11/1

Wednesday, November 1, 2017

Understanding of Determinant in Terms of Volumes

- The volume of this parallelepiped is the absolute value of the determinant of the matrix formed by the rows constructed from the vectors $\mathrm{r} 1, \mathrm{r} 2$, and r 3 .
- Negative determinant = flip the original image

11/2

Uniqueness Theorem

- Theorem
- Suppose $f\left(A_{1}, \ldots, A_{n}\right)$ is a function of $A_{1}, \ldots, A_{n} \in \mathbb{R}^{n}$
- That satisfies Linearity and Alternating
- $f\left(B+C, A_{2}, \ldots, A_{n}\right)=f\left(B, A_{2}, \ldots, A_{n}\right)+f\left(C, A_{2}, \ldots, A_{n}\right)$
- $f\left(t \cdot A_{1}, A_{2}, \ldots, A_{n}\right)=t \cdot f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$
- $f\left(A_{1}, A_{2}, \ldots, A_{i}, . ., A_{j}, \ldots A_{n}\right)=-f\left(A_{1}, A_{2}, \ldots, A_{j}, . ., A_{i}, \ldots A_{n}\right)$
- Then $f\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left(A_{1}, \ldots, A_{n}\right) \cdot f\left(I_{1}, \ldots, I_{n}\right)$ where
- $\mathrm{I}_{1}=[1,0,0, \ldots, 0]$
- $\mathrm{I}_{2}=[0,1,0, \ldots, 0]$
- :
- $\mathrm{I}_{\mathrm{n}}=[0,0,0, \ldots, 1]$
- Proof

$$
\begin{aligned}
& \circ f\left(A_{1}, \ldots, A_{n}\right) \\
& \circ=f\left(a_{11} I_{1}+a_{12} I_{2}+\cdots+a_{1 n} I_{n}, \ldots, a_{n 1} I_{1}+a_{n 2} I_{2}+\cdots+a_{n n} I_{n}\right) \\
& \circ=\sum_{\substack{1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq n \\
\text { all different }}}^{n} a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}} \cdot f\left(I_{i_{1}}, I_{i_{2}}, \ldots, I_{i_{n}}\right) \\
& \circ=\sum_{\substack{1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq n \\
\text { all different }}}^{n} a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}} \cdot \operatorname{sign}\left(i_{1}, \ldots, i_{n}\right) \cdot f\left(I_{1}, I_{2}, \ldots, I_{n}\right) \\
& \circ=f\left(I_{1}, I_{2}, \ldots, I_{n}\right) \cdot \sum_{\substack{1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq n \\
\text { all different }}}^{n} a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}} \cdot \operatorname{sign}\left(i_{1}, \ldots, i_{n}\right) \\
& \circ=f\left(I_{1}, I_{2}, \ldots, I_{n}\right) \cdot \operatorname{det}\left(A_{1}, \ldots, A_{n}\right)
\end{aligned}
$$

- Example
$\circ\left|\begin{array}{cc}A_{k \times k} & 0 \\ C_{l \times k} & B_{l \times l}\end{array}\right|=\left|\begin{array}{cccccc}a_{11} & \ldots & a_{1 k} & & \\ \vdots & \ddots & \vdots & & & \\ a_{k 1} & \ldots & a_{k k} & & & \\ c_{11} & \ldots & c_{1 k} & b_{11} & \ldots & b_{11} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ c_{l 1} & \ldots & c_{l k} & b_{l 1} & \ldots & b_{l l}\end{array}\right|=\operatorname{det} A \cdot \operatorname{det} B$
- Consider a function f that satisfies the Uniqueness Theorem
- $f\left(\overline{A_{1}}+\overline{\overline{A_{1}}}, A_{2}, \ldots, A_{n}\right)=f\left(\overline{A_{1}}, A_{2}, \ldots, A_{n}\right)+d\left(\overline{\overline{A_{1}}}, A_{2}, \ldots, A_{n}\right)$
- $f\left(t A_{1}, A_{2}, \ldots, A_{n}\right)=f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$
- $f\left(A_{1}, A_{2}, \ldots, A_{i}, . ., A_{j}, \ldots A_{n}\right)=f\left(A_{1}, A_{2}, \ldots, A_{j}, . ., A_{i}, \ldots A_{n}\right)$
- Let $f_{B C}\left(A_{1}, \ldots, A_{k}\right)=\left|\begin{array}{cc}A_{k \times k} & 0 \\ C_{l \times k} & B_{l \times l}\end{array}\right|$ with B, C fixed, and A as variable
- $f_{B C}\left(A_{1}, \ldots, A_{k}\right)$
- $=\operatorname{det}\left(A_{1}, \ldots, A_{k}\right) f_{B C}\left(I_{1}, \ldots, I_{k}\right)$
- $=\operatorname{det} A \cdot\left|\begin{array}{cccccc}1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ c_{11} & \ldots & c_{1 k} & b_{11} & \ldots & b_{1 l} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ c_{l 1} & \ldots & c_{l k} & b_{l 1} & \ldots & b_{l l}\end{array}\right|$
- $=\operatorname{det} A \cdot\left|\begin{array}{cccccc}1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & b_{11} & \ldots & b_{1 l} \\ & & & b_{l 1} & \ldots & \vdots \\ & b_{l l}\end{array}\right|$
- $=\left.\operatorname{det} A \cdot\right|^{I}{ }_{B} \mid$
- Let $g(B)=\left|\quad{ }_{B}^{I}\right|$ that satisfies the Uniqueness Theorem
- $g(B)=\operatorname{det} B \cdot g(I)=\operatorname{det} B \cdot\left|\begin{array}{lll}1 & & \\ & \ddots & \\ & & 1\end{array}\right|=\operatorname{det} B$
- Therefore $\left|\begin{array}{cc}A_{k \times k} & 0 \\ 0 & B_{l \times l}\end{array}\right|=\operatorname{det} A \cdot \operatorname{det} B$

Properties of Determinant

- $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B\left(\right.$ where $\left.A_{n \times n}, B_{n \times n}\right)$
- $\operatorname{det} A \cdot \operatorname{det} B$
- $=\left|\begin{array}{ll}A & 0 \\ I & B\end{array}\right|$
- $=\left|\begin{array}{cc}0 & -A B \\ I & B\end{array}\right|$
- $=(-1)^{n^{2}}\left|\begin{array}{cc}I & B \\ 0 & -A B\end{array}\right|$
- $=(-1)^{n^{2}} \operatorname{det} I \cdot \operatorname{det}(-A B)$
$0=(-1)^{n^{2}} \cdot \operatorname{det}(-A B)$
- $=(-1)^{n^{2}}(-1)^{n} \operatorname{det}(A B)$
- $=(-1)^{n^{2}+n} \operatorname{det}(A B)$
- $=\operatorname{det}(A B)$
- Power of Determinants
- $\operatorname{det}\left(A^{n}\right)=\operatorname{det}(A \cdot A \ldots A)=\operatorname{det}(A) \cdot \operatorname{det}(A) \ldots \operatorname{det}(A)=(\operatorname{det} A)^{n}$
- Determinant of Inverse
- If A has an inverse $\left(A^{-1}\right)$, and $\operatorname{det} A \neq 0$, then
- $A^{-1} A=I$
- $\Rightarrow \operatorname{det} A^{-1} \cdot \operatorname{det} A=\operatorname{det} I=1$
- $\Rightarrow \operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$
- Matrix Product and Determinant
- $\left|\begin{array}{cc}A_{n \times n} & 0 \\ I & B_{n \times n}\end{array}\right|$
$\circ=\left|\begin{array}{cccccc}a_{11} & \ldots & a_{1 n} & & & \\ \vdots & \ddots & \vdots & & & \\ a_{n 1} & \ldots & a_{n n} & & & \\ 1 & & & b_{11} & \ldots & b_{1 n} \\ & \ddots & & \vdots & \ddots & \vdots \\ & & 1 & b_{n 1} & \ldots & b_{n n}\end{array}\right|$
$\bigcirc=\left|\begin{array}{cccccc}0 & \ldots & a_{1 n} & -a_{11} b_{11} & \ldots & -a_{11} b_{1 n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & a_{n n} & -a_{n 1} b_{11} & \ldots & -a_{n 1} b_{1 n} \\ 1 & \ldots & 0 & b_{11} & \ldots & b_{1 n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 1 & b_{n 1} & \ldots & b_{n}\end{array}\right|=\cdots$
$\bigcirc=\left|\begin{array}{cccccc}0 & \ldots & 0 & -\sum_{i=1}^{n} a_{1 i} b_{i 1} & \ldots & -\sum_{i=1}^{n} a_{1 i} b_{i n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & -\sum_{i=1}^{n} a_{n i} b_{i 1} & \ldots & -\sum_{i=1}^{n} a_{n i} b_{i n} \\ 1 & \ldots & 0 & b_{11} & \ldots & b_{1 n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 1 & b_{n 1} & \ldots & b_{n n}\end{array}\right|$
$0=\left|\begin{array}{cc}0 & -A B \\ I & B\end{array}\right|$

11/6

Find the Inverse of Matrix

- Gauss-Jordan Elimination

$$
\text { - }(A \mid I) \sim\left(I \mid A^{-1}\right)
$$

- Example
$\circ\left(\begin{array}{ccc|cc}1 & 2 & 4 & 1 & \\ 3 & 5 & -7 & & \\ 0 & 0 & 1 & & \\ & & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -1 & -13 & -3 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$
$\circ \rightarrow\left(\begin{array}{ccc|ccc}1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -1 & -13 & -3 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 2 & 4 & 1 & 0 & 0 \\ 0 & -1 & 0 & -3 & 1 & 13 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$
$\circ \rightarrow\left(\begin{array}{ccc|ccc}1 & 2 & 0 & 1 & 0 & -4 \\ 0 & -1 & 0 & -3 & 1 & 13 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 0 & -5 & 2 & 22 \\ 0 & -1 & 0 & -3 & 1 & 13 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$
$\circ \rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 0 & -5 & 2 & 22 \\ 0 & 1 & 0 & 3 & -1 & -13 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$
- Therefore $\left(\begin{array}{ccc}1 & 2 & 4 \\ 3 & 5 & -7 \\ 0 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{ccc}-5 & 2 & 22 \\ 3 & -1 & -13 \\ 0 & 0 & 1\end{array}\right)$

Question 1

- Recall that the determinant is a polynomial in the entries of the matrix.
- Find the coefficient of t^{3} in the following polynomial

$$
\left|\begin{array}{cccc}
2 & 3 & -7 & t \\
5 & t & a & b \\
t & -1 & 0 & 55 \\
1 / 2 & 3 & c & -\pi
\end{array}\right|
$$

- Answer: By cofactor expansion, the coefficient is c

Question 2

- Suppose A is an orthogonal matrix, meaning A is invertible and $A^{-1}=A^{T}$
- What possible value could the determinant of A have?
- Answer:
- $\left|A^{-1}\right|=\left|A^{T}\right|$
- $\Rightarrow \frac{1}{|A|}=|A|$
- $\Rightarrow|A|= \pm 1$

Question 3

- Let V be the vector space of all (real) polynomials of degree 2 or less.
- Using the basis $1, x, x^{2}$, find the matrix of the linear map $T: V \rightarrow V$ given by
- $(T f)(x)=f(x+2)$ for all $f \in V$ and $x \in \mathbb{R}$
- Answer:
- $T(1)=1$
- $T(x)=2+x$
- $T\left(x^{2}\right)=4+4 x+x^{2}$
$\circ \Rightarrow m(T)=\begin{gathered}1 \\ x \\ x^{2}\end{gathered} \begin{array}{ccc}1 & x & x^{2} \\ \left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right)\end{array}$

Question 4

- Let x, y, z, w be real numbers.
- Compute the determinant of the following matrix
- Answer:
$\circ\left|\begin{array}{llll}1 & x & x^{2} & x^{3} \\ 1 & y & y^{2} & y^{3} \\ 1 & z & z^{2} & z^{3} \\ 1 & w & w^{2} & w^{3}\end{array}\right|=(w-z)(w-y)(w-x)(z-y)(z-x)(y-x)$

11/7

Determinant and Area

- $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=$ area of parallelogram with sides $a=\binom{a_{1}}{a_{2}}, b=\binom{b_{1}}{b_{2}}$

- Proof by graph

- Proof
- $\operatorname{Area}\left(A_{1}, A_{2}\right)=$ signed area of parallelogram spanned by A_{1}, A_{2}
- If $A_{1} \rightarrow A_{2}$ is counter-clockwise $=$ area
- If $A_{1} \rightarrow A_{2}$ is clockwise $=-$ area
- Then $\operatorname{Area}\left(A_{1}, A_{2}\right)=\operatorname{det}\left(A_{1}, A_{2}\right)$, because
- Alternating
- $\operatorname{Area}\left(A_{1}, A_{2}\right)=-\operatorname{Area}\left(A_{2}, A_{1}\right)$
- (by definition, same area, but different orientation)
- Linearity(Homogeneous)
- $\operatorname{Area}\left(t \cdot A_{1}, A_{2}\right)=t \cdot \operatorname{Area}\left(A_{1}, A_{2}\right)$
- (Easy to prove from picture)

- (Easy to prove from picture)

$-1 \cdot A$.
- Linearity(Additive)
- $\operatorname{Area}(A+B, C)=\operatorname{Area}(A, C)+\operatorname{Area}(B, C)$
- If A, C is parallel, then

$$
\operatorname{Area}(A, C)=0
$$

- If A, C is independent, then
$\square \operatorname{Area}(A+s C, C)=\operatorname{Area}(A, C), \forall A, C$
- Let $B=t \cdot A+s \cdot C$, then
- $\operatorname{Area}(A+B, C)$
$\square=\operatorname{Area}(A+t \cdot A+s \cdot C, C)$
- $=\operatorname{Area}(A+t \cdot A, C)$
- $=(1+t) \operatorname{Area}(A, C)$
- $=\operatorname{Area}(A, C)+t \cdot \operatorname{Area}(A, C)$
- $=\operatorname{Area}(A, C)+\operatorname{Area}(t \cdot A, C)$
$\square=\operatorname{Area}(A, C)+\operatorname{Area}(t \cdot A+s \cdot C, C)$
$\square=\operatorname{Area}(A, C)+\operatorname{Area}(B, C)$
- Therefore $\operatorname{Area}(A+B, C)=\operatorname{Area}(A, C)+\operatorname{Area}(B, C)$
- Uniqueness Theorem
- $\operatorname{Area}(A, B)$
- $=\operatorname{det}(A, B) \cdot \operatorname{Area}\left(I_{1}, I_{2}\right)$
- $=\operatorname{det}(A, B) \cdot$ Area(unit square)
- $=\operatorname{det}(A, B)$

Determinant and Volume

- $\operatorname{det}(A, B, C)=$ signed volume of parallelepiped spanned by A, B, C

Inverse of a Matrix

- Setup
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ linear
- T has a matrix $m(T)=\left[\begin{array}{ccc}T_{11} & \cdots & T_{1 n} \\ \vdots & \ddots & \vdots \\ T_{n 1} & \cdots & T_{n n}\end{array}\right]$
- The following statements are equivalent
- $N(T)=\{0\}$
- T is injective
- T is one-to-one
- T is bijective
- because $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- $\operatorname{dim} N(T)+\operatorname{dim} \operatorname{range}(T)=\operatorname{dim} \mathbb{R}^{n}$
- $\Rightarrow \operatorname{dim} \operatorname{range}(T)=n$
- $\Rightarrow R(T)=\mathbb{R}^{n}$
- There is a map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $S T=T S=I$
- Find the inverse of 2×2 matrix
- $T=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$
- Find T^{-1}, i.e. solve $T x=y$
- Note: $T x=y \Leftrightarrow x=T^{-1} y$
- Normal version
- $\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$
- $\left\{\begin{array}{c}x_{1}+3 x_{2}=1 \cdot y_{1}+0 \cdot y_{2} \\ 2 x_{2}+5 x_{2}=0 \cdot y_{1}+1 \cdot y_{2}\end{array}\right.$
- $\Rightarrow\left\{\begin{array}{c}x_{1}=-5 y_{1}+3 y_{2} \\ x_{2}=2 y_{1}-y_{2}\end{array}\right.$
- $\Rightarrow x=T^{-1} y$
- where $T^{-1}=\left[\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right]$
- Shorthand
- [T|I]
- ~ $\left[\begin{array}{ll|ll}1 & 3 & 1 & 0 \\ 2 & 5 & 0 & 1\end{array}\right]$
- $\sim\left[\begin{array}{cc|cc}1 & 3 & 1 & 0 \\ 0 & -1 & -2 & 1\end{array}\right]$
- $\sim\left[\begin{array}{cc|cc}1 & 0 & -5 & 3 \\ 0 & -1 & -2 & 1\end{array}\right]$
- $\sim\left[\begin{array}{ll|cc}1 & 0 & -5 & 3 \\ 0 & 1 & 2 & -1\end{array}\right]$
- $\sim\left[I \mid T^{-1}\right]$
- Therefore $T^{-1}=\left[\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right]$

Minors and Cofactors

- Theorem
$\bigcirc\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=a_{k 1} C_{k 1}+a_{k 2} C_{k 2}+\cdots+a_{k n} C_{k n}$
- $C_{k l}=$ cofactor matrix
- Cofactor Matrix

$$
C_{k l}=(-1)^{k+l}\left\{\begin{array}{c}
(n-1) \times(n-1) \text { determinant obtained } \\
\text { by deleting row } k \text { and column } l \\
\text { from the original determinant }
\end{array}\right\}
$$

- Example
$\circ\left|\begin{array}{ccc}1 & 7 & 2 \\ 4 & \pi & -1 \\ 3 & \ln 2 & 2\end{array}\right|$
$\circ=3 \times\left|\begin{array}{cc}7 & 2 \\ \pi & -1\end{array}\right|-\ln 2\left|\begin{array}{cc}1 & 2 \\ 4 & -1\end{array}\right|+2\left|\begin{array}{cc}1 & 7 \\ 4 & \pi\end{array}\right|$
○ $=3 \times(-7-2 \pi)-\ln 2 \times(-9)+2 \times(\pi-28)$
$\circ=-77-4 \pi+9 \ln 2$
- Matrix Multiplication
\circ Let $P=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{cccc}C_{11} & C_{21} & \cdots & C_{n 1} \\ C_{12} & C_{22} & \cdots & C_{n 2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1 n} & C_{2 n} & \cdots & C_{n n}\end{array}\right]$
- $P_{11}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}=\operatorname{det} A$
- $P_{21}=a_{21} C_{11}+a_{21} C_{12}+\cdots++a_{21} C_{1 n}=0$
- Because we have two equal row
- Therefore $P=\operatorname{det} A\left[\begin{array}{lll}1 & & \\ & \ddots & \\ & & 1\end{array}\right]$

11/8

Wednesday, November 8, 2017

Effect of Row Operations on Determinants

Row Operation	Determinant
Row $A \rightarrow$ Row $A+c \cdot$ Row B	$\operatorname{det} M \rightarrow \operatorname{det} M$
Row $A \rightarrow c \cdot$ Row A	$\operatorname{det} M \rightarrow c \cdot \operatorname{det} M$
Row $A \stackrel{\text { switch }}{\longleftrightarrow}$ Row B	$\operatorname{det} M \rightarrow-\operatorname{det} M$

Understanding of Matrix Multiplication in terms of Linear Map Composition

- Motivation
- $V \xrightarrow{T} W \xrightarrow{S} Z$
- Setup

○ $\left\{e_{1} \ldots e_{n}\right\}$: basis of V

- $\left\{f_{1} \ldots f_{m}\right\}$: basis of W
- $\left\{g_{1} \ldots g_{k}\right\}$: basis of Z
- Let $m(T)=\left(t_{i j}\right)$
- Let $m(S)=\left(s_{i j}\right)$
- Claim
- $m(S) \cdot m(T)=m(S T)$
- Proof
- $T\left(e_{i}\right)=\sum_{j=1}^{m} t_{i j} f_{j}$
- $S\left(f_{j}\right)=\sum_{k=1}^{r} s_{j k} g_{k}$
- $S T\left(e_{i}\right)=\sum_{j=1}^{m} \sum_{k=1}^{r} t_{i j} s_{j k} g_{k}$
- Which is the same as matrix multiplication

11/9

Expansion by Rows Theorem

- Cofactor Matrix
- $C_{k l}=(-1)^{k+l}\left\{\begin{array}{c}(n-1) \times(n-1) \text { determinant obtained } \\ \text { by deleting row } k \text { and column } l \\ \text { from the original determinant }\end{array}\right\}$
- Determinant and Cofactor Matrix
$\circ \operatorname{det}(A)=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=a_{k 1} C_{k 1}+a_{k 2} C_{k 2}+\cdots+a_{k n} C_{k n}$
$\circ\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right] \underbrace{\left[\begin{array}{cccc}C_{11} & C_{21} & \cdots & C_{n 1} \\ C_{12} & C_{22} & \cdots & C_{n 2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1 n} & C_{2 n} & \cdots & C_{n n}\end{array}\right]}_{\text {adjugate matrix of } A: \operatorname{adj}(A)}=\operatorname{det} A \cdot\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$
- Expansion by Rows

$$
\begin{aligned}
& \quad\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \\
& \circ\left|\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=x_{1} C_{11}+x_{2} C_{12}+\cdots+x_{n} C_{1 n}
\end{aligned}
$$

- Calculating $A \cdot \operatorname{adj}(A)$
- Expanding $A \cdot \operatorname{adj}(A)$

$$
\begin{aligned}
& \text { • }\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right] \\
& \text { • }=\left[\begin{array}{cccc}
\sum_{k=1}^{n} a_{1 k} C_{1 k} & \sum_{k=1}^{n} a_{1 k} C_{2 k} & \cdots & \sum_{k=1}^{n} a_{1 k} C_{n k} \\
\sum_{k=1}^{n} a_{2 k} C_{1 k} & \sum_{k=1}^{n} a_{2 k} C_{2 k} & \cdots & \sum_{k=1}^{n} a_{2 k} C_{n k} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{k=1}^{n} a_{n k} C_{1 k} & \sum_{k=1}^{n} a_{n k} C_{2 k} & \cdots & \sum_{k=1}^{n} a_{n k} C_{n k}
\end{array}\right]
\end{aligned}
$$

- Where

$$
\text { - } \sum_{k=1}^{n} a_{1 k} C_{1 k}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=\operatorname{det} A
$$

- $\sum_{k=1}^{n} a_{1 k} C_{2 k}=\left|\begin{array}{cccc}a_{21} & a_{22} & \cdots & a_{2 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=0$
- :
- Conclusion
- $A \cdot \operatorname{adj}(A)=\left[\begin{array}{llll}\operatorname{det} A & & & \\ & \operatorname{det} A & & \\ & & \ddots & \\ & & & \operatorname{det} A\end{array}\right]=\operatorname{det} A\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$
- Theorem
- $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible and $A^{-1}=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj}(A)$
- $\operatorname{det}(A)=0 \Leftrightarrow A$ is not invertible
- Example
- Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
- Cofactor Matrix
- $C=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]=\left[\begin{array}{cc}d & -c \\ -b & a\end{array}\right]$
- Adjugate Matrix
- $\operatorname{adj}(A)=C^{T}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
- Determinant
- $\operatorname{det} A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
- Inverse Matrix
- $A^{-1}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj}(A)=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Cramer's Rule

- Trying to solve the following system of equations
$\circ\left\{\begin{array}{c}a_{11} x_{1}+\cdots+a_{1 n} x_{n}=y_{1} \\ \vdots \\ a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=y_{n}\end{array}\right.$
- It can be written in matrix form
- $A x=y$, Where

○ $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$

- $y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$

○ $A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]$

- Solve x in matrix form, we get
- $x=A^{-1} y=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj}(A) \cdot y$
$\circ\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\frac{1}{\operatorname{det} A}\left[\begin{array}{ccc}C_{11} & \cdots & C_{n 1} \\ \vdots & \ddots & \vdots \\ C_{1 n} & \cdots & C_{n n}\end{array}\right]\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$
- In particular
$\bigcirc x_{1}=\frac{1}{\operatorname{det} A}\left(C_{11} y_{1}+C_{21} y_{2}+\cdots+C_{n 1} y_{n}\right)=\frac{\left|\begin{array}{cccc}y_{1} & a_{12} & \cdots & a_{1 n} \\ y_{2} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n} & a_{n 2} & \cdots & a_{n n}\end{array}\right|}{\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|}$
- In general
$\bigcirc x_{k}=\frac{1}{\operatorname{det} A}\left(C_{11} y_{1}+C_{21} y_{2}+\cdots+C_{n 1} y_{n}\right)=\frac{\left|\begin{array}{ccccc}a_{11} & \ldots & y_{1} & \cdots & a_{1 n} \\ a_{21} & \ldots & y_{2} & \cdots & a_{2 n} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ a_{n 1} & \cdots & y_{n} & \cdots & a_{n n}\end{array}\right|}{\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|}$
- Where y_{i} is at the $k^{\text {th }}$ column

Linear Independence and Determinant

- Theorem
- Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be vectors with
- $v_{1}=\left[\begin{array}{c}a_{11} \\ \vdots \\ a_{n 1}\end{array}\right], \ldots, v_{n}=\left[\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right]$

○ Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is independent $\Leftrightarrow\left|\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right| \neq 0$

- Example
- Are $\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ \alpha \\ \beta\end{array}\right]$ dependent?
- If $\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 1 & \alpha \\ 4 & 4 & \beta\end{array}\right]=0$, then yes
- Proof
- $c_{1} v_{1}+\cdots+c_{n} v_{n}$
$\circ=c_{1}\left[\begin{array}{c}a_{11} \\ \vdots \\ a_{n 1}\end{array}\right]+\cdots+c_{n}\left[\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right]$
$0=\left[\begin{array}{c}a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 n} c_{n} \\ \vdots \\ a_{n 1} c_{1}+a_{n 2} c_{2}+\cdots+a_{n n} c_{n}\end{array}\right]$
$\bigcirc=\underbrace{\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]}_{c}$
- Prove: $\operatorname{det} A \neq 0 \Rightarrow\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent
- Suppose $\operatorname{det} A \neq 0$, then A^{-1} exists
- If $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$, then $A c=0$
- And $c=A^{-1} A c=A^{-1}(0)=0$
- So $\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$
- i.e. $c_{1}=c_{2}=\cdots=c_{n}=0$
- Therefore $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent
- Prove: $\operatorname{det} A=0 \Rightarrow\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent
- Suppose $\operatorname{det} A=0$
- Then A is not invertible
- Since A is a square matrix this means A is not injective
- Therefore $N(A) \neq\{0\}$
- i.e. There exists a vector $c \neq 0$ with $A c=0$
- Since $A c=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0$
- We can find that there are $c_{1}, \ldots c_{n}$,
- at least one of which is non-zero with $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$
- Therefore $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent

11/13

Monday, November 13, 2017

Question 1

- $A=\left(\begin{array}{ccc}1 & 1 & a \\ -1 & 1 & b \\ 0 & 2 & c\end{array}\right)$
- For which $a, b, c \in \mathbb{R}$ is A invertible?
- When A is invertible, find A^{-1}
- Answer:
- $\operatorname{det} A=-2 a-2 b+2 c$
- $\operatorname{cof} \mathrm{A}=\left(\begin{array}{ccc}c-2 b & c & -2 \\ 2 a-c & c & -2 \\ b-a & -a-b & 2\end{array}\right)$
$\circ \operatorname{adj} \mathrm{A}=(\operatorname{cof} \mathrm{A})^{\mathrm{T}}=\left(\begin{array}{ccc}c-2 b & 2 a-c & b-a \\ c & c & -a-b \\ -2 & -2 & 2\end{array}\right)$
○ $A^{-1}=\frac{1}{-2 a-2 b+c}\left(\begin{array}{ccc}c-2 b & 2 a-c & b-a \\ c & c & -a-b \\ -2 & -2 & 2\end{array}\right)$
- Where $a+b \neq c$

Question 2

- Let A be square matrix such that $A^{k}=0$ for some k
- Prove or find a counterexample : $I-A$ is invertible
- Answer:
- $I=I-A^{k}=(I-A)\left(I+A+A^{2}+\cdots A^{k-1}\right)$
- Therefore $I-A$ is invertible
- Note:
- A is called Nilpotent matrix

11/14

Eigenvalues and Eigenvectors

- Definition
- If $T: V \rightarrow V$ is linear and V is a vector space
- Then $v \in V$ is an eignevector of T with eigenvalue λ if
- $v \neq 0$
- $T v=\lambda v$
- Example
- Suppose you have two eigenvectors
- $v, w \in V$ with $T v=\lambda v, T w=\mu w$
- Then
- $T(2 v+3 w)=2 T v+3 T w=2 \lambda v+3 \mu w$
- Find a solution to $T x=v+w$
- Try $x=a v+b w$
- Then $T x=T(a v+b w)$
- $=\lambda a v+\mu b w$
- $=v+w$
- $\stackrel{?}{\Rightarrow}\left\{\begin{array}{l}\lambda a=1 \\ \mu b=1\end{array} \Rightarrow\left\{\begin{array}{l}a=\frac{1}{\lambda} \\ b=\frac{1}{\mu}\end{array}(\right.\right.$ if $\lambda, \mu \neq 0)$
- Therefore $x=\frac{1}{\lambda} v+\frac{1}{\mu} w$
- Compute $T^{2017}(2 v+3 w)$
- $T^{2017}(2 v+3 w)$
- $=T^{2016}(2 \lambda v+3 \mu w)$
- $=T^{2015}\left(2 \lambda^{2} v+3 \mu^{2} w\right)$
- :
- $=2 \lambda^{2017} v+3 \mu^{2017} w$
- Fibonacci Number
- $f_{n}=\left\{\begin{array}{cc}0 & n=0 \\ 1 & n=1 \\ f_{n-1}+f_{n-2} & n \geq 2\end{array}\right.$
- For example
- $f_{0}=0$
- $f_{1}=1$
- $f_{2}=1$
- $f_{3}=2$
- $f_{4}=3$
- :
- It could be viewed as a sequence of vectors
- $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right] \ldots$
- Consider
- $x_{n}=\left[\begin{array}{c}f_{n} \\ f_{n-1}\end{array}\right]$

- Try to compute
- $x_{2017}=\left[\begin{array}{l}f_{2017} \\ f_{2016}\end{array}\right]=T\left[\begin{array}{l}f_{2016} \\ f_{2015}\end{array}\right]=\cdots=T^{2016}\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- If we had two eigenvectors/eigenvalues for T
- And $\left[\begin{array}{l}1 \\ 0\end{array}\right]=a v+b w$
- Then $\left[\begin{array}{l}f_{2017} \\ f_{2016}\end{array}\right]=\lambda^{2016} a v+\mu^{2016} b w$
- Eigenvector Equation
- By definition, if $T: V \rightarrow V$ is linear and V is a vector space
- Then $v \in V$ is an eignevector of T with eigenvalue if
- $v \neq 0$, and $T v=\lambda v$
- $\Rightarrow T v=\lambda I v$
- $\Rightarrow T v-\lambda I v=0$
- $\Rightarrow(T-\lambda I) v=0$
- $\Leftrightarrow v \in \operatorname{Null}(T-\lambda I)$
- Therefore
- v is an eigenvector with eigenvalue λ
- $\Rightarrow 0 \neq v \in \operatorname{Null}(T-\lambda I)$
- $\Rightarrow T-\lambda I$ is not injective
- Theorem
- If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by matrix multipication
- Then λ is an eigenvalue of T if and only if
- $\operatorname{det}(T-\lambda I)=0$
- Proof
- $V=\mathbb{R}^{n}$ or \mathbb{C}^{n}
- $T x=\left[\begin{array}{ccc}t_{11} & \cdots & t_{1 n} \\ \vdots & \ddots & \vdots \\ t_{n 1} & \cdots & t_{n n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$
$\circ \quad T-\lambda I=\left[\begin{array}{cccc}t_{11}-\lambda & t_{12} & \cdots & t_{1 n} \\ t_{21} & t_{22}-\lambda & \cdots & t_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{n 1} & t_{n 2} & \cdots & t_{n n}-\lambda\end{array}\right]$
- Fibonacci Example
- $T=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
- $\operatorname{det}(T-\lambda I)=\left|\begin{array}{cc}1-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=\lambda^{2}-\lambda-1 \stackrel{?}{=} 0$
- Solving for eigenvalue and eigenvector
- For $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}\right)$
- $\operatorname{det}(T-\lambda I)$ is called the characteristic polynimal of T
- $\operatorname{det}(T-\lambda I)$
- $=\left|\begin{array}{cccc}t_{11}-\lambda & t_{12} & \cdots & t_{1 n} \\ t_{21} & t_{22}-\lambda & \cdots & t_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{n 1} & t_{n 2} & \cdots & t_{n n}-\lambda\end{array}\right|$
- $=(-\lambda)^{n}+c_{1}(-\lambda)^{n-1}+\cdots+c_{n-1}(-\lambda)+c_{n}$
- Where $c_{1}=\operatorname{tr}(T), c_{n}=\operatorname{det} T$
- By Fundamental Theorem of Algebra
- $\operatorname{det}(T-\lambda I)$
- $=(-\lambda)^{n}+c_{1}(-\lambda)^{n-1}+\cdots+c_{n-1}(-\lambda)+c_{n}$
- $=(-\lambda)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$
- $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ is called the eigentvalue of T
- Given eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
- We can find eigenvectors N_{1}, \ldots, N_{n} by
- $N_{1} \in N\left(T-\lambda_{1} I\right)$
- $N_{2} \in N\left(T-\lambda_{2} I\right)$
-
- $N_{n} \in N\left(T-\lambda_{n} I\right)$
- Theorem
- $T: V \rightarrow V$
- $v_{1}, \ldots, v_{k} \in V$ are eigenvectors
- with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$

○ then $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly indelendent

- Proof
- By induction on k
- When $k=1$
- Given $v_{1} \in V, v_{1} \neq 0, T v_{1}=\lambda_{1} v_{2}$
- Then $\left\{v_{1}\right\}$ is independent because $v_{1} \neq 0$
- When $k>1$
- Assume Theorem true for $k-1$
- Suppose $T v_{1}=\lambda_{1} v_{1}, \ldots, T v_{k}=\lambda_{k} v_{k}$
- $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$, and all $v_{i} \neq 0$
- Suppose $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0$
- $\Rightarrow\left\{\begin{array}{l}\lambda_{k} c_{1} v_{1}+\lambda_{k} c_{2} v_{2}+\cdots+\lambda_{k} c_{k} v_{k}=0 \\ \lambda_{1} c_{1} v_{1}+\lambda_{1} c_{2} v_{2}+\cdots+\lambda_{1} c_{k} v_{k}=0\end{array}\right.$
- $\Rightarrow\left(\lambda_{k}-\lambda_{1}\right) c_{1} v_{1}+\cdots+\left(\lambda_{k}-\lambda_{k-1}\right) c_{k-1} v_{k-1}=0$
- Since Theorem is true for $k-1$
- $\Rightarrow\left\{v_{1}, \ldots, v_{k-1}\right\}$ is linearly independent
- $\Rightarrow\left\{\begin{array}{c}\underbrace{\left(\lambda_{k}-\lambda_{1}\right)}_{\neq 0} c_{1}=0 \\ \vdots \\ \underbrace{\left(\lambda_{k}-\lambda_{k-1}\right)}_{\neq 0} c_{k-1}=0\end{array}\right.$
- $\Rightarrow c_{1}=c_{2}=\cdots=c_{k-1}=0$
- Therefore $c_{k} v_{k}=0$
- Since $v_{k} \neq 0$, we find $c_{k}=0$
- $\Rightarrow\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independet

11/15

Wednesday, November 15, 2017

Theorem

- Statement
- If $\operatorname{dim} V=\operatorname{dim} W<\infty$, then for linear map $T: V \rightarrow W$
- injective \Leftrightarrow surjective \Leftrightarrow bijective
- Proof
- By Rank-Nullity Theorem
- $\operatorname{dim} W=\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} \operatorname{Range}(T)$
- If T is injective
- $\Rightarrow \operatorname{dim} N(T)=0$
- $\Rightarrow \operatorname{dim} W=\operatorname{dim} \operatorname{Range}(T)$
- $\Rightarrow T$ is surjective
- $\Rightarrow T$ is bijective
- If T is not injective
- $\Rightarrow \operatorname{dim} N(T)>0$
- $\Rightarrow \operatorname{dim} W \neq \operatorname{dim} \operatorname{Range}(T)$
- $\Rightarrow T$ is not surjective
- $\Rightarrow T$ is not bijective

Left Inverse and Right Inverse

- If both left inverse and right inverse exists
- Then they are the same
- Suppose
- $f: V \rightarrow W$
- $g, h: W \rightarrow V$
- $g f=i d_{V}$ (i.e. g is the left inverse of T)
- $f h=i d_{w}$ (i.e. h is the right inverse of T)
- Then
- $g=g(f h)=(g f) h=h$

Injective and Null Space

- Proof: T injective $\Rightarrow N(T)=\{0\}$
- If T is injective
- then the only one element mapped to 0 is 0 itself.
- Therefore $N(T)=\{0\}$
- Proof: $N(T)=\{0\} \Rightarrow T$ injective
- If $T(x)=T(y)$, then
- $T(x)-T(y)=T(x-y)=0$
- So $x-y \in N(T)$
- $\Rightarrow x=y$
- Therefore T is injective

$11 / 20$

Eigenvalues and Eigenvectors

- Definition
- $T: V \rightarrow V$ linear, for $\left\{\begin{array}{l}x \in V \\ \lambda \in \mathbb{C}\end{array},(x \neq 0)\right.$
- We say x is an eigentvector for T with eigenvalue λ if $T x=\lambda x$
- Note
- $T x=\lambda x$
- $\Rightarrow T x-\lambda x=0$
- $\Rightarrow(T-\lambda I) x=0$
- $\Rightarrow x \in N(T-\lambda I)$

Find all eigenvalues and eigenvectors

- $T=I$
- $T x=1 x, \quad \forall x \in V$
- Eigenvalue $=1$ with eigenvectors of all elements in V
- $T=0$
- $T x=0 x, \quad \forall x \in V$
- Eigenvalue $=0$ with eigenvectors of all elements in V
- $T=\left[\begin{array}{lll}{ }^{C_{1}} & & \\ & \ddots & \\ & & c_{n}\end{array}\right], \quad\left(c_{i} \neq c_{j}\right.$ for $\left.i=j\right)$
$\bigcirc\left[\begin{array}{lll}c_{1} & & \\ & \ddots & \\ & & c_{n}\end{array}\right] e_{i}=c_{i} e_{i}$
- Eigenvalue $=c_{i}$ with eigenvector of $t e_{i},(t \in \mathbb{R}, t \neq 0)$
- $T=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
- $\operatorname{det}(T-\lambda I)=0$
- $\left|\begin{array}{cc}1-\lambda & 2 \\ 2 & 1-\lambda\end{array}\right|=0$
- $(\lambda-3)(\lambda+1)=0$
- $\lambda=3$
- $\left[\begin{array}{cc}1-3 & 2 \\ 2 & 1-3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow x=y$
- Eigenvector: $\left[\begin{array}{l}t \\ t\end{array}\right](t \in \mathbb{R}, t \neq 0)$
- $\lambda=-1$
- $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow x+y=0$
- Eigenvector: $t\left[\begin{array}{c}1 \\ -1\end{array}\right](t \in \mathbb{R}, t \neq 0)$
- $T=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
- $\operatorname{det}(T-\lambda I)=0$
- $\left|\begin{array}{cc}-\lambda & -1 \\ 1 & -\lambda\end{array}\right|=0$
- $\lambda^{2}+1=0$
- $\lambda=i$
. $\left[\begin{array}{cc}-i & -1 \\ 1 & -i\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow y=-i x$
- Eigenvector: $t\left[\begin{array}{c}1 \\ -i\end{array}\right](t \in \mathbb{C}, t \neq 0)$
- $\lambda=-i$
- $\left[\begin{array}{cc}i & -1 \\ 1 & i\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow y=i x$
- Eigenvector: $t\left[\begin{array}{l}1 \\ i\end{array}\right](t \in \mathbb{C}, t \neq 0)$

Multiplicity of Eigenvalues

- $T=\left[\begin{array}{lll}3 & & \\ & 3 & \\ & & 4\end{array}\right]$
- Eigenvalues: $\lambda=3$ or $\lambda=4$
$\circ \operatorname{dim} N(T-\lambda I)=\left\{\begin{array}{cc}2 & \lambda=3 \\ 1 & \lambda=4 \\ 0 & \text { otherwise }\end{array}\right.$

11/21

Eigenvalues and Eigenvectors

- Definition
- If $T: V \rightarrow V$ is linear and V is a vector space
- Then $v \in V$ is an eignevector of T with eigenvalue λ if
- $v \neq 0$
- $T v=\lambda v$
- Theorem
- Linear transformation $\mathcal{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (or $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$)
$\circ \operatorname{matrix}(\mathcal{T})=T=\left[\begin{array}{ccc}t_{11} & \cdots & t_{1 n} \\ \vdots & \ddots & \vdots \\ t_{n 1} & \cdots & t_{n n}\end{array}\right]$
- Then λ is an eigenvalue of \mathcal{T} if
- $\operatorname{det}(T-\lambda I)=0$
- Characteristic Polynomial
- $\operatorname{det}(T-\lambda I)$ is the called characteristic polynomial of T
$\circ f(\lambda)=\operatorname{det}(T-\lambda I)=\left|\begin{array}{cccc}t_{11}-\lambda & t_{12} & \cdots & t_{1 n} \\ t_{21} & t_{22}-\lambda & \cdots & t_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{n 1} & t_{n 2} & \cdots & t_{n n}-\lambda\end{array}\right|$
$\circ=(-\lambda)^{n}+c_{1}(-\lambda)^{n-1}+\cdots+c_{n-1}(-\lambda)+c_{n}$
- How to Find Eigenvalues
- Solve $\operatorname{det}(T-\lambda I)=0$
- Get roots $\lambda_{1}, \ldots, \lambda_{n}$ (possibly repeated)
- How to Find Eigenvectors
- Solve $(T-\lambda I) v=0$
- For $\lambda=\lambda_{1}, \lambda=\lambda_{2}, \ldots, \lambda=\lambda_{n}$
- ($T-\lambda I) v=0$ is n equations with n unknowns
- Typically $v=0$ is the only solution for some $\lambda=\lambda_{i}$
- Then $\operatorname{det}(T-\lambda I)=0$, and there is a solution $v \neq 0$
- Coefficients of Characteristic Polynomial
- By definition
- $f(\lambda)=(-\lambda)^{n}+c_{1}(-\lambda)^{n-1}+\cdots+c_{n-1}(-\lambda)+c_{n}$
- By Fundamental Theorem of Algebra
- $f(\lambda)=a\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$
- Comparing the coefficient of $(-\lambda)^{n}$, we get
- $a=1$
- Setting $\lambda=0$ to both polynomials we get

$$
c_{n}=\operatorname{det} T=\lambda_{1} \lambda_{2} \ldots \lambda_{n}
$$

- By Vieta's Formula
- $c_{1}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$
- $c_{2}=\sum_{1 \leq i<j \leq n} \lambda_{i} \lambda_{j}$
- Expand the first row of determinant to find c_{1}

$$
\begin{aligned}
& \text { - }\left|\begin{array}{cccc}
t_{11}-\lambda & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22}-\lambda & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n 1} & t_{n 2} & \cdots & t_{n n}-\lambda
\end{array}\right| \\
& \cdots=\left|\begin{array}{cccc}
-\lambda & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22}-\lambda & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n 1} & t_{n 2} & \cdots & t_{n n}-\lambda
\end{array}\right|+\left|\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22}-\lambda & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n 1} & t_{n 2} & \cdots & t_{n n}-\lambda
\end{array}\right| \\
& \text { - }=(-\lambda)\left|\begin{array}{ccc}
t_{22}-\lambda & \cdots & t_{2 n} \\
\vdots & \ddots & \vdots \\
t_{n 2} & \cdots & t_{n n}-\lambda
\end{array}\right|+t_{11} \underbrace{\left|\begin{array}{ccc}
t_{22}-\lambda & \cdots & t_{2 n} \\
\vdots & \ddots & \vdots \\
t_{n 2} & \cdots & t_{n n}-\lambda
\end{array}\right|}_{\text {terms with }(-\lambda)^{n-1}}+\cdots \\
& \text { - }=(-\lambda) \underbrace{\left|\begin{array}{ccc}
t_{22}-\lambda & \cdots & t_{2 n} \\
\vdots & \ddots & \vdots \\
t_{n 2} & \cdots & t_{n n}-\lambda
\end{array}\right|}_{\text {looking for terms with }(-\lambda)^{n-2}}+t_{11}(-\lambda)^{n-1}+\cdots
\end{aligned}
$$

- Repeat this procedure, we get
- $c_{1}=t_{11}+t_{22}+\cdots+t_{n n}$
- Note:

$$
c_{1}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=t_{11}+t_{22}+\cdots+t_{n n}
$$

- Theorem

$$
\begin{aligned}
& \prod_{i=1}^{n} \lambda_{i}=\operatorname{det} T \\
& \circ \sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} t_{i i}
\end{aligned}
$$

- Trace of Matrix
- Matrix: $T=\left[\begin{array}{ccc}t_{11} & \cdots & t_{1 n} \\ \vdots & \ddots & \vdots \\ t_{n 1} & \cdots & t_{n n}\end{array}\right]$
- Eigenvalues: $\lambda_{1}, \ldots, \lambda_{n}$
- Characteristic polynomial: $f(\lambda)$
- The sum of the roots of $f(\lambda)$ is called the trace of T, denoted as $\operatorname{tr}(T)$

○ $\operatorname{tr}(T)=\sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} t_{i i}$

- Theorem
- If v_{1}, \ldots, v_{k} are eigenvectors of T with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$
- And if $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$
- Then $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent
- Theorem:
- If T is a $n \times n$ matrix and all eigenvalues are different
- Then $\left\{v_{1}, \ldots v_{n}\right\}$ is a basis for $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$
- Diagonalization
- T is the linear transformation with eigenvectors v_{1}, \ldots, v_{n}
- Consider $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- $V\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \stackrel{\text { def }}{=} x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}$
- $V e_{k}=0 v_{1}+\cdots+1 v_{k}+\cdots+0 v_{n}=v_{k}$
- Matrix of V
- Let $v_{1}=\left[\begin{array}{c}v_{11} \\ \vdots \\ v_{n 1}\end{array}\right], v_{1}=\left[\begin{array}{c}v_{12} \\ \vdots \\ v_{n 2}\end{array}\right], \ldots, v_{n}=\left[\begin{array}{c}v_{1 n} \\ \vdots \\ v_{n n}\end{array}\right]$
- $V=\left[\begin{array}{ccc}v_{11} & \cdots & v_{1 n} \\ \vdots & \ddots & \vdots \\ v_{n 1} & \cdots & v_{n n}\end{array}\right]$
- V is invertible
- Because if $x=x_{1} e_{1}+\cdots+x_{n} e_{n} \in N(V)$
- Then $V x=x_{1} v_{1}+\cdots+x_{n} v_{n}=0$
- $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent
- $\Rightarrow x_{1}=x_{2}=\cdots=x_{n}=0$
- $\Rightarrow N(V)=\{0\}$
- Let $\Lambda=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$
- $\Lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \Lambda e^{k}=\lambda e^{k}$
- Let $x=x_{1} e_{1}+\cdots+x_{n} e_{n}$
- $V \Lambda x$
- $=V\left(\Lambda\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)\right)$
- $=V\left(x_{1} \Lambda e_{1}+\cdots+x_{n} \Lambda e_{n}\right)$
$\square=V\left(x_{1} \lambda_{1} e_{1}+\cdots+x_{n} \lambda_{n} e_{n}\right)$
$\square=x_{1} \lambda_{1} V e_{1}+\cdots+x_{n} \lambda_{n} V e_{n}$
$\square=x_{1} \lambda_{1} v_{1}+\cdots+x_{n} \lambda_{n} v_{n}$
- TVx
- $=T\left(V\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)\right)$
$\square=T\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right)$
$\square=x T v_{1}+\cdots+x T v_{n}$
$\square=x_{1} \lambda_{1} v_{1}+\cdots+x_{n} \lambda_{n} v_{n}$
- Therefore $T V=V \Lambda$
- Multiply V^{-1} on the left, we have

$$
\text { - } V^{-1} T V=V^{-1} V \Lambda=\Lambda
$$

- Multiply V^{-1} on the right, we have

$$
\square T=T V V^{-1}=V \Lambda V^{-1}
$$

- Application
- If you knew Λ, V, V^{-1}, then
- $T^{m}=\left(V \Lambda V^{-1}\right)^{m}=V \Lambda V^{-1} \cdot V \Lambda V^{-1} \cdots V \Lambda V^{-1}=V \Lambda^{m} V^{-1}$
- Λ^{m} is easy to calculate: $\Lambda^{m}=\left[\begin{array}{lll}\lambda_{1}^{m} & & \\ & \ddots & \\ & & \lambda_{n}^{m}\end{array}\right]$

11/22

Wednesday, November 22, 2017

Theorem

- V has a basis v_{1}, \ldots, v_{n}, and another basis w_{1}, \ldots, w_{n}
- Let T be a linear transformation $V \rightarrow V$
- Define the following matrices
- $A:=\operatorname{matrix}\left(T, v_{i}\right)$
- $B:=\operatorname{matrix}\left(T, w_{i}\right)$

○ $C:=\forall i \in\{1, \ldots, n\}, C\left(w_{i}\right)=v_{i}$

- Then $B=C^{-1} A C$

Question

- Given
- $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- $f(T)=(2-\lambda)^{2}(3-\lambda)$
- $\operatorname{dim}(\operatorname{Null}(T-2 I))=1$
- Find T
- $T=\left[\begin{array}{lll}2 & 1 & 0 \\ * & 2 & 0 \\ 0 & * & 3\end{array}\right]$
- For $\lambda=2$
- $T v=2 v$
- $\Rightarrow v=k\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

11/27

Question 1

- Question
- Let $\theta \in \mathbb{R}$.
- Find all eigenvalues and eigenvectors of the following matrix
- $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
- Answer
- $|A-\lambda I|=\left|\begin{array}{cc}\cos \theta-\lambda & -\sin \theta \\ \sin \theta & \cos \theta-\lambda\end{array}\right|=(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0$
- $\Rightarrow \lambda^{2}-(2 \cos \theta) \lambda+1=0$
- $\Rightarrow \lambda=\cos \theta \pm i \sin \theta$
- When $\lambda_{1}=\cos \theta-i \sin \theta$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
i \sin \theta & -\sin \theta \\
\sin \theta & i \sin \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \\
& \text { : }\left\{\begin{array}{c}
i \sin \theta x_{1}-\sin \theta x_{2}=0 \\
\sin \theta x_{1}+i \sin \theta x_{2}=0
\end{array} \Rightarrow i x_{1}=x_{2}\right. \\
& \text { ? } \Rightarrow v_{1}=t(1, i), \quad t \in \mathbb{C}
\end{aligned}
$$

- When $\lambda_{2}=\cos \theta+i \sin \theta$
- $\left[\begin{array}{cc}-i \sin \theta & -\sin \theta \\ \sin \theta & -i \sin \theta\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=0$
- $\left\{\begin{array}{c}-i \sin \theta x_{1}-\sin \theta x_{2}=0 \\ \sin \theta x_{1}-i \sin \theta x_{2}=0\end{array} \Rightarrow-i x_{1}=x_{2}\right.$
- $\Rightarrow v_{1}=t(1,-i), \quad t \in \mathbb{C}$

Question 2

- Question
- Let V be a vector space and let $T: V \rightarrow V$ be a linear map
- Suppose $x \in V$ is an eigenvector for T with eigenvalue λ.
- Prove that, for each polynomial,
- the linear map $P(T)$ has eigenvector x with eigenvalue $P(\lambda)$
- Answer
- Let $P(\lambda)=c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}$
- $(P(T))(x)$
- $=\left(c_{n} T^{n}+c_{n-1} T^{n-1}+\cdots+c_{1} T+c_{0}\right)(x)$
$0=c_{n} T^{n}(x)+c_{n-1} T^{n-1}(x)+\cdots+c_{1} T(x)+c_{0} x$
- $=c_{n} \lambda^{n} x+c_{n-1} \lambda^{n-1} x+\cdots+c_{1} \lambda x+c_{0} x$
$\circ=\left(c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}\right) x$
- $=(P(\lambda)) x$

Question 3

- Given
- Let V be a vector space and let $T: V \rightarrow V$ be a linear map
- Let c be a scalar.
- Suppose T^{2} has an eigenvalue c^{2}
- Prove
- T has either c or $-c$ as an eigenvalue
- Proof
- $\exists x \in V, \neq 0$
- $\left(T^{2}-c^{2} I\right) x=0$
- $(T+c I)[(T-c I) x]=0$
- When $(T-c I) x \neq 0$
- $(T-c I) x$ is a eigenvector for T with eigenvalue of $-c$
- When $(T-c I) x=0$
- x is a eigenvector for T with eigenvalue of c

Question 4

- Given
- Let V be a vector space and let $T: V \rightarrow V$ be a linear map
- Suppose $x, y \in V$ are eigenvectors of T with eigenvalues λ and μ.
- Prove
- If $a x+b y(a, b \in \mathbb{R})$ is an eigenvector of T,
- then $a=0$ or $b=0$ or $\lambda=\mu$
- (To be continued)

11/28

Tuesday, November 28, 2017

Open Balls and Open Sets

- Open Interval

open interval (a, b)
- Closed Interval

closed interval $[a, b]$
- Interior Point
- $E \subseteq \mathbb{R}^{n}$ is a subset
- $p \in E$ is an interior point if there is an $r>0$
- such that $B_{r}(p) \subseteq E$
- where $B_{r}(p)$ is the open disc of radius centered at p
- $B_{r}(p)=\left\{x \in \mathbb{R}^{n} \mid\|x-p\|<r\right\}$

The point a is an interior point of S .

- Koch's Snowflake

- Open Sets
- $E \subseteq \mathbb{R}^{n}$ is open if all $x \in E$ are interior points in E
- Example

- Boundary Point
- A point $p \in \mathbb{R}^{n}$ is a boundary point for E if for every $r>0$
- $B_{r}(p)$ contains x, y with $x \in E$ and $y \notin E$

$x \in E, y \& E$
 $u . v$ ore both boundary point

Limits and Continuity

- Limits
- $\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{\|x-a\| \rightarrow 0}\|f(x)-L\|=0$
- If $x \rightarrow a$, then $f(x) \rightarrow L$
- Properties
- If $f(x) \rightarrow L \in \mathbb{R}^{m}, g(x) \rightarrow M \in \mathbb{R}^{m}$, when $x \rightarrow a$, then
- $f(x) \pm g(x) \rightarrow L \pm M$
- $f(x) \cdot g(x) \rightarrow L \cdot M$
- $\|f(x)\| \rightarrow\|L\|$
- $\frac{f(x)}{g(x)} \rightarrow \frac{L}{M}$
- (only when $\left.n=1, f(x), g(x) \in \mathbb{R}^{n}\right)$
- Graph
- Graph of $f=\{(x, y, z) \mid z=f(x, y)\}$
- Continuity
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $a \in \mathbb{R}^{n}$
- if $\lim _{x \rightarrow a} f(x)=f(a)$
- Continuous Function Example
- $f\left(x_{1}, \ldots, x_{n}\right)=x_{k}$
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Properties
- If f, g is continuous
- Then $f \pm g, f g, \frac{f}{g}(g(a) \neq 0)$ are continuous
- Example
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & x=y=0\end{array}\right.$
- f is continuous at all point except $(0,0)$
- Let $(x, y) \rightarrow(0,0)$ along a straight line with angle θ
- $x=r \cos \theta, \quad y=r \sin \theta$
- $f(x, y)=\frac{x y}{x^{2}+y^{2}}=\frac{r^{2} \sin \theta \cos \theta}{r^{2} \cos ^{2} \theta+r^{2} \sin \theta}=\cos \theta \sin \theta$
- Note that $f(x, y)$ does not depend on r
- $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\sin \theta \cos \theta$ along line
with angle θ

- When $\theta=\frac{\pi}{2} \Rightarrow f=0$, when $\theta=\frac{\pi}{4} \Rightarrow f=\frac{1}{2} \cdots$
- Therefore we get the counter plot near origin

- And the graph near 0

Derivative

- Directional Derivative
- $D_{h} f(x)=\nabla_{h} f(x)=f^{\prime}(x ; \vec{h})=d f_{x} \cdot h$
$0=\lim _{t \rightarrow 0} \frac{f(x+t \vec{h})-f(x)}{t}$
$\circ=\left[\frac{d}{d t} f(x+t \vec{h})\right]_{t=0}$
- Example
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $f(x)=\|x\|^{2}$
- $f^{\prime}(x ; \vec{h})$
$0=\left[\frac{d}{d t} f(x+t h)\right]_{t=0}$
$0=\left[\frac{d}{d t}\|x+t h\|^{2}\right]_{t=0}$
$\circ=\left[\frac{d}{d t}\left(h^{2} t^{2}+(2 h \cdot x) t+x^{2}\right)\right]_{t=0}$
- $=\left[2 h^{2} t+2 h \cdot x\right]_{t=0}$
- $=2 x \cdot h$
- Partial Derivative
- Total Derivative

Question 1 (from Monday)

- Given
- Let V be a vector space and let $T: V \rightarrow V$ be a linear map
- Suppose $x, y \in V$ are eigenvectors of T with eigenvalues λ and μ.
- Prove
- If $a x+b y(a \neq 0, b \neq 0)$ is an eigenvector of T, then $\lambda=\mu$
- Proof
- $T x=\lambda x, \quad T y=\mu y$
- $\Rightarrow T(a x+b y)=a \lambda x+b \mu y$
- Denote the eigenvalue for $a x+b y$ to be k
- $\Rightarrow T(a x+b y)=k(a x+b y)$
- $\Rightarrow a \lambda x+b \mu y=a k x+b k y$
- $\Rightarrow a(\lambda-k) x-b(\mu-k) y=0$
- If x, y are linearly independet
- $a(\lambda-k)=b(\mu-k)=0$
- Because $a \neq 0, b \neq 0$
- $\Rightarrow \lambda=\mu=k$
- If x, y are linearly dependet
- $x=c y$ for some c
- $T x=c T y=c \mu y=\mu(c y)=\mu x$
- $\Rightarrow \lambda=\mu$

Question 2

- Given
- Let A be a real $n \times n$ matrix such that $A^{2}=-I$
- Note
$\circ\left[\begin{array}{cc}0 & a \\ -1 / a & 0\end{array}\right]^{2}=-I, \quad(a \neq 0)$
- Proof: A is invertibe
- $A(-A)=-A^{2}=-(-I)=I$
- $\Rightarrow A^{-1}=-A$
- $\Rightarrow A$ is invertibe
- Proof: n is even
- Suppose n is odd
- $\operatorname{det} A^{2}=(\operatorname{det} A)^{2} \geq 0$
- $\operatorname{det}(-I)=-1<0$
- Which makes a contradiction
- Therefore n is even
- Proof: A has no real eigenvalues
- Suppose $\exists \lambda \in \mathbb{R}, x \in \mathbb{R}^{n}$, s.t. $A x=\lambda x$
- $A^{2} x=-I x=-x=\lambda^{2} x$
- So $\lambda^{2}=-1 \Rightarrow \lambda= \pm i$
- Which makes a contradiction
- Therefore A has no real eigenvalues
- Proof: $\operatorname{det} A=1($ when $n=2)$

○ $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

- $A^{2}=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & d^{2}+b c\end{array}\right]$
- $\left\{\begin{array}{c}a^{2}+b c=d^{2}+b c=-1 \\ a b+b d=a c+c d=0\end{array}\right.$
$\circ \Rightarrow a d-b c=1$
- Proof: $\operatorname{det} A=1$ (general case)
- $(\operatorname{det} A)^{2}=\operatorname{det} A^{2}=\operatorname{det}(-I)=(-1)^{n}=1$
- $\Rightarrow \operatorname{det} A= \pm 1$
- $A x=\lambda x \Rightarrow \overline{A x}=\overline{\lambda x} \Rightarrow A \bar{x}=\bar{\lambda} \bar{x}$
- Therefore the eigenvalues come in complex conjugate pairs
$\circ \operatorname{det} A=\left(\lambda_{1} \overline{\lambda_{1}}\right)\left(\lambda_{2} \overline{\lambda_{2}}\right) \cdots\left(\lambda_{k} \overline{\lambda_{k}}\right) \geq 0$
- Therefore $\operatorname{det} A=1$

Question 3

- Given
- Let $T: V \rightarrow V$ be a finite-dimensional real linear transformation
- T has no real eigenvalues
- Proof: n is even
- Suppose n is odd
- $f(\lambda)=-\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}$
- As $\lambda \rightarrow \infty, f(\lambda) \Rightarrow-\infty$
- As $\lambda \rightarrow-\infty, f(\lambda) \Rightarrow \infty$
- By the Intermediate Value Theorem
- $f(\lambda)$ must have a real root
- Which makes a contradiction
- Therefore n is even
- Proof: $n=\operatorname{dim} V$

11/30

Thursday, November 30, 2017

Partial Derivative

- Infinitesimal Interpretation of Derivative

- Definition
$\circ \frac{\partial f}{\partial x_{k}}\left(x_{1}, \ldots, x_{n}\right)=\lim _{h \rightarrow 0} \frac{\overbrace{f\left(x_{1}, \ldots, x_{k}+h, \ldots, x_{n}\right)}^{\text {only } x_{k} \text { changes }}-f\left(x_{1}, \ldots, x_{n}\right)}{h}$
- $=$ The derivative of $f\left(x_{1}, \ldots x_{n}\right)$ with respect to x_{k}, with all other variables fixed
- Other Notations
- $\frac{\partial f}{\partial x_{k}}\left(x_{1}, \ldots, x_{n}\right)=f_{x_{k}}=f^{\prime}\left(x ; e_{k}\right)$
- Example
- $f(x, y, z)=x^{2}+x y^{3}$

- Second Derivative
- $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(2 x+y^{3}\right)=2$
- $f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(2 x+y^{3}\right)=3 y^{2}$
- $f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(3 x y^{2}\right)=3 y^{2}$
- $f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(3 x y^{2}\right)=6 x y$
- Clairaut's Theorem
- If $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x \partial y}$ exists and $\frac{\partial^{2} f}{\partial x \partial y}$ is continuous at $(a, b) \in \mathbb{R}^{2}$
- Then $\frac{\partial^{2} f}{\partial y \partial x}$ also exists and $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$
- Example of $f_{x y} \neq f_{y x}$
- $f(x, y)= \begin{cases}1 & x>0 \\ 0 & x \leq 0\end{cases}$
- $\frac{\partial f}{\partial x}=\left\{\begin{array}{cc}0 & x \neq 0 \\ \text { Does Not Exist } & x=0\end{array}\right.$
- see the graph below (horizontal axis: x, vertical axis: $f(x, y)$)

- $\frac{\partial f}{\partial y}=0$ for all (x, y)
- $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(0)=0$
- $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\left\{\begin{array}{cc}0 & x \neq 0 \\ \text { Does Not Exist } & x=0\end{array}\right.$
- Therefore $\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}$

Total Derivative \& Linear Approximation Formula

- Illumination
- $f(x+\Delta x, y+\Delta y)-f(x, y)$
$0=f(x+\Delta x, y+\Delta y)-f(x+\Delta x, y)+f(x+\Delta x, y)-f(x, y)$
$0=[f(x+\Delta x, y)-f(x, y)]+[f(x+\Delta x, y+\Delta y)-f(x+\Delta x, y)]$
$0=\frac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \times \Delta x+\frac{f(x+\Delta x, y+\Delta y)-f(x+\Delta x, y)}{\Delta y} \times \Delta y$
$0 \approx \frac{\partial f}{\partial x} \times \Delta x+\frac{\partial f}{\partial y} \times \Delta y$
- Theorem
- If f_{x} and f_{y} are continuous, then there exist functions ε_{x} and ε_{y}
- $f(x+\Delta x, y+\Delta y)=f(x, y)+\frac{\partial f}{\partial x}(x, y) \Delta x+\frac{\partial f}{\partial y}(x, y) \Delta y+\varepsilon_{x} \Delta x+\varepsilon_{y} \Delta y$
- Where $\varepsilon_{x}, \varepsilon_{y} \rightarrow 0$ as $\Delta x, \Delta y \rightarrow 0$
- Note
- $\frac{f(x+\Delta x, y+\Delta y)-f(x+\Delta x, y)}{\Delta y}=\frac{\partial f}{\partial y}(x, y)+\varepsilon_{y}$
- $\frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=\frac{\partial f}{\partial x}(x, y)+\varepsilon_{x}$
- Linear Approximation
- $f\left(x_{1}+\Delta x_{1}, \ldots, x_{n}+\Delta x_{n}\right)$
$\circ=f\left(x_{1}, \ldots, x_{n}\right)+f_{x_{1}}\left(x_{1}, \ldots, x_{n}\right) \Delta x_{1}+\cdots+f_{x_{n}}\left(x_{1}, \ldots, x_{n}\right) \Delta x_{n}+\varepsilon_{1} \Delta x_{1}+\cdots+\varepsilon_{n} \Delta x_{n}$
- Where $\varepsilon_{k} \rightarrow 0$ as $\Delta x_{1}, \ldots, \Delta x_{n} \rightarrow 0$
- Linear Approximation (Vector Notation)
- $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
- $\Delta x=\left(\Delta x_{1}, \ldots, \Delta x_{n}\right) \in \mathbb{R}^{n}$
- $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbb{R}^{n}$
- $f(x+\Delta x)=f(x)+\vec{\nabla} f(x) \cdot \Delta x+\varepsilon \cdot \Delta x$
- Where
- $\vec{\nabla} f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)$ is called the gradient of f
- $\vec{\nabla} f(x) \cdot \Delta x=f_{x_{1}}\left(x_{1}, \ldots, x_{n}\right) \Delta x_{1}+\cdots+f_{x_{n}}\left(x_{1}, \ldots, x_{n}\right) \Delta x_{n}$
- $\varepsilon \cdot \Delta x=\varepsilon_{1} \Delta x_{1}+\cdots+\varepsilon_{n} \Delta x_{n}$
- Example
- $f(x, y)=x^{2}+x y^{3}$
- Find the linear approximation at $(x, y)=(1,2)$
- Calculate $f(1,2), f_{x}(1,2), f_{y}(1,2)$
- $f(1,2)=1^{2}+1 \cdot 2^{3}=9$
- $f_{x}(1,2)=\left[2 x+y^{3}\right]_{\substack{x=1 \\ y=2}}=2+2^{3}=10$
- $f_{y}(1,2)=\left[3 x y^{2}\right]_{\substack{x=1 \\ y=2}}=3 \cdot 1 \cdot 2^{2}=12$
- $\vec{\nabla} f(1,2)=\left[\begin{array}{l}10 \\ 12\end{array}\right]$
- $f(1+\Delta x, 2+\Delta y)$
- $=f(1,2)+f_{x}(1,2) \Delta x+f_{y}(1,2) \Delta y+\varepsilon_{x} \Delta x+\varepsilon_{y} \Delta y$
- $=\underbrace{9+10 \Delta x+12 \Delta y}_{\text {approximation }}+\underbrace{\varepsilon_{x} \Delta x+\varepsilon_{y} \Delta y}_{\text {error }}$
- $f(1.01,1.99)=f(1+0.01,2-0.01) \approx 9+10 \cdot 0.01-12 \cdot 0.01=8.89$
- Tangent plane at $(1,2)$

