bullet \quad \vec{f} \, \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \vec{f} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \vec{0}$$

• Find  $\vec{g}(\vec{x})$  defined by Newton's method

$$\vec{g}(\vec{x}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} \frac{1}{2(x_1 + x_2)} & \frac{x_2}{x_1 + x_2} \\ \frac{1}{2(x_1 + x_2)} & -\frac{x_1}{x_1 + x_2} \end{bmatrix} \begin{bmatrix} x_1^2 + x_2^2 - 2 \\ x_1 - x_2 \end{bmatrix} = \begin{bmatrix} \frac{x_1^2 + x_2^2}{2(x_1 + x_2)} \\ \frac{x_1^2 + x_2^2}{2(x_1 + x_2)} \end{bmatrix}$$

$$\circ \quad \text{If } x_1, x_2 \in \left(\frac{1}{2}, 1\right), \text{ show that } \left\|\vec{g}(\vec{x}) - \begin{bmatrix}1\\1\end{bmatrix}\right\|_{\infty} \le C \left\|\vec{x} - \begin{bmatrix}1\\1\end{bmatrix}\right\|_{\infty} \text{ for some } C < 1$$

$$\|\vec{g}(\vec{x}) - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \|_{\infty} = \frac{(x_1 - 1)^2 + (x_2 - 1)^2}{2|x_1 + x_2|} \le \frac{1}{2} (|x_1 - 1|^2 + |x_2 - 1|^2)$$

$$\leq \max\{|x_1 - 1|^2, |x_2 - 1|^2\} = \left\|\vec{x} - \begin{bmatrix}1\\1\end{bmatrix}\right\|_{\infty}^2 \leq \frac{1}{2}\left\|\vec{x} - \begin{bmatrix}1\\1\end{bmatrix}\right\|_{\infty}$$

#### Norm, Condition Number, and QR Factorization

• Definition of  $||A||_p$ 

$$\circ \|A\|_p = \sup_{\vec{x} \neq 0} \frac{\|A \cdot \vec{x}\|_p}{\|\vec{x}\|_p}$$

• Explicit formula for  $||A||_{\infty}$  and  $||A||_{1}$ 

$$\circ \|A\|_{1} = \max_{j} \|\overrightarrow{a_{j}}\|_{1} = \max_{j} \sum_{i=1}^{m} |a_{ij}|$$

$$\circ \|A\|_{\infty} = \max_{i} \|\overrightarrow{b_i}\|_{1} = \max_{i} \sum_{i=1}^{n} |a_{ij}|$$

$$\circ \quad \text{Given } A = \begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix}, \text{ then } ||A||_1 = 5, \text{ and } ||A||_{\infty} = 4$$

• Computing  $||A||_2$ 

$$\circ \quad \text{Define } B = A^T A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ 5 & 2 \end{bmatrix}$$

○ Then *B* is a s.p.d matrix, so  $\lambda_i \in \mathbb{R}^+$  and  $\overrightarrow{x_i} \perp \overrightarrow{x_i}$ 

$$\circ \quad B\vec{x} = \lambda \vec{x} \Longrightarrow \det(B - \lambda I) = 0 \Longrightarrow \lambda = \frac{1}{2} \Big( 15 \pm \sqrt{221} \Big)$$

• Show cond<sub>x</sub>(A)  $\leq \kappa(A)$ 

$$\circ \quad \text{Suppose } Ax = b \Leftrightarrow x = A^{-1}b$$

$$\circ \quad \operatorname{cond}_{x}(A) = \frac{\|\delta b\|/\|b\|}{\|\delta x\|/\|x\|} = \frac{\|\delta b\|}{\|b\|} \cdot \frac{\|x\|}{\|\delta x\|} = \frac{\|A \cdot \delta x\|}{\|b\|} \cdot \frac{\|A^{-1}b\|}{\|\delta x\|} \le \|A\| \|A^{-1}\| = \kappa(A)$$

Find the QR factorization of A

$$\overrightarrow{q_1} = \overrightarrow{a_1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\overrightarrow{q_1} = \frac{\overrightarrow{q_1}}{\|\overrightarrow{q_1}\|_2} = \frac{1}{\sqrt{13}} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\overrightarrow{q_2} = \overrightarrow{a_2} - \langle \overrightarrow{a_2}, \overrightarrow{q_1} \rangle \overrightarrow{q_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{1}{13} \langle \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \rangle \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\overrightarrow{q_2} = \frac{\overrightarrow{q_2}}{\|\overrightarrow{q_2}\|_2} = \frac{1}{\sqrt{13}} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\circ \quad Q = [\overrightarrow{q_1}, \overrightarrow{q_2}] = \frac{1}{\sqrt{13}} \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}, \text{ and } R = \begin{bmatrix} \langle \overrightarrow{a_1}, \overrightarrow{q_1} \rangle & \langle \overrightarrow{a_2}, \overrightarrow{q_1} \rangle \\ 0 & \langle \overrightarrow{a_2}, \overrightarrow{q_2} \rangle \end{bmatrix} = \frac{1}{\sqrt{13}} \begin{bmatrix} 13 & 5 \\ 0 & 1 \end{bmatrix}$$

## Eigen-Decomposition

- Power iteration
  - Initialize  $v^{(0)} \in \mathbb{R}^n$  s.t.  $||v^{(0)}||_2 = 1$
  - $\circ$  For k = 1, 2, ...

• 
$$w \leftarrow Av^{(k-1)}$$

$$v^{(k)} \leftarrow \frac{w}{\|w\|}$$

$$\lambda^{(k)} \leftarrow \langle v^{(k)}, Av^{(k)} \rangle$$

- $\circ$   $v^{(k)}$  converges the eigenvector with the largest eigenvalue
- $\circ$   $\lambda^{(k)}$  converges to the largest eigenvalue

$$\circ \|v^{(k)} - (\pm \overrightarrow{x_1})\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \text{ and } |\lambda^{(k)} - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

- · Simultaneous iteration
  - Initialize  $\underline{Q}^{(0)} \leftarrow I$
  - $\circ$  For k = 1, 2, ...
    - $Z \leftarrow AQ^{(k-1)}$
    - $Z \to Q^{(k)} R^{(k)}$
    - $\quad \bullet \quad A^{(k)} \leftarrow \left[\underline{Q}^{(k)}\right]^T A \underline{Q}^{(k)}$
  - $\circ$  Then  $\underline{Q}^{(k)}$  converges to X with rate  $O(C^k)$ , and  $A^{(k)}$  converges to  $\Lambda$  with rate  $O(C^{2k})$

$$\circ \quad \left\| q_i^{(k)} - (\pm \overrightarrow{x_i}) \right\| = O(C^k) \text{ and } \left| A_{ii}^{(k)} - \lambda_i \right| = O(C^{2k}) \text{ where } C = \max_{k \in \{1, \dots, n-1\}} \frac{|\lambda_{k+1}|}{|\lambda_k|}$$

- · QR iteration
  - Initialize  $A^{(0)} \leftarrow A$
  - $\circ$  For k = 1, 2, ...
    - $A^{(k-1)} \to Q^{(k)} R^{(k)}$
    - $\bullet \quad A^{(k)} \leftarrow R^{(k)} O^{(k)}$
  - Then  $\underline{Q}^{(k)} \coloneqq Q^{(k)} \cdots Q^{(1)}$  converges to X and  $A^{(k)}$  converges to A
- Simultaneous iteration and QR iteration are equivalent

# Ch 6-10: Approximation & Integration

Friday, December 7, 2018

10:50 PM

# **Polynomial Approximation Theory**

Monday, October 15, 2018 9:57 AM

# **Approximation Theory**

- Goal
  - Given f(x), we want to find a **numerical representation** p(x) s.t. f(x) p(x) is small
  - $\circ$  In this case we can store the function f using **finite number of coefficients**
- How to find p(x)
  - o Local methods
    - Spline interpolation (using piecewise polynomial)
      - □ Finite difference method
      - □ Finite element method
    - Padé approximation (using rational function)
  - Global methods
    - Orthogonal polynomial
    - Fourier approximation (using sin and cos)
- How to quantize the approximation

$$\circ L_{\infty}: \sup_{x \in [a,b]} |f(x) - p(x)|$$

$$\circ L_2: \sqrt{\int_a^b |f(x) - p(x)|^2 dx}$$
 (numerically easier to compute)

# Main Questions about Polynomial Approximation

- Why can we use a polynomial g(x) to approximate a complex function f(x)?
  - Weierstrass Approximation Theorem
  - Best approximation theory
- How to do the polynomial approximation
  - Projection
  - Interpolation
- How to analyze the approximation error

# Weierstrass Approximation Theorem

- · General idea
  - We can use a polynomial p(x) to approximate  $f \in C[a, b]$  with  $|f| \leq M$
- Theorem
  - Suppose  $f \in C[a, b]$  and  $|f| \leq M$
  - $\circ \ \forall \varepsilon > 0, \exists p \in \mathbb{P} \text{ s.t. } ||f(x) p(x)||_{\infty} = \sup_{x \in [a,b]} |f(x) p(x)| < \varepsilon$
- Review: Gaussian distribution

$$\circ x \mapsto \int_{-\infty}^{\infty} \frac{1}{h\sqrt{\pi}} \exp\left(-\frac{(u-x)^2}{h^2}\right) du$$



- The standard deviation  $\sigma = \frac{h}{\sqrt{2}}$  is controlled by h
- The function **decays very fast when** *x* **is far from** *u*
- Define a new function  $S_h f(x)$

$$\circ S_h f(x) := \frac{1}{h\sqrt{\pi}} \int_{-\infty}^{\infty} f(u) \exp\left(-\frac{(u-x)^2}{h^2}\right) du$$

- Note: Each point of  $S_h f(x)$  is a local approximation of f(x) with Gaussian weight
- $S_h f(x)$  is a good approximation

• Since 
$$\frac{1}{h\sqrt{\pi}}\int_{-\infty}^{\infty}\exp\left(-\frac{(u-x)^2}{h^2}\right)du=1$$
, we can write  $f$  as

$$f(x) = \frac{1}{h\sqrt{\pi}} \int_{-\infty}^{\infty} f(x) \exp\left(-\frac{(u-x)^2}{h^2}\right) du$$

$$\circ \operatorname{So} |S_h f(x) - f(x)| = \frac{1}{h\sqrt{\pi}} \int_{-\infty}^{\infty} |f(u) - f(x)| \exp\left(-\frac{(u - x)^2}{h^2}\right) du = A + B, \text{ where}$$

$$A := \frac{1}{h\sqrt{\pi}} \int_{|x-u| < \delta} \underbrace{|f(u) - f(x)|}_{\leq 2M} \exp\left(-\frac{(u-x)^2}{h^2}\right) du$$

$$\leq \frac{1}{h\sqrt{\pi}} 2M \int_{|x-u| < \delta} \underbrace{\exp\left(-\frac{(u-x)^2}{h^2}\right)}_{\leq 1} du$$

$$< \frac{1}{h\sqrt{\pi}} 2M \underbrace{\int_{|x-u|<\delta} du}_{2\delta}$$
$$= \frac{1}{h\sqrt{\pi}} 2M2\delta = \frac{4M}{\sqrt{\pi}} \frac{\delta}{h}$$

□ We can choose  $\delta$  small enough such that  $A \leq \frac{\varepsilon}{2}$ 

$$\bullet B := \frac{1}{h\sqrt{\pi}} \int_{|x-u| \ge \delta} |f(u) - f(x)| \exp\left(-\frac{(u-x)^2}{h^2}\right) du$$

$$\Rightarrow \exp\left(-\frac{(u-x)^2}{h^2}\right) \text{ decays very fast when } \frac{(u-x)^2}{h^2} \ge \frac{\delta^2}{h^2} \gg 1$$

 $\Box$  We can choose h small enough such that  $B \leq \frac{\varepsilon}{2}$ 

$$\circ \quad \text{Therefore } |S_h f(x) - f(x)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

• Apply Taylor expansion to  $S_h f(x)$ 

$$\circ \quad \text{Then } S_h f(x) = \frac{1}{h\sqrt{\pi}} \int_{-\infty}^{\infty} f(u) \underbrace{\sum_{n=0}^{N} (-1)^n \frac{(u-x)^{2n}}{n! \, h^{2n}}}_{\text{taylor expan, of exp term}} du + \varepsilon$$

$$Operation Define  $p(x) := \frac{1}{h\sqrt{\pi}} \int_a^b f(u) \sum_{n=0}^N (-1)^n \frac{(u-x)^{2n}}{n! h^{2n}} du$ , then  $|p(x) - f(x)| \le 2\varepsilon$$$

• *i.e.* The approximation error can be arbitrarily small

## **Best Approximation Theory**

- · General idea
  - There exists an N-th degree polynomial  $p^*$  that leads to an error curve  $p^* f$  oscillating back and forth between  $\varepsilon$  and  $-\varepsilon$ , a total of N+2 times, giving a worse-case error  $\varepsilon$
- Theorem
  - Suppose  $f \in C[a, b]$  and  $|f| \le M$

$$||f(x) - p^*(x)||_{\infty} < ||f(x) - q(x)||_{\infty}, \forall q \in \mathbb{P}_N$$

- Property of *p*\*
  - $E(x) = f(x) p^*(x)$  has N + 2 extremas  $(x_1, ..., x_{N+2})$
  - $|E(x_i)|$  are equal  $\forall i \in \{1, ..., N+2\}$
  - o E(x) has N+1 roots  $(y_1,...,y_{N+1}) \Leftrightarrow f(y_i) = p^*(y_i) \Leftrightarrow p^*(x)$  iterpolates f(x) at  $y_i$
- Remarks
  - The existence is **not numerically tractable**
  - o  $p^*(x)$  interpolates f(x) at N+1 points (unknowns)

# Lagrange Interpolation & Chebyshev Nodes

Wednesday, October 31, 2018 9:59 AM

### **Polynomial Interpolation**

- Assume we have information at N points of  $f: f(x_1), ..., f(x_N)$
- We look for a k-th order polynomial  $p_k(x) = a_0 + a_1 x + \cdots + a_k x^k$  to interpolate f(x)

$$\circ \begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_k x_1^k = f(x_1) \\ \vdots \\ a_0 + a_1 x_N + a_2 x_N^2 + \dots + a_k x_N^k = f(x_N) \end{cases}$$

$$\circ \quad \underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^k \end{bmatrix}}_{\check{X}} \underbrace{\begin{bmatrix} a_0 \\ \vdots \\ a_k \end{bmatrix}}_{\check{d}} = \underbrace{\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{bmatrix}}_{\check{f}}$$

- Relation between *N* and *k* 
  - $\circ$  If N = k + 1, then the equation is uniquely solvable:  $\vec{a} = X^{-1}\vec{f}$
  - o If N < k+1, then the equation has infinite solutions:  $\min \|\vec{a}\|_1$  s.t.  $X\vec{a} = \vec{f}$
  - $\circ$  If N > k + 1, then the equation has no exact solution: use least square fitting
- Property of Vandermonde matrix X
  - $cond(X) \gg 1 \Leftrightarrow X$  is ill-conditioned, so  $X^{-1}$  is inaccurate numerically
  - $\circ$  *i.e.* If there exists a small error in  $\vec{f}$ , it is magnified in  $\vec{a} = X^{-1}\vec{f}$

# Lagrange Interpolation

- Lagrange polynomial
  - o Define (N-1)-th order polynomial  $l_j(x) \coloneqq \frac{\prod_{i \neq j} (x-x_i)}{\prod_{i \neq j} (x_j-x_i)}$  . Then

$$l_{j}(x_{i}) = \begin{cases} \frac{\prod_{i \neq j} (x_{i} - x_{i})}{\prod_{i \neq j} (x_{j} - x_{i})} = 0 & \text{for } i \neq j \\ \frac{\prod_{i \neq j} (x_{j} - x_{i})}{\prod_{i \neq j} (x_{i} - x_{i})} = 1 & \text{for } i = j \end{cases} \Rightarrow l_{j}(x_{i}) = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

o Define 
$$p(x) \coloneqq \sum_{i=1}^{N} f(x_i) l_i(x)$$
. Then

• 
$$p(x_j) = \sum_{i=1}^{N} f(x_i) l_i(x_j) = \sum_{i=1}^{N} f(x_i) \delta_{ij} = f(x_j), \forall j \in \{1, ..., N\}$$

- Therefore, *p* interpolate f at  $x_1, ..., x_N$
- Error analysis for Lagrange interpolation
  - Define the error function E(x) := f(x) p(x)

o Define the axillary function 
$$G_t(x) \coloneqq E(x) - \frac{\prod_{i=1}^N (x - x_i)}{\prod_{i=1}^N (t - x_i)} E(t)$$

o  $G_t(x)$  has (at least) N+1 zeros, since

• 
$$G_t(x_j) = E(x_j) - \frac{\prod_{i=1}^N (x_j - x_i)}{\prod_{i=1}^N (t - x_i)} E(t) = 0 - 0 \cdot E(t) = 0, \forall j \in \{1, ..., N\}$$

• 
$$G_t(t) = E(t) - \frac{\prod_{i=1}^{N} (t - x_i)}{\prod_{i=1}^{N} (t - x_i)} E(t) = E(t) - E(t) = 0$$

• Taking *N*-th derivaties of 
$$G_t$$
, we have  $G_t^{(N)}(x) = E^{(N)}(x) - \frac{N!}{\prod_{i=1}^N (t-x_i)} E(t)$ 

 $\circ$  By Rolle's Theorem,  $G_t^{(N)}$  has (at least) one zero

• If 
$$G_t^{(k)}(a) = G_t^{(k)}(b) = 0$$
, then  $\exists x \in (a, b)$  s.t.  $G_t^{(k+1)}(x) = 0$ 

• *i.e.* The number of zeros decrease by 1 each time we take the derivative

$$\circ \quad \text{Choose } \xi \in \mathbb{R} \text{ s. t. } G_t^{(N)}(\xi) = 0 \Leftrightarrow E^{(N)}(\xi) = \frac{N!}{\prod_{i=1}^N (t - x_i)} E(t)$$

$$\text{o Then } \frac{N!}{\prod_{i=1}^{N} (t - x_i)} E(t) = E^{(N)}(\xi) = f^{(N)}(\xi) - \underbrace{p^{(N)}(\xi)}_{\deg(p) < N} = f^{(N)}(\xi)$$

$$\circ \quad \text{Therefore, } E(t) = f^{(N)}(\xi) \frac{\prod_{i=1}^{N} (t - x_i)}{N!}$$

Remark

$$\circ \quad \text{If } f(x) \in \mathbb{P}_{N-1} \text{, then } f^{(N)}(\xi) = 0$$

$$\circ \text{ So, } E(t) = \underbrace{f^{(N)}(\xi)}_{0} \frac{\prod_{i=1}^{N} (t - x_i)}{N!} = 0, \forall t \in [a, b]$$

$$\circ i.e. \, \mathbf{p}(x) = \mathbf{f}(x), \forall x \in [a, b]$$

# Runge's Phenomenon and Chebyshev Nodes

Motivation

• From the previous analysis, we know that 
$$E(t) = \underbrace{\frac{f^N(\xi)}{N!}}_{\text{const}} \prod_{i=1}^{N} (t - x_i)$$

• In order to have a good approximation, we want 
$$\min_{\{x_i\}} \sup_{t \in [a,b]} \left| \prod_{i=1}^{N} (t-x_i) \right|$$

• But if we sample 
$$\{x_i\}$$
 evenly in  $[a,b]$ , then  $\sup_{t\in[a,b]}\left|\prod_{i=1}^{N}(t-x_i)\right|$  could be large

• Runge Phenomenon

 Equispaced interpolation with high degree polynomial may result in oscillation at the edges of interval



- Chebyshev grids
  - $\circ$  For interval [-1,1], we can pick the Chebyshev grids  $\left\{x_i=\cos heta_i\ \middle|\ heta_i=rac{i}{N}\pi
    ight\}$
  - $\circ$  So the distribution of  $x_i$  is **concentrated at the ending points** of the interval



# Polynomial Projection & Quadrature Method

Wednesday, October 31, 2018 9:59 AM

#### **Polynomial Projection**

- Goal
  - Let  $f \in \mathcal{C}^{\infty}[-1,1]$  be fixed, we look for  $p \in \mathbb{P}_N$  s.t. p is "closest" to f
- Relation with interpolation
  - Recall the equation we want to solve in polynomial interpolation

$$\circ \quad \underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^k \end{bmatrix}}_{\hat{X}} \underbrace{\begin{bmatrix} a_0 \\ \vdots \\ a_k \end{bmatrix}}_{\hat{a}} = \underbrace{\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{bmatrix}}_{\hat{f}}$$

- Each column of *X* is determined by the sample points  $x_1, x_2, ..., x_N$
- Each row of *X* is defined by the monomials  $1, x_i, x_i^2, ..., x_i^k$
- o In projection, we replace the monomial polynomials by orthogonal polynomials
- Analogy of projection in  $\mathbb{R}^3$ 
  - Let  $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ , then  $\vec{p} = v_1 \vec{i} + v_2 \vec{j}$  is the closest point to  $\vec{v}$  in the x-y plane
  - Let  $\vec{q} \in x$ -y plane be arbitrary, then

$$||\vec{v} - \vec{q}||_{2}^{2} = \langle \vec{v} - \vec{q}, \vec{v} - \vec{q} \rangle = \langle (\vec{v} - \vec{p}) + (\vec{p} - \vec{q}), (\vec{v} - \vec{p}) + (\vec{p} - \vec{q}) \rangle$$

$$= \underbrace{\langle \vec{v} - \vec{p}, \vec{v} - \vec{p} \rangle}_{||\vec{v} - \vec{p}||_{2}^{2}} + 2 \underbrace{\langle \vec{v} - \vec{p}, \vec{p} - \vec{q} \rangle}_{0} + \underbrace{\langle \vec{p} - \vec{q}, \vec{p} - \vec{q} \rangle}_{\geq 0} \geq ||\vec{v} - \vec{p}||_{2}^{2}$$

- Therefore  $\|\vec{v} \vec{p}\|_2 \le \|\vec{v} \vec{q}\|$ ,  $\forall \vec{q} \in x$ -y plane
- Polynomial projection
  - (1)  $\mathbb{P}_N$  is a subspace of  $\mathcal{C}^{\infty}$ 
    - Let  $p, q \in \mathbb{P}_N$ , then  $\alpha \cdot p(x) + \beta \cdot q(x) \in \mathbb{P}_N$
  - (2) Build a list of orthogonal polynomials  $\phi_0, \phi_1, ...$ 
    - See definition below
  - (3)  $\forall f \in \mathcal{C}^{\infty}[a, b], f(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \cdots$  for some constant  $c_0, c_1, \dots$ 
    - This is guaranteed by Weierstrass Approximation Theorem
  - (4) Then the **best approximation of** f in  $\mathbb{P}_N$  is  $p(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \cdots + c_N \phi_N(x)$ 
    - Let  $q \in \mathbb{P}_N$  be arbitrary, then

$$||f - q||_2 = \langle f - q, f - q \rangle = \langle (f - p) + (p - q), (f - p) + (p - q) \rangle$$

$$= \langle f - p, f - p \rangle + 2 \underbrace{\langle f - p, p - q \rangle}_{0} + \underbrace{\langle p - q, p - q \rangle}_{\geq 0}$$

$$> \langle f - p, f - p \rangle = ||f - p||_2$$

• This proves the optimality of p(x)

• Note: 
$$||g||_2 = \sqrt{\langle g, g \rangle} = \sqrt{\int_a^b g^2(x)w(x)dx}$$

## **Orthogonal Polynomials**

- Definition
  - Given an interval [a, b] and a weight function w(x) (used in function dot product)
  - **Orthogonal polynomials** sequence is a list of polynomials  $\{\phi_0, \phi_1, ..., \phi_N, ...\}$  *s.t.* 
    - $\deg \phi_i = i$

• 
$$\langle \phi_i, \phi_j \rangle_w = \int_a^b \phi_i(x) \phi_j(x) w(x) dx \begin{cases} = 0 & \text{if } i \neq j \\ \neq 0 & \text{if } i = j \end{cases}$$

- Moreover, if  $\langle \phi_i, \phi_j \rangle_w = \delta_{ij}$ , then  $\{\phi_0, \phi_1, ..., \phi_N, ...\}$  is said to be **orthonormal**
- Recurrence relation of orthonormal polynomials

$$\circ \quad \phi_{m+1} = (\alpha_m x + \beta_m) \phi_m + \gamma_m \phi_{m-1} \text{ where } \alpha_m, \beta_m, \gamma_m \in \mathbb{R}$$

- $\circ$  On the LHS,  $\phi_{m+1}$  has (m+2) degrees of freedom, so we need (m+2) contraints
  - $\langle \phi_{m+1}, \phi_{m+1} \rangle = 1$

• 
$$\langle \phi_{m+1}, \phi_i \rangle = 0, \forall i \in \{0, ..., n-1\}$$

- However on the RHS,  $(\alpha_m x + \beta_m)\phi_m + \gamma_m \phi_{m-1}$  has only 3 degrees of freedom
- o Only the first 3 constraints will be used, and the rest will be automatically satisfied

• For 
$$i \le m-2$$
,  $\langle \phi_{m+1}, \phi_i \rangle = \alpha_m$   $\underbrace{\langle x \phi_m, \phi_i \rangle}_0 + \beta_m$   $\underbrace{\langle \phi_m, \phi_i \rangle}_0 + \gamma_m$   $\underbrace{\langle \phi_{m-1}, \phi_i \rangle}_0 = 0$ 

- Note:  $\langle x\phi_m, \phi_i \rangle = \langle \phi_m, x\phi_i \rangle$  where  $x\phi_i \in \text{span}\{\phi_0, ..., \phi_{m-1}\} \perp \phi_m$
- $\text{o In order to determine } \alpha_m, \beta_m, \gamma_m, \text{ we only need to solve } \begin{cases} \langle \phi_{m+1}, \phi_{m+1} \rangle = 1 \\ \langle \phi_{m+1}, \phi_m \rangle = 0 \\ \langle \phi_{m+1}, \phi_{m-1} \rangle = 0 \end{cases}$
- Examples of orthogonal polynomials

| Name      | Domain             | Weight Function                   | Recurrence Relation                                                 |
|-----------|--------------------|-----------------------------------|---------------------------------------------------------------------|
| Legendre  | [-1,1]             | $w(x) = \frac{1}{2}$              | $\phi_{n+1} = \frac{2n+1}{n+1} x \phi_n - \frac{n}{n+1} \phi_{n-1}$ |
| Chebyshev | [-1,1]             | $w(x) = \frac{1}{\sqrt{1 - x^2}}$ | $T_{n+1} = 2xT_n - T_{n-1}$                                         |
| Hermite   | $(-\infty,\infty)$ | $w(x) = e^{-x^2}$                 | $H_{n+1} = xH_n - nH_{n-1}$                                         |

## **Gauss Quadratures**

- Definition
  - $\circ$  The **roots of**  $\phi_m$  are called **Gauss quadratures** for  $\phi_m$
- $\phi_m$  has m Gauss quadratures
  - $\circ$   $\phi_0$  is a constant not equal to 0, so it has no root
  - $\circ \phi_1$  has a zero in [a, b]
    - Assume  $\phi_1$  has no zero in [a, b]. WLOG, assume  $\phi_1(x) > 0$ ,  $\forall x \in [a, b]$ . Then

• 
$$\langle \phi_1, \phi_0 \rangle = \int_a^b \underbrace{\phi_1(x)}_{>0} \underbrace{\phi_0(x)}_{>0} \underbrace{w(x)}_{>0} dx > 0$$
, which contradicts  $\langle \phi_1, \phi_0 \rangle = \delta_{0,1}$ 

- $\circ \phi_2$  has two roots in [a, b]
  - Assume  $\phi_2$  has only one root  $\xi$ , then  $(x \xi)\phi_2(x)$  is either all > 0 or < 0
  - WLOG, assume  $(x \xi)\phi_2(x) > 0$ ,  $\forall x \in [a, b]$ . Then

$$((x-\xi)\phi_2,\phi_0) = \int_a^b \underbrace{\phi_2(x)(x-\xi)}_{>0} \underbrace{\phi_0(x)}_{>0} \underbrace{w(x)}_{>0} dx > 0$$

- But  $\langle (x-\xi)\phi_2,\phi_0\rangle=\langle \phi_2,(x-\xi)\phi_0\rangle=0$ , since  $(x-\xi)\phi_0\in \operatorname{span}\{\phi_0,\phi_1\}\perp\phi_2$
- Therefore  $\phi_2$  has at least two roots
- Computing Gauss quadratures using recurrence relation
  - o Given the recurrence relation

• Define 
$$a_n = -\frac{\gamma_n}{\alpha_n}$$
,  $b_n = -\frac{\beta_n}{\alpha_n}$ ,  $c_n = \frac{1}{\alpha_n}$ , then we can rewrite the recurrence as

• 
$$x\phi_n = a_n\phi_{n-1} + b_n\phi_n + c_n\phi_{n+1}$$

Written in matrix form,

- For  $\phi_{n+1}(x) = 0$ , we have  $x\vec{\phi} = A\vec{\phi}$
- Therefore, Gauss quadratures are the eigenvalues of A

# Chebyshev Polynomials

• Chebyshev polynomials can be defiend using either one of the equations below

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), T_0 = 1, T_1 = x$$

- $\circ T_n(x) = \cos[n \cdot \arccos(x)]$
- Prove the equivalence
  - Define  $C_n(x) = \cos[n \cdot \arccos(x)]$
  - o Base case
    - $C_0 = \cos(0) = 1 = T_0$
    - $C_1 = \cos(\arccos(x)) = x = T_1$
  - Inductive step
    - Assume  $C_{n-1} = T_{n-1}$  and  $C_n = T_n$ , then we want to show that  $C_{n+1} = T_{n+1}$

• 
$$C_{n+1}(x) = \cos[(n+1)\arccos(x)]$$
  
=  $\cos[(n+1)\theta]$ , where  $\theta := \arccos(x) \Leftrightarrow x = \cos\theta$   
=  $\cos\theta\cos(n\theta) - \sin(n\theta)\sin\theta$ 

$$= 2\cos\theta\cos(n\theta) - (\cos\theta\cos(n\theta) + \sin(n\theta)\sin\theta)$$

$$= 2\cos\theta\cos(n\theta) - \cos[(n-1)\theta]$$

$$= 2x\cos(n\theta) - \cos[(n-1)\theta]$$

$$= 2x\cos(n\arccos x) - \cos[(n-1)\arccos(x)]$$

$$= 2xC_n(x) - C_{n-1}(x)$$

$$= 2xT_n(x) - T_{n-1}(x)$$

$$= T_{n+1}(x)$$

- By induction,  $C_n = T_n$ ,  $\forall n \in \mathbb{N}$
- o Thus two definitions are equivalent
- Find the recurrence matrix and zeros

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \Leftrightarrow xT_n(x) = \frac{1}{2} \left( T_{n+1}(x) + T_{n-1}(x) \right)$$

Written in matrix form, we have

$$\circ x \begin{bmatrix} T_0 \\ T_1 \\ \vdots \\ T_{n-1} \\ T_n \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 1/2 & 0 & 1/2 \\ & \ddots & \ddots & \ddots \\ & & 1/2 & 0 & 1/2 \\ & & & 1/2 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} T_0 \\ T_1 \\ \vdots \\ T_{n-1} \\ T_n \end{bmatrix}}_{T} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1/2 T_{n+1} \end{bmatrix}$$

$$\circ \quad T_{n+1} = 0 \Leftrightarrow x\vec{T} = A\vec{T} \Leftrightarrow \operatorname{zeros} \operatorname{of} T_{n+1}(x) = \operatorname{eig}(A)$$

# Using Numerical Integration to Compute the Projection Coefficients

Motivation

$$\circ \quad \text{In } \mathbb{R}^n, \text{given } \vec{v} \in \mathbb{R}^n, \vec{v} = \sum_{i=1}^n v_i \vec{e_i} = \sum_{i=1}^n \langle \vec{v}, \vec{e_i} \rangle \vec{e_i}$$

$$\circ \quad \text{Similarly, for } f \in \mathcal{C}^{\infty}[a,b], f = \sum_{i=0}^{+\infty} c_i \phi_i = \sum_{i=0}^{+\infty} \langle f, \phi_i \rangle \phi_i = \sum_{i=0}^{+\infty} \left[ \int_a^b f(x) \phi_i(x) w(x) dx \right] \phi_i$$

• But the integration 
$$c_i = \int_a^b f(x)\phi_i(x)w(x)dx$$
 is sometimes hard to perform

• We can **compute** 
$$\alpha_i = \sum_{i=0}^{J} f(x_k) \phi_i(x_k) w(x_k)$$
 for samples  $\{x_0, ..., x_J\}$  to **approximate**  $c_i$ 

Theorem

$$\circ$$
 If  $f \in \mathbb{P}_{2N+1}$ , then  $\int_a^b f(x)w(x)dx = \sum_{m=0}^N f(x_m)w_m$ , where

•  $\{x_0, ..., x_N\}$  are the **Gauss quadratures** of  $\phi_{N+1}$ , determined by w(x) and [a, b]

Proof

○ Case 1: When 
$$f \in \mathbb{P}_N$$

o 
$$f$$
 can be written as  $f(x) = \sum_{m=0}^{N} f(x_m) l_m(x)$ 

$$\begin{array}{ll}
\circ & \text{Then } \int_{a}^{b} f(x)w(x)dx = \int_{a}^{b} \left[ \sum_{m=0}^{N} f(x_{m}) l_{m}(x) \right] w(x)dx \\
&= \sum_{m=0}^{N} f(x_{m}) \left[ \int_{a}^{b} l_{m}(x)w(x)dx \right] = \sum_{m=0}^{N} f(x_{m}) w_{m}
\end{array}$$

○ Case 2: When  $f \in \mathbb{P}_{2N+1} \setminus \mathbb{P}_N$ 

• Define 
$$p(x) \coloneqq \sum_{m=0}^{N} f(x_m) l_m(x)$$
, then  $p \in \mathbb{P}_N$ 

○ Define 
$$r(x) := f(x) - p(x) \in \mathbb{P}_{2N+1}$$
, then  $r(x_m) = 0, \forall m \in \{0, ..., N\}$ 

• Therefore, we can write 
$$r$$
 as  $r(x) = q(x) \prod_{m=0}^{N} (x - x_m)$ , for some  $q \in \mathbb{P}_N$ 

• Thus, 
$$\int_{a}^{b} f(x)w(x)dx = \int_{a}^{b} p(x)w(x)dx = \int_{a}^{b} \left[\sum_{m=0}^{N} f(x_{m})l_{m}(x)\right]w(x)dx$$

$$= \sum_{m=0}^{N} f(x_{m})\left[\int_{a}^{b} l_{m}(x)w(x)dx\right] = \sum_{m=0}^{N} f(x_{m})w_{m}$$

- Corollary
  - $\circ$  For  $f \in \mathbb{P}_{N+1}$ , the projection **coefficients**  $c_i$  is **equal** to the numerical **apprixmation**  $\alpha_i$

$$\circ \text{ Since } c_i = \langle f, \phi_i \rangle = \int_a^b \underbrace{f(x)\phi_i(x)}_{\in \mathbb{P}_{2N+1}} w(x) dx = \sum_{k=0}^N f(x_k)\phi_i(x) w_k = \alpha_i, \forall i \in \{0, \dots, n\}$$

## Summary and Error Analysis for Polynomial Projection

- Let  $\{\phi_0,\phi_1,\phi_3,...\}$  be a list of orthogonal polynomials
- Given  $f \in \mathcal{C}^{\infty}[a,b]$ , it can be written as  $f(x) = \sum_{n=0}^{+\infty} c_n \phi_n(x)$ , for some constants  $c_n \in \mathbb{R}$
- We first **project** f to  $\mathbb{P}_N$  by **truncating** the summation to N

$$\circ f(x) \approx p(x) = \sum_{n=0}^{N} c_n \phi_n(x) \text{ with error} = \sum_{n=N+1}^{+\infty} c_n \phi_n(x)$$

- By regularization theory, if  $f \in C^{\nu}[a, b]$ , then  $c_n = O(n^{-\nu})$
- Therefore for  $\{c_{N+1}, c_{N+2}, ...\}$ ,  $c_i = O(n^{-\nu}) \lesssim c_N = O(N^{-\nu})$  is small
- Since  $c_n$  is hard to obtain directly, we use  $\alpha_n$  to **approximate** them by numerical integration

$$\circ \quad p(x) \approx \tilde{p}(x) = \sum_{n=0}^{N} \alpha_n \phi_n(x) \text{ with error} \sim (\alpha_n - c_n) \text{ for } f \notin \mathbb{P}_{N+1}$$

$$\alpha_n = \sum_{k=0}^{N} f(x_k) \phi_n(x_k) w_k$$
, by numerical integration

$$= \sum_{k=0}^{N} \left[ \left( \sum_{m=0}^{+\infty} c_m \phi_m(x_k) \right) \phi_n(x_k) w_k \right], \text{ by substituting } f$$

$$= \sum_{m=0}^{+\infty} \left[ c_m \sum_{k=0}^{N} \phi_n(x_k) \phi_m(x_k) w_k \right]$$

$$=\sum_{m=0}^{N}\left[c_{m}\sum_{k=0}^{N}\underbrace{\phi_{n}(x_{k})\phi_{m}(x_{k})}_{\in\mathbb{P}_{2N}\subseteq\mathbb{P}_{2N+1}}w_{k}\right]+\sum_{m=N+1}^{+\infty}\left[c_{m}\sum_{k=0}^{N}\phi_{n}(x_{k})\phi_{m}(x_{k})w_{k}\right]$$

$$= \sum_{m=0}^{N} \left[ c_m \int_{a}^{b} \phi_n(x) \phi_m(x) w(x) dx \right] + \sum_{m=N+1}^{+\infty} \left[ c_m \sum_{k=0}^{N} \phi_n(x_k) \phi_m(x_k) w_k \right]$$

$$= \sum_{m=0}^{N} c_{m} \delta_{mn} + \sum_{m=N+1}^{+\infty} \left[ c_{m} \sum_{k=0}^{N} \phi_{n}(x_{k}) \phi_{m}(x_{k}) w_{k} \right]$$

$$= c_n + \sum_{\substack{m=N+1 \ O(N^{-\nu}) \ll 1}}^{+\infty} k_m c_m, \text{ where } k_m = \sum_{k=0}^{N} \phi_n(x_k) \phi_m(x_k) w_k \text{ is a constant}$$

• Therefore  $\alpha_n - c_n = O(N^{-\nu})$  is small

## Relation with Polynomial Interpolation

- Recall polynomial interpolation
  - Given f, we want to find  $p(x) = \sum_{n=0}^{N} a_n x^n$  such that  $p(x_k) = f(x_k), \forall k \in \{0, ..., N\}$

$$\circ \quad \text{Then we want to solve} \underbrace{ \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^N \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^N \end{bmatrix}}_{\hat{X}} \underbrace{ \begin{bmatrix} a_0 \\ \vdots \\ a_N \end{bmatrix}}_{\hat{a}} = \underbrace{ \begin{bmatrix} f(x_0) \\ \vdots \\ f(x_N) \end{bmatrix}}_{\hat{f}} \text{ for } \vec{a}$$

- $\circ$  Since the X is ill-conditioned, computing  $\vec{a} = X^{-1}\vec{f}$  will result in large numeric error
- How to design the matrix *X* so its condition number is minimized
  - $\circ$  We can replace the monomials by orthonormal polynomials  $\{\phi_0, \dots, \phi_N\}$
  - And choose the Gauss quadratures of  $\phi_{N+1}$  to be the sample points  $\{x_0, ..., x_N\}$

• In this case, A is almost unitary and  $cond(A) \approx 1$ 

### • Proof

• Let 
$$W = \text{diag}(w_0, ..., w_N)$$
, where  $w_k = \int_a^b l_k(x)w(x)dx$ . Then  $A^TWA = I$ , since

$$\circ [A^TWA]_{mn} = \sum_{k=0}^N \underbrace{\phi_m(x_k)\phi_n(x_k)}_{\in \mathbb{P}_{m+n}\subseteq \mathbb{P}_{2N+1}} w_k = \int_a^b \phi_m(x)\phi_n(x)w(x)dx = \langle \phi_m, \phi \rangle = \delta_{mn}$$

• Therefore *A* is almost unitary and cond(*A*) 
$$\approx \frac{\max\{w_i\}}{\min\{w_i\}} \approx 1$$

# **Integration Rules & Undetermined Coefficients**

Wednesday, November 7, 2018 4:

4:12 AM

## **Composite Integration Rules**

- Introduction
  - We divide [a, b] into N intervals  $\{x_0, ..., x_N\}$ , where  $x_k = a + k\Delta x$  and  $\Delta x = \frac{b a}{N}$
  - Then  $\int_a^b f(x) = \sum_{k=0}^{N-1} \int_{x_k}^{x_{k+1}} f(x) dx$ , and we can use polynomials to approximate  $\int_{x_k}^{x_{k+1}} f(x) dx$
- Methods

| Rule        | Type of Function    | Polynomial used in $[x_k, x_{k+1}]$                                   | Error           |
|-------------|---------------------|-----------------------------------------------------------------------|-----------------|
| Midpoint    | piecewise constant  | $p(x) = f\left(\frac{x_k + x_{k+1}}{2}\right)$                        | $O(\Delta x^2)$ |
| Trapezoidal | piecewise linear    | $p(x) = f(x_k) + \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k} (x - x_k)$ | $O(\Delta x^2)$ |
| Simpson's   | piecewise quadratic |                                                                       | $O(\Delta x^4)$ |

- In general, for piecewise **polynomial with order 2**i + **1 or 2**i, the **error term is**  $O(\Delta x^{2i+2})$
- · Error analysis
  - For  $f \in C^{\nu}[a,b]$ ,  $\int_a^b f(x) dx \sum_{i=0}^N f(x_i) w_i = O(N^{-\nu})$ , so the error decrease as N increase

# Trapezoidal Rule

- Procedure
  - o For interval  $[x_k, x_{k+1}]$ , we look for a **linear polynomial** p that interpolates f at  $x_k$  and  $x_{k+1}$

• Integrate p in the interval  $[x_k, x_{k+1}]$ , then

o Summing up all intervals, we have

- Note that f(a) and f(b) have weight  $\frac{1}{2}$ , and  $f(x_1), ..., f(x_{N-1})$  have weight 1
- · Error analysis
  - Recall the error analysis in interpolation

■ If 
$$p \in \mathbb{P}_N$$
 interpolates  $f$  at  $\{x_0, ..., x_N\}$ , then  $f(x) - p(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{i=0}^{N} (x - x_i)$ 

○ In the interval  $[x_k, x_{k+1}]$ :

• Since 
$$p \in \mathbb{P}_1$$
 interpolates  $f$  at  $\{x_k, x_{k+1}\}, f(x) - p(x) = \frac{1}{2}f''(\xi_x)(x - x_k)(x - x_{k+1})$ 

• After integration, 
$$\int_{x_k}^{x_{k+1}} f(x) dx - \int_{x_k}^{x_{k+1}} p(x) dx = \frac{1}{2} \int_{x_k}^{x_{k+1}} f''(\xi_x) (x - x_k) (x - x_{k+1}) dx$$

- Recall the Mean Value Theorem for Integrals
  - □ If  $f \in C^{\infty}[a, b]$ , and g is an integrable function that **does not change sign** on [a, b]

$$\Box \text{ Then } \int_{a}^{b} f(x)g(x)dx = f(\eta) \int_{a}^{b} g(x)dx \text{ for some } \eta \in [a,b]$$

■ Define 
$$E_k := \int_{x_k}^{x_{k+1}} f(x) dx - \int_{x_k}^{x_{k+1}} p(x) dx = \underbrace{\frac{f''(\eta)}{2}}_{\text{const.}} \underbrace{\int_{x_k}^{x_{k+1}} (x - x_k)(x - x_{k+1}) dx}_{O(\Delta x^3)} = O(\Delta x^3)$$

• Therefore, the error over the entire interval is 
$$\int_a^b f(x)dx - \int_a^b p(x)dx = \sum_{k=0}^{N-1} E_k = O((b-a)\Delta x^2)$$

- When *N* increases,  $\Delta x$  decreases, so does the error
- Summary
  - We divide [a, b] into  $\{x_0, ..., x_N\}$ , and approximate f by a linear function p in each  $[x_k, x_{k+1}]$

$$\text{o In each interval } [x_k, x_{k+1}], \int_{x_k}^{x_{k+1}} f(x) dx \overset{o(\Delta x^3)}{\approx} \int_{x_k}^{x_{k+1}} p(x) dx = \frac{\Delta x}{2} (f(x_k) + f(x_{k+1}))$$

• For the entire interval, 
$$\int_{a}^{b} f(x) dx \stackrel{O(\Delta x^{2})}{\approx} \int_{a}^{b} p(x) dx = \frac{\Delta x}{2} \left[ f(a) + 2 \sum_{k=1}^{N-1} f(x_{k}) + f(b) \right]$$



## Midpoint Rule

• In  $[x_k, x_{k+1}]$ , we use the **constant function**  $p(x) = f(x_{k+1/2}) := f\left(\frac{x_k + x_{k+1}}{2}\right)$  to approximate f

$$\circ \int_{x_k}^{x_{k+1}} f(x) dx \approx \int_{x_k}^{x_{k+1}} p(x) dx = f(x_{k+1/2}) \Delta x$$

• Then the approximation for the entire interval [a, b] is

$$\circ \int_{a}^{b} f(x) dx = \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} f(x) dx \approx \sum_{k=0}^{N-1} f(x_{k+1/2}) \Delta x = \Delta x \left( f(x_{1/2}) + f(x_{3/2}) + \dots + f(x_{N-1/2}) \right)$$

- (Invalid) Error analysis using Mean Value Theorem
  - Recall the error formula in interpolation:  $f(x) p(x) = \frac{f^{(N+1)}(\xi)}{N!} \prod_{i=0}^{N} (x x_i)$
  - In the case of midpoint rule, we have N=1, so  $f(x)-p(x)=f'(\xi)\big(x-x_{k+1/2}\big)$

$$\circ \quad \text{After integration,} \int_{x_k}^{x_{k+1}} f(x) dx - \int_{x_k}^{x_{k+1}} p(x) dx = \int_{x_k}^{x_{k+1}} f'(\xi) \big( x - x_{k+1/2} \big) dx$$

- But the equal sign does not hold, since MVT requires g(x) > 0 or  $g(x) < 0, \forall x \in [a, b]$
- Error analysis using Taylor expansion

• By Taylor expansion, 
$$f(x) = f(x_{k+1/2}) + f'(x_{k+1/2})(x - x_{k+1/2}) + \frac{1}{2}f''(x_{k+1/2})(x - x_{k+1/2})^2 \cdots$$

$$\int_{x_{k}}^{x_{k+1}} f(x)dx - \int_{x_{k}}^{x_{k+1}} p(x)dx = \int_{x_{k}}^{x_{k+1}} [f(x) - p(x)]dx$$

$$= \int_{x_{k}}^{x_{k+1}} \left[ \underbrace{f(x_{k+1/2}) + f'(x_{k+1/2})(x - x_{k+1/2}) + \frac{1}{2} f''(x_{k+1/2})(x - x_{k+1/2})^{2} + \dots - p(x) \right] dx$$

$$= \int_{x_{k}}^{x_{k+1}} \left[ f'(x_{k+1/2})(x - x_{k+1/2}) + \frac{1}{2} f''(x_{k+1/2})(x - x_{k+1/2})^{2} \dots \right] dx$$

$$= f'(x_{k+1/2}) \underbrace{\int_{x_{k}}^{x_{k+1}} (x - x_{k+1/2}) dx}_{0} + \underbrace{\frac{1}{2} f''(x_{k+1/2}) \int_{x_{k}}^{x_{k+1}} (x - x_{k+1/2})^{2} dx + \dots}_{0} \underbrace{\int_{x_{k}}^{x_{k+1}} (x - x_{k+1/2})^{2} dx + \dots}_{0}$$

• So in each interval 
$$[x_k, x_{k+1}]$$
,  $\int_{x_k}^{x_{k+1}} f(x) dx \stackrel{o(\Delta x^3)}{\approx} \int_{x_k}^{x_{k+1}} p(x) dx$ 

$$\circ \int_{a}^{b} f(x)dx = \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} f(x)dx \overset{\mathbf{0}(\Delta x^{2})}{\approx} \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} p(x)dx = \Delta x [f(x_{1/2}) + f(x_{3/2}) + \dots + f(x_{N-1/2})]$$



Simpson's Rule

- We divide [a, b] to even number of intervals  $\{x_0, ..., x_{2N}\}$ , where  $x_k = a + k\Delta x$  and  $\Delta x = \frac{b-a}{2N}$
- For each  $[x_{2i}, x_{2i+2}]$ , we look for a **quadratic polynomial** p that interpolates f at  $x_{2i}, x_{2i+1}, x_{2i+2}$

$$\circ \int_{x_{2i}}^{x_{2i+2}} f(x) dx \stackrel{O(\Delta x^5)}{\approx} \int_{x_{2i}}^{x_{2i+1}} p(x) dx \underbrace{\left( = \sum_{k} f(x_k) l_k(x) \right)}_{\text{Lagrange interpolation}} = \frac{\Delta x}{3} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})]$$

• Then the approximation over the entire domain [a, b] is

$$\circ \int_{a}^{b} f(x)dx \overset{O(\Delta x^{4})}{\approx} \frac{\Delta x}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N})]$$

• Note: f(a), f(b) get weight  $\frac{1}{3}$ , even terms get weight  $\frac{2}{3}$ , and odd terms get weight  $\frac{4}{3}$ 



# **Richardson Extrapolation**

• Introduction

$$\circ \quad \text{Let Tr}(f; N) = \Delta x \left[ \frac{f(a)}{2} + \sum_{k=1}^{N-1} f(x_k) + \frac{f(b)}{2} \right] \text{ be the trapezoidal integration of } f \text{ with } N \text{ intervals}$$

• The error of Tr(f; N) is

$$E^{(N)} = \int_{a}^{b} f(x)dx - \text{Tr}(f;N) = \sum_{k=0}^{N-1} E_{k} = c \sum_{k=0}^{N-1} f''(\eta_{i}) \Delta x^{3} = c \underbrace{\left[ \sum_{k=0}^{N-1} f''(\eta_{i}) \Delta x \right]}_{\approx \sum f'(x_{i+1}) - f'(x_{i})} \Delta x^{2}$$

$$= c \Delta x^{2} [f'(x_{1}) - f'(x_{0}) + f'(x_{2}) - f'(x_{1}) + \cdots f(x_{N}) - f(x_{N-1})] + O(\Delta x^{4})$$

$$= c \Delta x^{2} [f'(b) - f'(a)] + O(\Delta x^{4})$$

• The error of Tr(f; 2N) is

• 
$$E^{(2N)} = c \left(\frac{\Delta x}{2}\right)^2 [f'(b) - f'(a)] + O(\Delta x^4) = \frac{c}{4} \Delta x^2 [f'(b) - f'(a)] + O(\Delta x^4)$$

• Comparing  $E^{(N)}$  and  $E^{(2N)}$ , we have

• 
$$E^{(2N)} = \frac{1}{4}E^{(N)} + O(\Delta x^4)$$

$$\left( \int_{a}^{b} f(x)dx - \operatorname{Tr}(f; 2N) \right) = \frac{1}{4} \left( \int_{a}^{b} f(x)dx - \operatorname{Tr}(f; N) \right) + O(\Delta x^{4})$$

$$\int_{a}^{b} f(x)dx = \frac{1}{3} \left( 4\operatorname{Tr}(f; 2N) - \operatorname{Tr}(f; N) \right) + O(\Delta x^{4})$$

- Summary
  - Do trapezoidal for N + 1 points
  - Do trapezoidal for 2N + 1 points
  - Compute  $\frac{1}{3}(4\operatorname{Tr}(f;2N)-\operatorname{Tr}(f;N))$
- o Note: Richardson extrapolation also extends the accuracy to higher orders

#### **Undetermined Coefficients Method**

- Introduction
  - For  $f \in \mathbb{P}_{2N+1}$ , if we know  $f(x_0), \dots, f(x_N)$ , then  $\int_a^b f(x) = \sum_{i=0}^N f(x_i) w_i$
  - For f of higher degrees, how can we choose  $\{x_0, ..., x_N\}$  to have the best accuracy?
  - o On the right hand side,  $x_i$  and  $w_i$  each contributes for N+1 degress of freedom
  - We can **solve for the coefficients**  $x_i$  **and**  $w_i$  to obtain approximation with error  $O(x^{2N})$
- Example

• Compute 
$$\int_{-1}^{1} f(x)dx = w_1 f(x_1) + w_2 f(x_2)$$
 for the following  $f$ 

• If 
$$f(x) = 1$$
, then  $2 = w_0 + w_1$ 

• If 
$$f(x) = x$$
, then  $0 = x_0 w_0 + x_1 w_1$ 

• If 
$$f(x) = x^2$$
, then  $\frac{2}{3} = x_0^2 w_0 + x_1^2 w_1$ 

• If 
$$f(x) = x^3$$
, then  $0 = x_0^3 w_0 + x_1^3 w_1$ 

o Solving the system of equations above, we have

$$\begin{cases} w_0 + w_1 = 2 \\ x_0 w_0 + x_1 w_1 = 0 \\ x_0^2 w_0 + x_1^2 w_1 = \frac{2}{3} \end{cases} \Rightarrow \begin{cases} w_0 = 1 \\ x_0 = -\frac{1}{\sqrt{3}}, \begin{cases} w_1 = 1 \\ x_1 = \frac{1}{\sqrt{3}} \end{cases} \end{cases}$$

$$\circ \quad \text{Therefore, } \int_{-1}^{1} f(x) \, dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) \text{ for } f \in \mathbb{P}_{3}$$

# Review for Approximation & Integration

Monday, November 12, 2018 10:52 AM

### Polynomial Interpolation

- Goal
  - Given N+1 grid points  $\{x_0, ..., x_N\}$  and their evaluation  $\{f(x_0), ..., f(x_N)\}$
  - We look for  $p(x) = a_0 + a_1 ... + a_N x^N \in \mathbb{P}_N$  s.t.  $p(x_i) = f(x_i), \forall i \in \{0, ..., N\}$
- Method 1: Directly compute the coefficients (numerically inaccurate)

$$\circ \underbrace{ \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^N \\ 1 & x_1 & x_1^2 & \cdots & x_1^N \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^N \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix}}_{\vec{a}} = \underbrace{ \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_N) \end{bmatrix}}_{\vec{f}}$$

- If matrix A is not singular, then we have a **unique solution for**  $\vec{a}$
- But since *A* is Vandermonde matrix, it is **ill-conditioned**
- So solving  $A\vec{a} = \vec{f}$  directly will result in large numeric error in  $\vec{a}$
- Method 2: Lagrange interpolation
  - For each sample point  $x_k$ , define  $l_i(x) := \prod_{\substack{j=0 \ i \neq k}}^n \frac{x x_j}{x_i x_j}$ , then  $l_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
  - o Define  $p(x) := \sum_{i=1}^{N} f(x_i) l_i(x)$ , then  $p(x_i) = f(x_i)$ ,  $\forall i \in \{0, ..., N\}$
- Example of Lagrange interpolation
  - o Given  $\{x_0 = -1.5, x_1 = -0.5, x_2 = 0.5, x_3 = 1.5\}$ , find the explicit formula for  $l_0$

$$0 \quad l_0 = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} \cdot \frac{x - x_3}{x_0 - x_3} = -\frac{1}{6}(x + 0.5)(x - 0.5)(x - 1.5)$$

• Error analysis

$$\circ E(x) = f(x) - p(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{i=0}^{N} (x - x_i) \text{ for some } \xi \in \mathbb{R}$$

 $\circ$  For  $f \in \mathbb{P}_N$ 

• 
$$f^{(N+1)}(\xi) = 0 \Rightarrow E(x) = 0 \Rightarrow f(x) = p(x), \forall x$$

o Example

• Let 
$$f(x) = 1$$
, then  $1 = f(x) = p(x) = \sum_{i=0}^{N} f(x_i)l_i(x) = \sum_{i=0}^{N} l_i(x)$ 

o For 
$$f(x) = x^{N+1} + c_N x^N + \dots + c_0 \in \mathbb{P}_{N+1}$$

• 
$$f^{(N+1)}(\xi) = (n+1)! \Rightarrow E(x) = \prod_{i=0}^{N} (x - x_i)$$

$$\Rightarrow f(x) = E(x) + p(x) = \prod_{i=0}^{N} (x - x_i) + \sum_{i=0}^{n} f(x_i) l_i(x)$$

o Example

• Let 
$$f(x) = (x-1)^{N+1}$$
, then  $\sum_{i=0}^{N} f(x_i)l_i(x) = f(x) - \prod_{i=0}^{N} (x-x_i)$ 

• Evaluate both sides at x = 0, then

$$\sum_{i=0}^{N} (x-1)^{N+1} l_i(0) = (0-1)^{N+1} - \prod_{i=0}^{N} (0-x_i) = (-1)^{N+1} \left[ 1 - \prod_{i=0}^{N} x_i \right]$$

· Chebyshev nodes

$$\circ \min_{\{x_i\}} \sup_{x \in [a,b]} \left| \prod_{i=1}^{N} (x - x_i) \right| \Rightarrow x_k = \cos \theta_k \text{, where } \theta_k = k \frac{\pi}{N}$$

#### **Polynomial Projection**

- Goal
  - Given  $f \in \mathcal{C}^{\infty}$ , we look for  $p \in \mathbb{P}_N$  s.t. **p** best approximate f in  $L^2$
- Orthonormal polynomials
  - Given domain [a, b] and weight function w(x) > 0
  - $\{\phi_k\}_{k=0}^{+\infty}$  is said to be a sequence of **orthonormal polynomials** if

o 
$$\deg \phi_i = i$$
 and  $\langle \phi_m, \phi_n \rangle = \int_a^b \phi_m(x) \phi_n(x) w(x) dx = \delta_{mn} = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}$ 

- Properties of orthogonal polynomials
  - o Recurrence relation
    - $\phi_{N+1} = (\alpha_N x + \beta_N)\phi_N + \gamma_N \phi_{N-1}$  for some  $\alpha_N, \beta_N, \gamma_N \in \mathbb{R}$
    - $\begin{tabular}{l} \blacksquare & \begin{tabular}{l} \textbf{The coefficients are determined by } & \begin{tabular}{l} \langle \phi_{N+1}, \phi_{N+1} \rangle = 1 \\ \langle \phi_{N+1}, \phi_N \rangle = 0 \\ \langle \phi_{N+1}, \phi_{N-1} \rangle = 0 \\ \end{tabular}$
    - Then  $\phi_{N+1} \perp \phi_{N-2}, ..., \phi_0$  is satisfied automatically
  - $\circ \phi_N$  has N zeros called **Gauss quadratures**
  - $eig(A) = Gauss quadratures of \phi_{N+1}$

• 
$$\phi_{n+1}(x) = 0 \Leftrightarrow x\overrightarrow{\phi} = A\overrightarrow{\phi}$$
, so  $\operatorname{eig}(A) = \operatorname{GQ}(\phi_{n+1})$ 

• Example: Hermite polynomials

○ Hermite polynomials 
$$\{H_0, H_1, ...\}$$
 are defined on  $(-\infty, \infty)$  with weight  $w = \frac{1}{\sqrt{\pi}}e^{-x^2}$ 

o Given 
$$H_0 = 1$$
,  $H_1 = \sqrt{2}x$ ,  $H_2 = \frac{1}{\sqrt{8}}(4x^2 - 2)$ 

$$\int_{-\infty}^{\infty} 2x^2 e^{-x^2} dx = \sqrt{\pi} \int H_1^2(x) \frac{1}{\sqrt{\pi}} e^{-x^2} dx = \sqrt{\pi} \langle H_1, H_1 \rangle = \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} (4x^2 - 2x - 2)e^{-x^2} dx = \int_{-\infty}^{\infty} (\sqrt{8}H_2H_0 - \sqrt{2}H_1H_0)e^{-x^2} dx = 0$$

• Best approximation

• Given a function 
$$f(x) = \sum_{k=0}^{+\infty} \alpha_k \phi_k(x)$$
, define the projection  $p(x) = \sum_{k=0}^{N} \alpha_k \phi_k(x)$ 

• Then p is the best approximation in  $L^2$  norm. Let  $q \in \mathbb{P}_N$  be arbitrary, then

$$||f - q||_2 = \langle f - q, f - q \rangle = \langle (f - p) + (p - q), (f - p) + (p - q) \rangle$$

$$= \langle f - p, f - p \rangle + 2 \underbrace{\langle f - p, p - q \rangle}_{0} + \underbrace{\langle p - q, p - q \rangle}_{\geq 0}$$

$$\geq \langle f - p, f - p \rangle = ||f - p||_2$$

$$\circ \text{ Note: } ||g||_2 = \sqrt{\langle g, g \rangle} = \sqrt{\int_a^b g^2(x) w(x) dx}$$

Coefficients approximation

$$p(x) = \sum_{k=0}^{N} \alpha_k \phi_k(x), \text{ but } \alpha_k \text{ is hard to compute, so we use } c_k \text{ to approximate it}$$

$$\circ \quad \alpha_k = \langle f, \phi_k \rangle = \int_a^b f(x)\phi_i(x)w(x)dx \approx \sum_{i=0}^N f(x_i)\phi_k(x_i)w_i = c_k, \text{ where }$$

• 
$$w_i = \int_a^b l_i(x)w(x) dx$$
 and  $\{x_0, ..., x_N\}$  are the Gauss Quadratures of  $\phi_{N+1}$ 

• Theorem: If 
$$f \in \mathbb{P}_{2N+1}$$
, then  $\int_a^b f(x)w(x)dx = \sum_{i=0}^N f(x_i)w_i$ , where

○ Corollary: If 
$$f \in \mathbb{P}_{N+1}$$
, then  $\alpha_k = c_k$ ,  $\forall k \in \{0, ..., N\}$ 

Error analysis

truncation

$$f(x) = \sum_{k=0}^{+\infty} \alpha_k \phi_k(x) \xrightarrow{\text{truncation}} p(x) = \sum_{k=0}^{N} \alpha_k \phi_k(x)$$

$$p(x) = \sum_{k=0}^{N} \alpha_k \phi_k(x) \xrightarrow{\text{numerical integration}} \tilde{p}(x) = \sum_{k=0}^{N} c_k \phi_k(x)$$

### **Numerical Integration**

• Trapezoidal rule

· Simpson's rule

$$\circ \int_{a}^{b} f(x)dx \approx h \left[ \frac{f(a)}{6} + \frac{4}{6}f(x_{1}) + \frac{2}{6}f(x_{2}) + \dots + \frac{f(b)}{6} \right]$$

Undetermined coefficients

$$\circ \int_{-1}^{1} f(x)dx \approx Af(x_0) + Bf(x_1)$$

 $\circ$  How can we choose A, B,  $x_0$ ,  $x_1$  s.t. the approximation is the best?

$$\circ \begin{cases}
2 = A + B & \text{if } f(x) = 1 \\
0 = Ax_0 + Bx_1 & \text{if } f(x) = x \\
2/3 = Ax_0^2 + Bx_1^2 & \text{if } f(x) = x^2 \\
0 = Ax_0^3 + Bx_1^3 & \text{if } f(x) = x^3
\end{cases}
\Rightarrow \begin{cases}
A = 1 \\
B = 1 \\
x_0 = -1/\sqrt{3} \\
x_1 = -1/\sqrt{3}
\end{cases}$$

# Ch 12: Numerical ODE

Friday, December 7, 2018

10:50 PM

## Introduction to Numerical ODE

Monday, November 12, 2018 10:36 AM

#### **Numerical ODE**

- Introduction
  - Given  $\begin{cases} y' = f(x) \\ y(a) = A \end{cases}$ , we can compute  $y(b) = A + \int_a^b f(x) dx$  by numerical integration
  - In numerical ODE, we are given  $\begin{cases} y' = f(x, y) \\ y(a) = A \end{cases}$  and want  $y(b) = y(a) + \int_a^b f(x, y) dx$
  - But for f(x, y), we don't know the exact value for parameter y
  - $\circ$  Instead, we can **take small steps in** x **and approximate**  $y_n \approx y(x_n)$  in each step
- Initial value problem
  - Given u'(t) = f(t, u) and initial condition  $u(t = 0) = u_0$ , we want to find u(t = T) for some T

# Reducing N<sup>th</sup> Order Non-Autonomous ODE

- Autonomous
  - If the force *f* has **no explicit dependence on** *t*, then we call the ODE **autonomous**
- System of first order autonomous ODE

$$\circ \underbrace{ \begin{bmatrix} u_1' \\ \vdots \\ u_n' \end{bmatrix}}_{\overrightarrow{u}'} = \underbrace{ \begin{bmatrix} f_1(u_1, \dots, u_n) \\ \vdots \\ f_n(u_1, \dots, u_n) \end{bmatrix}}_{\overrightarrow{f}(\overrightarrow{u})} \text{ with initial condition } \overrightarrow{u}(t=0) = \overrightarrow{u}_0 \coloneqq \begin{bmatrix} u_1(t=0) \\ \vdots \\ u_n(t=0) \end{bmatrix}$$

- Reducing to first order autonomous ODE
  - Given any **higher order, non-autonomous ODE**  $\vec{u}^{(n)} = f(t, u, u', ..., u^{(n-1)})$
  - We can **reduce it to first order autonomous ODE system**  $\begin{cases} \vec{u}' = \vec{f}(\vec{u}) \\ \vec{u}(t = 0) = \vec{u}_{in} \end{cases}$  and find  $\vec{u}(t)$
  - o Therefore numerically, we only study first order autonomous ODEs
- Example
  - $\circ \quad \text{We want to solve } u''' = u'u 2t(u')^2 \text{ with initial conditions } \begin{cases} u(t=0) = u_0 \\ u'(t=0) = u_1 \\ u''(t=0) = u_2 \end{cases}$
  - $\circ \ \ \operatorname{Define} \begin{cases} y_0(t) = u(t) \\ y_1(t) = u'(t), \text{ then we have } y_2' = y_0 y_1 2t y_1^2 \text{ with} \\ y_2(t) = u''(t) \end{cases} \begin{cases} y_0(t=0) = u_0 \\ y_1(t=0) = u_1 \\ y_2(t=0) = u_2 \end{cases}$
  - To reduce to an autonomous ODE system, define  $y_3(t) = t$
  - $\circ \text{ So we only need to solve} \underbrace{\begin{bmatrix} y_0' \\ y_1' \\ y_2' \\ y_3' \end{bmatrix}}_{\vec{y}'} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_0y_1 2y_3y_1^2 \\ 1 \end{bmatrix}}_{\vec{f}(\vec{y})} \text{ with initial condition } \vec{y}(t=0) = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ 1 \end{bmatrix}$

## Existence and Uniqueness of First Order ODE (Picard's Theorem)

• Different types of continuous

| Continuous at x*              | If $x \to x^*$ , then $ f(x) - f(x^*)  \to 0$                                                                                |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Lipschitz continuous at $x^*$ | $\exists L_{x^*} \in \mathbb{R} \text{ s.t. }  f(x) - f(x^*)  \le L_{x^*}  x - x^*  \text{ for } x \in B_{\varepsilon}(x^*)$ |  |
| Uniformly Lipschitz           | $L_{x^*}$ is bounded $\forall x^*$                                                                                           |  |

- Note: In the case of Lipschitz continuity, if  $f'(x^*)$  exists, then  $L_{x^*} = f'(x^*)$
- · Picard's Theorem
  - $\circ$  If f(u) is **uniformly Lipschitz**, then the equation has a **unique solution**
- Example 1
  - Given  $u' = u^2$  with initial condition  $u(t = 0) = \eta$
  - Here  $f(u) = u^2$  is not uniformly Lipschitz since  $L_u = |f'(u)| = 2u$  is not bounded
  - u has an explicit solution  $u(t) = \frac{\eta}{1 \eta t}$ , but it blows up at  $t = \frac{1}{\eta}$
- Example 2
  - Given  $u' = \sqrt{u}$  with initial condition u(t = 0) = 0
  - Since  $L_u = |f'(u)| = \frac{1}{2\sqrt{u}}$  does not exist at u = 0, f(u) is not uniformly Lipschitz
  - It turns out that there exist multiple solutions, such as  $u(t) = \frac{1}{4}t^2$  or u(t) = 0

## Three Key Concepts

- Consistency
  - Local truncation error measures how much the true solution fail to satisfy the scheme
  - $\circ$  If local truncation error  $au_n o 0$  as h o 0, then we say the method is **consistent**
- Stability
  - $\circ$  The error  $E_n=u(t_n)-U_n$  in each step should not be amplified in the future
- Convergence
  - We say a method **converges** if the numerical solution  $U_T \to u(t = T)$  as  $h \to 0$
  - Lax theorem says that for linear ODE, consistency and stability imply convergence

# **General Methodology**

- First approximate the differential operator by a difference operator using
  - o Finite difference method (Euler method, Trapezoidal rule, etc.)
  - Interpolation + differentiation
    - $p(x) := f(x_0)l_0(x) + f(x_0 + h)l_1(x) + f(x_0 + 2h)l_2(x)$ , then  $p'(x_0) \approx f'(x_0)$
- Then solve the resulting discrete system using
  - LU decomposition or QR decomposition (for linear system)
  - Newton's method (for non-linear system)

# Euler & Trapezoidal & Runge-Kutta

Friday, December 7, 2018 10:39 PM

#### **Euler's Method**

- Forward Euler method for  $f'(x_0)$ 
  - We look for a, b, c s.t.  $f'(x_0) \approx af(x_0) + bf(x_0 + h) + cf(x_0 + 2h)$  is best approximated

o By Taylor expansion, 
$$\begin{cases} f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{h^2}{2}f''(x_0) + \cdots \\ f(x_0 + 2h) = f(x_0) + f'(x_0)2h + \frac{(2h)^2}{2}f''(x_0) + \cdots \end{cases}$$

$$\circ f'(x_0) \approx af(x_0) + b \underbrace{\left[ f(x_0) + f'(x_0)h + \frac{h^2}{2}f''(x_0) \right]}_{f(x_0 + h)} + c \underbrace{\left[ f(x_0) + f'(x_0)2h + \frac{(2h)^2}{2}f''(x_0) \right]}_{f(x_0 + 2h)}$$

$$\circ \quad \text{The error term is } f'(x_0) - \left[ -\frac{3}{2h} f(x_0) + \frac{2}{h} f(x_0 + h) - \frac{1}{2h} f(x_0 + 2h) \right] = \mathcal{O}(h^2)$$

O Similarly, If we only take one step, then 
$$f'(x_0) - \underbrace{\left[ -\frac{1}{h} f(x_0) + \frac{1}{h} f(x_0 + h) \right]}_{\text{difference operator}} = \mathcal{O}(h)$$

- Central Euler method for  $f''(x_0)$ 
  - We look for a, b, c s.t.  $f''(x_0) \approx af(x_0 h) + bf(x_0) + cf(x_0 + h)$  is best approximated

$$\circ \quad \text{Collecting the coefficients of } f, f', f'', \text{ we have } \begin{cases} 0 = a + b + c \\ 0 = h(a - c) \\ 1 = \frac{1}{2}h^2(a + c) \end{cases} \Rightarrow \begin{cases} a = h^{-2} \\ b = -2h^{-2} \\ c = h^{-2} \end{cases}$$

• Due to symmetry, the fourth equation  $0 = \frac{h^2}{6}(a-c)$  is automatically satisfied

- · Example of one-step forward Euler method
  - We want to solve  $u' = f(u) = \lambda u$  with initial condition  $u(t = 0) = u_0$
  - o Denote  $u_n=u(t_n)$  to be the true solution at  $t_n$  and  $U_n$  the numerical solution at  $t_n$

$$\circ \quad \text{Then } u'(t_n) \approx \frac{1}{\Delta t} \left( U_{n+1} - U_n \right) = f(U_n) = \lambda U_n \Rightarrow \frac{1}{\Delta t} U_{n+1} - \left( \lambda + \frac{1}{\Delta t} \right) U_n = 0$$

$$\circ \ \ \text{Define} \ \mu = \lambda \Delta t + 1, \text{then} \ \frac{1}{\Delta t} \underbrace{\begin{bmatrix} 1 \\ -\mu & 1 \\ & \ddots & \ddots \\ & & -\mu & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{bmatrix}}_{\overrightarrow{U}} = \underbrace{\begin{bmatrix} (\Delta t^{-1} + \lambda) U_0 \\ 0 \\ \vdots \\ 0 \\ \overrightarrow{S} \end{bmatrix}}_{S}$$

$$\quad \circ \quad \text{Thus, } U_n = [A^{-1}S]_N = \Delta t (1 + \lambda \Delta t)^{N-1} (\Delta t^{-1} + \lambda) u_0 = u_0 (1 + \lambda \Delta t)^N$$

$$\circ \quad \text{Let } T = N\Delta t \Leftrightarrow \Delta t = \frac{T}{N}, \text{ then } \boldsymbol{U_N} = \boldsymbol{u_0} \left( \mathbf{1} + \frac{\boldsymbol{\lambda} T}{N} \right)^N \to \boldsymbol{u_0} e^{\boldsymbol{\lambda} T} \text{ as } N \to \infty$$

• This is the same as the analytical solution  $u(T) = u_0 e^{\lambda T}$ 

## **Analysis for Euler Method**

- Consistency
  - $\circ$  We want to show that the **local truncation error**  $au_n o 0$  as  $\Delta t o 0$

$$\circ \quad \tau_n = \frac{u_{n+1} - u_n}{\Delta t} - f(u_n) = \frac{1}{\Delta t} \left( u_n + u'(t_n) \Delta t + \frac{1}{2} u''(t_n) \Delta t^2 + \dots - u_n \right) - f(u_n)$$

$$= u'(t_n) + \frac{1}{2} u''(t_n) \Delta t + \dots - \underbrace{f(u_n)}_{u'(t_n)} = \frac{1}{2} u''(t_n) \Delta t + \dots = \mathcal{O}(\Delta t)$$

- o Therefore one-step forward Euler method is consistent
- Stability
  - $\circ$  We want to show that the error  $E_n = u(t_n) U_n$  is **not amplified** in the future

$$\circ \quad \text{In the example above, } \left\{ \begin{matrix} A \vec{U} = S \\ \vec{\tau} = A \vec{u} - S \end{matrix} \right. \Longrightarrow A \underbrace{\left( \vec{u} - \vec{U} \right)}_{\vec{F}} = \vec{\tau} \Longrightarrow \vec{E} = A^{-1} \vec{\tau}$$

- Since  $\|\vec{E}\|_{\infty} \le \mathcal{O}(\Delta t) \Rightarrow \lim_{\Delta t \to 0} \vec{E} = \vec{0}$ , one-step forward Euler method is stable
- Convergence (for non-linear case)
  - o If f(u) is **Lipschitz** (with constant  $\lambda$ ), then **Euler method is linearly convergent**
  - The numerical solution at each step is

$$U_{n+1} = U_n + h \cdot f(U_n)$$

• The true solution at each step is

• 
$$u_{n+1} = u(t_{n+1}) = u(t_n + h) = u(t_n) + u'(t_n)h + \mathcal{O}(h^2) = u(t_n) + hf(u(t_n)) + \mathcal{O}(h^2)$$
  
•  $E_{n+1} = |U_{n+1} - u_{n+1}| = \left| \left( U_n + h \cdot f(U_n) \right) - \left( u(t_n) + h \cdot f(u(t_n)) + \mathcal{O}(h^2) \right) \right|$   
 $= E_n + h|f(U_n) - f(u_n)| + \mathcal{O}(h^2)$   
 $\leq E_n + h\lambda \underbrace{|U_n - u_n|}_{E_n} + \mathcal{O}(h^2)$   
 $= (1 + \lambda h)E_n + \mathcal{O}(h^2)$ 

$$\circ \ E_n \leq (1+\lambda h)E_{n-1} + \mathcal{O}(h^2)$$

$$\leq (1 + \lambda h) \left( (1 + \lambda h) E_{n-2} + \mathcal{O}(h^2) \right) + \mathcal{O}(h^2)$$

$$\leq (1 + \lambda h)^2 E_{n-2} + \mathcal{O}(h^2) + \mathcal{O}(h^2)$$

$$\leq \cdots \leq (1 + \lambda h)^{n-1} E_1 + \underbrace{\mathcal{O}(h^2) + \cdots + \mathcal{O}(h^2)}_{n \text{ copies}}$$

$$\leq (1 + \lambda h)^{n-1} E_1 + \mathcal{O}(h), \text{ since } \mathcal{O}(nh^2) = \mathcal{O}(Th) = \mathcal{O}(h)$$

$$\circ \text{ Let } nh = T \Leftrightarrow h = \frac{T}{n}, \text{ then } (1 + \lambda h)^{n-1} = \left(1 + \frac{\lambda T}{n}\right)^{n-1} \leq e^{\lambda T}$$

$$\circ E_1 = \mathcal{O}(h^2) \text{ since } \begin{cases} \frac{U_1 - U_0}{h} = f(U_0) \\ \frac{u_1 - u_0}{h} = f(u_0) + \mathcal{O}(h) \end{cases} \Rightarrow \begin{cases} U_1 = hf(U_0) + U_0 \\ u_1 = hf(u_0) + u_0 + \mathcal{O}(h^2) \end{cases}$$

○ Since  $E_n \le (1 + \lambda h)^{n-1} E_1 + \mathcal{O}(h) = \mathcal{O}(h)$ , Euler method is linearly convergent

### Trapezoidal Rule

Scheme

• Approximate 
$$u' = f(u)$$
 using  $\frac{U_{n+1} - U_n}{h} = \frac{1}{2} (f(U_n) + f(U_{n+1}))$ 

• Example:  $f(u) = u^2$ 

$$\circ \frac{U_{n+1} - U_n}{h} = \frac{1}{2} \left( U_n^2 + U_{n+1}^2 \right) \Rightarrow \underbrace{U_{n+1} + \frac{1}{2} h U_{n+1}^2}_{\text{unknown}} = \underbrace{U_n + \frac{1}{2} h U_n^2}_{\text{known}}$$

- $\circ$  Since the relation is implicit, we need to use Newton's method to solve for  $U_{n+1}$  at each step
- Consistency

$$\tau_{n} = \frac{u_{n+1} - u_{n}}{h} - \frac{1}{2} (f(u_{n}) + f(u_{n+1})), \text{ where}$$

$$\frac{u_{n+1} - u_{n}}{h} = \frac{1}{h} \left( u_{n} + u'_{n}h + \frac{1}{2}u''_{n}h^{2} + \dots - u_{n} \right) = u'_{n} + \frac{1}{2}u''_{n}h + \mathcal{O}(h^{2})$$

$$\frac{1}{2} (f(u_{n}) + f(u_{n+1})) = \frac{1}{2} \left[ f(u_{n}) + f\left( u_{n} + u'_{n}h + \frac{1}{2}u''_{n}h^{2} + \dots \right) \right]$$

$$= \frac{1}{2} \left[ f(u_{n}) + f(u_{n}) + f'(u_{n})(u'_{n}h + \dots) + \frac{1}{2}f''(u_{n})(u'_{n}h + \dots)^{2} + \dots \right]$$

$$= f(u_{n}) + \frac{1}{2}f'(u_{n})u'_{n}h + \mathcal{O}(h^{2})$$

$$= u'_{n} + \frac{1}{2}u''_{n}h + \mathcal{O}(h^{2}), \text{ since } u'_{n} = f(u_{n}) \Leftrightarrow u''_{n} = f'(u_{n})u'_{n}$$

$$\bullet \text{ Thus, } \tau_{n} = \frac{u_{n+1} - u_{n}}{h} - \frac{1}{2}(f(u_{n}) + f(u_{n+1})) = \mathcal{O}(h^{2})$$

- Convergence
  - o If f(u) is Lipschitz (with constant  $\lambda$ ), then trapezoidal rule is  $2^{nd}$  order convergent
  - o The numerical solution and true solution at each time step is

• 
$$U_{n+1} = U_n + \frac{h}{2} (f(U_n) + f(U_{n+1}))$$

• 
$$u_{n+1} = u_n + \frac{h}{2} (f(u_n) + f(u_{n+1})) + \mathcal{O}(h^3)$$

o Subtract two equations and apply Lipschitz condition, we have

• 
$$E_{n+1} \le E_n + \frac{h}{2}(\lambda E_n + \lambda E_{n+1}) + \mathcal{O}(h^3)$$

• 
$$E_{n+1} \le \frac{1 + \frac{1}{2}\lambda h}{1 - \frac{1}{2}\lambda h} E_n + \mathcal{O}(h^3) \le \left[ \frac{1 + \frac{1}{2}\lambda h}{1 - \frac{1}{2}\lambda h} \right]^{n-1} E_1 + \mathcal{O}(nh^3) = \mathcal{O}(h^2)$$

o Therefore, trapezoidal rule converges quadratically

## Runge-Kutta Method

- Introduction
  - The key idea of IVP is to find  $U_{n+1} = U_n + \int_{t_n}^{t_{n+1}} \underbrace{f(u(t))}_{\text{unknown}} dt$
  - In forward Euler method, we replace the integral by  $hf(U_n)$
  - In trapezoidal rule, we replace the integral by  $\frac{h}{2}(f(U_n) + f(U_{n+1}))$
  - In **Runge-Kutta method**, the integral is **replaced by summation**  $\sum_{i=1}^{N} f(U_{n+\alpha_i h}) w_i$
- Example of RK-2: midpoint method / modified Euler method
  - o General idea



- Use Euler method to calculate midpoint location  $U^*$  (open dots (2) (4))
- **Evaluate slope**  $f(U^*)$  at the midpoint (arrow after (2)(4))
- Use the slope the calculate full step location (filled dots 3 5)
- o Formula

$$\begin{cases} U^* = U_n + \frac{h}{2}f(U_n) \\ U_{n+1} = U_n + hf(U^*) \end{cases} \Rightarrow U_{n+1} = U_n + hf\left(U_n + \frac{h}{2}f(U_n)\right)$$

- o Example
  - Suppose u' = u, then the analytical solution is  $u(t) = Ce^t$

• 
$$U_{n+1} = U_n + h\left(U_n + \frac{h}{2}U_n\right) = \left(1 + h + \frac{h^2}{2}\right)U_n = e^h U_n + \mathcal{O}(h^3)$$

· Common Runge-Kutta methods

| Name               | Butcher tableau                                                                                                                                                  | Scheme                                                                                                                                                                                                                                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classical<br>RK-4  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            | $\begin{cases} y_1 = U_n \\ y_2 = U_n + \frac{1}{2}hf(y_1) \\ y_3 = U_n + \frac{1}{2}hf(y_2) \\ y_4 = U_n + hf(y_3) \\ U_{n+1} = U_n + h\left[\frac{f(y_1)}{6} + \frac{f(y_2)}{3} + \frac{f(y_3)}{3} + \frac{f(y_4)}{6}\right] \end{cases}$ |
| Midpoint<br>(RK-2) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           | $\begin{cases} y_1 = U_n \\ y_2 = U_n + \frac{1}{2}hf(y_1) \\ U_{n+1} = U_n + hf(y_2) \end{cases}$                                                                                                                                          |
| Heun<br>(RK-2)     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           | $\begin{cases} y_1 = U_n \\ y_2 = U_n + hf(y_1) \\ U_{n+1} = U_n + h\left[\frac{1}{2}f(y_1) + \frac{1}{2}f(y_2)\right] \end{cases}$                                                                                                         |
| Ralston<br>(RK-2)  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           | $\begin{cases} y_1 = U_n \\ y_2 = U_n + \frac{2}{3}hf(y_1) \\ U_{n+1} = U_n + h\left[\frac{1}{4}f(y_1) + \frac{3}{4}f(y_2)\right] \end{cases}$                                                                                              |
| Generic<br>RK-2    | $ \begin{array}{c cccc} 0 & 0 & \\ \alpha & \alpha & \alpha & \\ - & + & - & - & \\ & \beta & 1 - \beta & \\ \text{for } \alpha(1 - \beta) = 1/2 & \end{array} $ | $\begin{cases} y_1 = U_n \\ y_2 = U_n + \alpha h f(y_1) \\ U_{n+1} = U_n + h[\beta f(y_1) + (1 - \beta)f(y_2)] \end{cases}$ , or $\frac{U_{n+1} - U_n}{h} = \beta f(U_n) + (1 - \beta)f(U_n + \alpha h f(U_n))$                             |

• Consistency for generic RK-2

$$\tau_{n} = \frac{u_{n+1} - u_{n}}{h} - \beta f(u_{n}) + (1 - \beta) f(u_{n} + \alpha h f(u_{n})), \text{ where }$$

$$\frac{u_{n+1} - u_{n}}{h} = \frac{1}{h} \left[ \left( u_{n} + h u'_{n} + \frac{1}{2} h^{2} u''_{n} + \mathcal{O}(h^{3}) \right) - u_{n} \right] = u'_{n} + \frac{1}{2} h u''_{n} + \mathcal{O}(h^{2})$$

$$\delta f(u_{n}) + (1 - \beta) f(u_{n} + \alpha h f(u_{n}))$$

$$= \beta f(u_{n}) + (1 - \beta) \left[ \underbrace{f(u_{n}) + \alpha h f'(u_{n}) f(u_{n}) + \mathcal{O}(h^{2})}_{\text{Taylor expan. of } f(u_{n} + \alpha h f(u_{n}))} \right]$$

$$= \beta u'_{n} + (1 - \beta) [u'_{n} + \alpha h u''_{n}] + \mathcal{O}(h^{2})$$

$$= u'_{n} (1 - \beta) + \beta u'_{n} + \alpha (1 - \beta) h u''_{n} + \mathcal{O}(h^{2})$$

$$= u'_{n} + \frac{1}{2} h u''_{n} + \mathcal{O}(h^{2})$$

$$\delta \text{ Thus, } \tau_{n} = \mathcal{O}(h^{2})$$

- Remark
  - o 4-th order Runge-Kutta is the highest order where the stage number = order of accuracy

# Linear Multistep Methods & Stability

Friday, November 30, 2018 11:20 AM

## Linear Multistep Methods (LMM)

- Adams–Bashforth methods
  - We can approximate f(u(t)) by polynomial interpolation at  $(t_n, f(U_n)), (t_{n-1}, f(U_{n-1})), \cdots$
  - $\circ$  i.e.  $f(u(t)) \approx p(t) = f(U_n)l_n(t) + f(U_{n-1})l_{n-1}(t) + f(U_{n-2})l_{n-2}(t) + \cdots$
  - Interpolation at  $(t_n, f(U_n))$  and  $(t_{n-1}, f(U_{n-1}))$  gives  $p(t) = \frac{t t_{n-1}}{h} f(U_n) + \frac{t_n t}{h} f(U_{n-1})$

$$U_{n+1} = U_n + \int_{t_n}^{t_{n+1}} f(u(t)) dt \approx U_n + \int_{t_n}^{t_{n+1}} p(t) dt$$

$$= U_n + \left[ \int_{t_n}^{t_{n+1}} \frac{t - t_{n-1}}{h} dt \right] f(U_n) + \left[ \int_{t_n}^{t_{n+1}} \frac{t_n - t}{h} dt \right] f(U_{n-1})$$

$$= U_n + \left[ \frac{(t - t_{n-1})^2}{2h} \right]_{t_n}^{t_{n+1}} f(U_n) + \left[ -\frac{(t_n - t)^2}{2h} \right]_{t_n}^{t_{n+1}} f(U_{n-1})$$

$$= U_n + \left[ \frac{(t_{n+1} - t_{n-1})^2}{2h} - \frac{(t_n - t_{n-1})^2}{2h} \right] f(U_n) + \left[ \frac{(t_n - t_n)^2}{2h} - \frac{(t_n - t_{n+1})^2}{2h} \right] f(U_{n-1})$$

$$= U_n + \left[ \frac{(2h)^2}{2h} - \frac{h^2}{2h} \right] f(U_n) + \left[ 0 - \frac{h^2}{2h} \right] f(U_{n-1})$$

$$= U_n + \frac{3h}{2} f(U_n) - \frac{h}{2} f(U_{n-1})$$

- $\qquad \text{o Interpolation at 3 sample points gives } U_{n+1} = U_n + \frac{h}{12} \left( 23 f(U_n) 16 f(U_{n-1}) + 5 f(U_{n-2}) \right)$
- · General LMM
  - $\circ$  A general LMM has the form  $\sum_{i=0}^r \alpha_i U_{n+i} = h \sum_{i=0}^r \beta_i f(U_{n+i})$
  - o If we **know**  $U_n$ ,  $U_{n+1}$ , ...,  $U_{n+r-1}$ , then we can use the formula above to **estimate**  $U_{n+r}$
- · Explicit vs. implicit method

$$\circ \sum_{i=0}^{r} \alpha_{i} U_{n+i} = h \sum_{i=0}^{r} \beta_{i} f(U_{n+i}) = h \sum_{i=0}^{r-1} \beta_{i} f(U_{n+i}) + h \beta_{r} f(U_{n+r})$$

- o If  $\beta_r = 0$ , then we have a explicit method
- If  $\beta_r \neq 0$ , then the method is implicit, and we need to use Newton's method to solve for  $U_{n+r}$
- o Adams-Bashforth methods are examples of explicit linear multistep methods

# Consistency of LMM

• Local truncation error

$$\tau_{n} = \frac{1}{h} \sum_{j=0}^{r} \alpha_{j} u_{n+j} - \sum_{j=0}^{r} \beta_{j} f(u_{n+j})$$

$$= \frac{1}{h} \sum_{j=0}^{r} \alpha_{j} \left[ u_{n} + u'_{n} j h + \frac{1}{2} u''_{n} (j h)^{2} + \cdots \right] - \sum_{j=0}^{r} \beta_{j} \left[ u'_{n} + u''_{n} j h + \frac{1}{2} u'''_{n} (j h)^{2} + \cdots \right]$$

$$= \frac{1}{h} \left[ \sum_{j=0}^{r} \alpha_{j} \right] u_{n} + \left[ \sum_{j=0}^{r} j \alpha_{j} - \sum_{j=0}^{r} \beta_{j} \right] u'_{n} + h \left[ \frac{1}{2} \sum_{j=0}^{r} j^{2} \alpha_{j} - \sum_{j=0}^{r} j \beta_{j} \right] u''_{n} + \cdots$$

$$= \frac{1}{h} \left[ \sum_{j=0}^{r} \alpha_{j} \right] u_{n} + \left[ \sum_{j=0}^{r} j \alpha_{j} - \sum_{j=0}^{r} \beta_{j} \right] u'_{n} + h \left[ \frac{1}{2} \sum_{j=0}^{r} j^{2} \alpha_{j} - \sum_{j=0}^{r} j \beta_{j} \right] u''_{n} + \cdots$$

$$= \frac{1}{h} \left[ \sum_{j=0}^{r} \alpha_{j} \right] u_{n} + \left[ \sum_{j=0}^{r} j \alpha_{j} - \sum_{j=0}^{r} \beta_{j} \right] u'_{n} + h \left[ \sum_{j=0}^{r} j^{2} \alpha_{j} - \sum_{j=0}^{r} j \beta_{j} \right] u''_{n} + \cdots$$

• For consistency, we **require** 
$$\sum_{j=0}^{r} \alpha_j u_n = \mathbf{0}$$
 and  $\sum_{j=0}^{r} j \alpha_j = \sum_{j=0}^{r} \beta_j$ 

- Characteristic polynomial
  - $\qquad \text{Define } \pmb{\rho}(\pmb{\xi}) = \sum_{i=0}^r \alpha_i \pmb{\xi}^i \text{ to be the characteristic polynomial for } \sum_{i=0}^r \alpha_i U_{n+i}$
  - Define  $\sigma(\xi) = \sum_{i=0}^{r} \beta_i \xi^i$  to be the characteristic polynomial for  $\sum_{i=0}^{r} \beta_i f(U_{n+i})$
  - Then the requirement for **consistency** is  $\begin{cases} \rho(1) = 0 \\ \rho'(1) = \sigma(1) \end{cases}$
- Example 1:  $U_{n+2} U_{n+1} = h \left[ \frac{3}{2} f(U_{n+1}) \frac{1}{2} f(U_n) \right]$

$$\circ \begin{cases} \alpha_0 = 0 \\ \alpha_1 = -1 \\ \alpha_2 = 1 \end{cases} \begin{cases} \beta_0 = -1/2 \\ \beta_1 = 3/2 \\ \beta_2 = 0 \end{cases} \Rightarrow \begin{cases} \rho(\xi) = 0 - \xi + \xi^2 \\ \sigma(\xi) = -\frac{1}{2} + \frac{3}{2} \xi \end{cases} \Rightarrow \begin{cases} \rho(1) = 0 \\ \rho'(1) = \sigma(1) = 1 \end{cases} \Rightarrow \text{Consistent method}$$

• Example 2:  $U_{n+2} - 3U_{n+1} + 2U_n = -hf(U_n)$ 

$$\circ \begin{cases}
\alpha_0 = 2 \\
\alpha_1 = -3, \\
\alpha_2 = 1
\end{cases}
\begin{cases}
\beta_0 = -1 \\
\beta_1 = 0 \\
\beta_2 = 0
\end{cases}
\Rightarrow \begin{cases}
\rho(\xi) = 2 - 3\xi + \xi^2 \\
\sigma(\xi) = -1
\end{cases}
\Rightarrow \begin{cases}
\rho(1) = 0 \\
\rho'(1) = \sigma(1) = -1
\end{cases}
\Rightarrow \text{Consistent method}$$

## Zero Stability of LMM

- Zero stability (informal)
  - A scheme is said to be **zero stable** if **perturbations remain bounded as**  $n \to \infty$
- Test problem for zero stability
  - We consider the **test problem**  $\begin{cases} u' = 0 \\ u(0) = 0 \end{cases}$  where the analytical solution  $u(t) \equiv 0$
  - For zero stability, we need the numerical solution to be bounded (by some constant)
  - Note that zero stability is called so since we assume the force term f to be zero
- Motivating example

  - $\circ$  Substitute in f(u)=u'=0, then the scheme becomes  $U_{n+2}-3U_{n+1}+2U_n=0$

- With  $U_0 = 0$ ,  $U_1 = h$ , we have  $U_5 = 4.2$ ,  $U_{10} = 258.4$ , ..., so this **scheme is not zero-stable**
- o To better study zero stability, we want to get an analytical solution for this method
- Write  $U_{n+2} 3U_{n+1} + 2U_n = 0$  in matrix form, we have  $\begin{bmatrix} U_{n+2} \\ U_{n+1} \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} U_{n+1} \\ U_n \end{bmatrix}$
- The **characteristic polynomial** for this recurrenc relation is  $\rho(\xi) = \xi^2 3\xi + 2$

$$\circ \quad \xi^2 - 3\xi + 2 = 0 \Rightarrow \begin{cases} \xi_1 = 1 \\ \xi_2 = 2 \end{cases} \Rightarrow U_n = c_1 \xi_1^n + c_2 \xi_2^n = c_1 + c_2 2^n \text{ for some constant } c_1, c_2 \in \mathbb{R}$$

- Therefore,  $U_n = (2U_0 U_1) + (U_1 U_0)2^n$ , which blows up to  $\infty$  as  $n \to +\infty$  if  $U_1 \neq U_0$

#### • Root condition

- $\circ \quad \text{A linear multistep method is } \mathbf{zero\text{-stable if and only if}} \ \begin{cases} |\xi| \leq 1 & \forall \text{single root } \xi \text{ of } \rho \\ |\xi^*| < 1 & \forall \text{repeated root } \xi^* \text{ of } \rho \end{cases}$
- Example:  $U_{n+2} 2U_{n+1} + U_n = h\left[\frac{1}{2}f(U_{n+2}) \frac{1}{2}f(U_n)\right]$

$$\circ \begin{cases} \rho(\xi) = \xi^2 - 2\xi + 1 \\ \sigma(\xi) = \frac{1}{2}\xi^2 - \frac{1}{2} \end{cases} \Rightarrow \begin{cases} \rho(1) = 0 \\ \rho'(1) = \sigma(1) = 0 \end{cases} \Rightarrow \text{This method is consistent}$$

- Since  $\xi_1 = \xi_2 = 1$  is a **double root** of  $\rho$ , this method is **not zero-stable**
- $\circ$  In particular, the analytical solution is  $\pmb{U_n} = \pmb{U_0} + (\pmb{U_1} \pmb{U_0}) \pmb{n}$ , which blows up for  $U_1 \neq U_0$

#### • Dahlquist Equivalence Theorem

• A multistep method is **convergent** if and only if it is **consistent and zero-stable** 

# **Absolute Stability**

#### Motivation

- $\circ$  So far we only considered the convergence of method **as the grid is refined**  $(h \to 0)$
- $\circ \ \ \textit{e.g.}$  Trapezoidal method is a second-order method  $\Leftrightarrow$  As  $h \to 0$ ,  $E_n \to 0$  at  $h^2$  rate
- $\circ$  In practice, we want to choose the time step h as large as possible to reduce the computation
- o Absolute stability is used to answer how big h can be to produce reasonable results

#### Motivating example

• We want to solve 
$$\begin{cases} u'(t) = \lambda(u - \cos t) - \sin t \\ u_0 = 1.0001 \end{cases}$$
, where  $\lambda = -2100$ 

Analytical solution

• 
$$u' = \lambda(u - \cos t) - \sin t \Rightarrow \underbrace{u' + \sin t}_{v'} = \lambda \underbrace{(u - \cos t)}_{v}$$

$$\text{Let } v(t) = u(t) - \cos t \text{, then } \begin{cases} v' = \lambda v \\ v_0 = 0.0001 \end{cases} \Rightarrow v(t) = v_0 e^{\lambda t} \Rightarrow u(t) = \cos t + v_0 e^{\lambda t}$$

• Since  $\lambda$  is very negative, u(t) goes to zero quickly



- Numerical method
  - Using forward Euler method with different step size h, we have

| h        | Error at $T=2$            |
|----------|---------------------------|
| 0.000400 | $0.396033 \times 10^{-7}$ |
| 0.000800 | $0.792298 \times 10^{-7}$ |
| 0.000950 | $0.321089 \times 10^{-6}$ |
| 0.000976 | $0.588105 \times 10^{36}$ |
| 0.001000 | $0.145252 \times 10^{77}$ |

- The error increases dramatically when we change h from 0.00095 to 0.000976
- Recall the error for forward Euler method,  $E_n = (1 + \lambda h)E_{n-1} + h\tau_n$
- If *h* cannot balance  $\lambda$  (*i. e.*  $|1 + \lambda h| > 1$ ), the error would be propagated
- For h = 0.00095,  $|1 + \lambda h| = |-0.995| \le 1$
- For h = 0.000976,  $|1 + \lambda h| = |-1.0496| > 1$
- Absolute stability (informal)
  - Error introduced at each step does not grow in future steps
- Linear test problem
  - The **test problem for absolute stability** is  $u' = \lambda u$  with  $\lambda \in \mathbb{C}$
  - When  $\text{Re}(\lambda) < 0$ , the exact solution  $u = u_0 e^{\lambda t} \to 0$  as  $t \to 0$ , so we **want**  $U_n \to 0$  as well
  - Apply a numerical method to it, we will obtain  $U_{n+1} = \phi(\lambda h)U_n$  for some function  $\phi$
  - Here  $\phi(z)$  is called the **stability function** for the secheme
  - A method is said to be **absolutely stable** for a given step size h if  $|\phi(z)| \le 1$
  - The region of absolute stable (or simply the **stability region**) is  $\{z | |\phi(z)| \le 1\}$
  - o *i.e.* The set of all  $z \in \mathbb{C}$  for which the method is absolutely stable
- Example: forward Euler method
  - Apply the forward Euler method to  $u' = \lambda u$ , we have  $\frac{U_{n+1} U_n}{h} = \lambda U_n \Rightarrow U_{n+1} = \underbrace{(1 + \lambda h)}_{\phi(\lambda h)} U_n$
  - The stability function is  $\phi(z) = 1 + z$ , and the stability region is  $\{z | |1 + z| \le 1\}$
  - For  $\lambda \in \mathbb{R}$ , we **require**  $|1 + \lambda h| \le 1 \Rightarrow h \le \frac{2}{\lambda}$  for forward Euler method to be absolutely stable



- Example: backward Euler method
  - Apply the forward Euler method to  $u' = \lambda u$ , we have  $\frac{U_{n+1} U_n}{h} = \lambda U_{n+1} \Rightarrow U_{n+1} = \frac{1}{1 \lambda h} U_n$
  - The stability function is  $\phi(z) = \frac{1}{1-z}$ , and the stability region is  $\left\{z \left| \left| \frac{1}{1-z} \right| \le 1 \right\}\right.$



# Review for Numerical ODE

Monday, December 10, 2018 9:58 AM

# Reducing Higher Order Non-Autonomous ODE

• For u'' = 2u'u - 3u', let  $\begin{cases} y_0 = u \\ y_1 = u' \end{cases}$ , then  $\begin{cases} y_0' = y_1 \\ y_1' = 2y_0y_1 - 3y_1 \end{cases}$ 

## **Existence and Uniqueness of Solution**

• Unique solution  $\Leftrightarrow \vec{f}(\vec{u})$  is uniform Lipschitz  $\Leftrightarrow$  Norm of  $J_{\vec{f}}(\vec{u}) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_1} \end{bmatrix}$  is bounded

#### **Common Schemes**

• Forward Euler :  $\frac{U_{n+1} - U_n}{h} = f(U_n)$ 

• Trapezoidal:  $\frac{U_{n+1} - U_n}{h} = \frac{1}{2} \left( f(U_n) + f(U_{n+1}) \right)$ 

• Explicit midpoint:  $\frac{U_{n+1}-U_n}{h}=f\left(U_{n+1/2}\right)$ , where  $U_{n+1/2}=U_n+\frac{h}{2}f(U_n)$ 

• Implicit midpoint:  $\frac{U_{n+1} - U_n}{h} = f\left(\frac{U_n + U_{n+1}}{2}\right)$ 

## Three Concepts in Numerical ODE

Consistency

 $\circ$  If  $\tau_n \to 0$  as  $h \to 0$ , then we say the method is consistent

• Forward Euler:  $\tau_n = \frac{u_{n+1} - u_n}{h} - f(u_n) = \mathcal{O}(h)$ 

Convergence

 $\circ\ \ \mbox{We did this for FE and Trapezoidal}$ 

• Stability (zero stability and absolute stability)

## Runge-Kutta

ullet We want to march from  $U_n$  to  $U_{n+1}$  with some stages in between

• RK-4

• RK-2

$$\begin{array}{c|cccc}
0 & 0 & \\
 & \alpha & \alpha & \alpha \\
 & - & + & - & - \\
 & & \beta & 1 - \beta
\end{array}
\Rightarrow
\begin{cases}
y_1 = U_n \\
y_2 = U_n + \alpha h f(y_1) \\
U_{n+1} = U_n + h[\beta f(y_1) + (1 - \beta)f(y_2)]
\end{cases}$$
, for  $\alpha(\mathbf{1} - \beta) = \frac{1}{2}$ 

$$\circ \text{ Suppose } \alpha = \frac{1}{2}, \beta = 0 \Rightarrow \begin{cases} y_0 = U_n \\ y_1 = U_n + \frac{h}{2}f(U_n) \\ U_{n+1} = U_n + hf(y_1) = U_n + hf\left(U_n + \frac{h}{2}f(U_n)\right) \end{cases}$$

## LMM and Zero Stability

- A general LLM has the form  $\sum_{i=0}^{r} \alpha_i U_{n+i} = h \sum_{i=0}^{r} \beta_i f(U_{n+i})$
- Characteristic polynomials are  $\rho(\xi) = \sum_{i=0}^r \alpha_i \xi^i$ ;  $\sigma(\xi) = \sum_{i=0}^r \beta_i \xi^i$
- For consistency, we need  $\begin{cases} \rho(1) = 0 \\ \rho'(1) = \sigma(1) \end{cases}$
- Rood condition for zero stability:  $\begin{cases} |\xi_i| \leq 1 & \xi_i \text{ is a single root} \\ |\xi_i| < 1 & \xi_i \text{ is a repeated root} \end{cases}$
- Example

$$\circ \ \ U_{n+1} = U_{n+1} + \frac{h}{2} \left( 3f(U_{n+1}) - f(U_n) \right) \Rightarrow \begin{cases} \rho(\xi) = \xi^2 - \xi \\ \sigma(\xi) = \frac{3}{2} \xi - \frac{1}{2} \end{cases}$$

$$\circ \quad \begin{cases} \rho(1) = 0 \\ \rho'(1) = \sigma(1) \end{cases} \Rightarrow \text{consistent; } \begin{cases} \xi_1 = 1 \\ \xi_2 = 0 \end{cases} \Rightarrow \text{zero stable}$$

## **Absolute Stability**

- Test problem:  $u' = \lambda u$  for some  $Re(\lambda) < 0$
- Look for the range of h, so that the numeriacl solution decays
- Forward Euler

RK2

$$\circ \begin{cases}
y_1 = U_n \\
y_2 = U_n + \alpha h f(y_1) \\
U_{n+1} = U_n + h [\beta f(y_1) + \gamma f(y_2)]
\end{cases} \Rightarrow \begin{cases}
y_1 = (1 + \alpha \lambda h) U_m \\
U_{n+1} = (1 + (\beta + \gamma) \lambda h + \gamma \lambda^2 h^2) U_n
\end{cases}$$

• Absolute stable region for RK2 is  $\{z | |1 + (\beta + \gamma)z + \gamma z^2| \le 1\}$