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Linear Space / Vector Space
e Asetof vectors
e Asetof numbers
e Addition of vectors

e Multiply vectors with numbers

Zero Vector
e There is a vector O such that for all vector x
o x+0=x
e Theorem
o If 0y and 0, are both zero vectors, then 0; = 0,
e Proof

{01 + 02 = 01

02+01:02:01=02

Existence of Negative Vector
e For every vector x, there is a vector y such that
e x+y=0
e denoted as —x
Multiplication with Numbers (Scalers)
* Xx,y:vectors, s, t:numbers (Number field: Q, R, C)
° s(x+y) =sx+sy
e (s+t)x=sx+tx
e s(tx) = (st)x
e 0-x=0
e 1-x=x
Example of a Common Vector Spaces
o R3={(xy,x,,%3)|x; € R x; € R x5 € R} isavector space
¢ Addition and multiplication defined as
o (xl,xz,x3) + (}’1'}’2'3’3) & (xy + Y1, %0 + Y2, X3 + 3)
o t(xl,xz,x3) oo (txl,txz,tx3)
Example of a Strange Vector Spaces
e Number: R



Vector: R, = (0, o)

Addition
o xPy=xXy
o egV2®V2=v2xV2=2
o Zerovector: 1

Inverse of Addition

o Given x, find y

o xpy=1
1
¢} ﬁyZE

Multiplication with numbers
o tER, xER,
o tOx & xt

Proof: Distributive law

o tO(sOx) = (x5)t = x5 = (ts)Ox
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Field

e Afield F is a set together with 2 binary operations
e +, X (— optional) that satisfies the following:
o a+b=b+a
o (a+b)+c=a+ b+
o axXxb=bxXa
o (axb)xc=ax(bxXc)
o axXx(b+c)=axb+axc
o Thereis a special element O, suchthata+ 0 = a
o Thereis aspecial element 1, suchthat1 X a =a
o Forall a,thereisab,suchthata+b =0
o Foranya # O,thereisab,suchthatax b =1

o Optional: 1 # 0, 0+#1

e Example

o F={01}
0+0=0
o +=<0+1=1
1+1=0
0x0=0
0 Xi=130x1=0
1x1=1

e Example

o F=1{0,1,2}
(0+0=0
0+1=1
_Jo+2=2
°tEV141=2
1+2=0
\24+2=1
0x0=0
0x1=0
_Jox2=0
°© X =l1x1=1
1x2=2
\2xX2=1

Vector Space

e Avector space V(over F) is a set together with binary operations



. {+:V tV-ov such that

X:F XV >V
o Fisafield
o ut+v=v+u, Yu,vevVv
o (u+v)+w=v+WU+w), Yu,v,w €V
o Thereisa 0and vector 0, such that
= Vy,vev, Va,b €F
= u+0=u
" Oxu=0
" ax0=0
" (axb)yxu=ax(bxu)
" (a+b)Xu=axu+bxu
" alut+v)=axXxutaxv

" u+(—1)u=(1+(—1))xu=0xu=6
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What does a proof look like?
e Assumptions
¢ Conclusion

e Proof

Example 1
e Assumption
o V= {(xl,xz,x3)|x1,x2,x3 € Rand x; +x3 = 0}
o Vx,y€V,x+yisdefined by
o z=x+yifz=(x;+y1,% + Y2, %3 +¥3)
o tx is defined by tx = (txl, tx,, tx3) foreveryx eV, t e R
¢ (Conclusion
o Visavector space
e Proof: Axiom1 (Vx,y €V:x+y€eV)
o letz=1(21,23,23) =x+y = (X1 +y1,% + ¥2,%3 + ¥3)
O zZy+zZz=x1+y1+x3+y3=(x1+x3)+ (21 +23)=0

o =>z€elV

Example 2
e Assumption
o V ={(x1,%2,%3)|x1,%2,%3 € Rand x; + x3 = 1}
o Vx,y €V,x+yisdefined by
o z=x+yifz=(x; +y1, %+ Y2, %3 +¥3)
o txis defined by tx = (txl,txz, tx3) foreveryx € V,t € R
¢ (Conclusion
o Visnota vector Space

e Proof:3dx,yeVix+yegV

Axiom 5
¢ To show Axiom 5 does not hold,
e we have to prove for every O € V,
e thereisanx € VwithO + x # x
Example 3

e Assumption



o V= {all functions f:[0,1] —» R}
e Conclusion
o Visavector space
e Proof:Axiom3 (Vf,g€eV:f+g=g+f)
o Leth=f+gandk=g+f
o Both h and g has a domain of [0,1]
o h(x) =f(x) +g(x) =gl) +f(x) = k(x)
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How to Check Vector Space
¢ Check 10 axioms

¢ Check thatit's a nonempty subset of a vector space and closed under addition
and scalar multiplication

¢ (By Theorem 1.4, this is enough)

1.6 Subspaces of a linear space

Given a linear space V, let S be a nonempty subset of V. If S is also a linear space, with
the same operations of addition and multiplication by scalars, then § is called a subspace
of V. The next theorem gives a simple criterion for determining whether or not a subset of
a linear space is a subspace.

THEOREM 1.4. Let S be a nonempty subset of a linear space V. Then S is a subspace
if and only if S satisfies the closure axioms.

Proof. If S is a subspace, it satisfies all the axioms for a linear space, and hence, in
particular, it satisfies the closure axioms.

Now we show that if S satisfies the closure axioms it satisfies the others as well. The
commutative and associative laws for addition (Axioms 3 and 4) and the axioms for
multiplication by scalars (Axioms 7 through 10) are dutomatically satisfied in S because
they hold for all elements of V. It remains to verify Axioms 5 and 6, the existence of a zero
element in S, and the existence of a negative for each element in S.

Let x be any element of S. (S has at least one element since S is not empty.) By Axiom
2, ax is in S for every scalar a. Taking a = 0, it follows that Ox is in S. But Ox = O, by
Theorem 1.3(a), so O € S, and Axiom 5 is satisfied. Taking a = —1, we see that (—1)x
isin §. But x 4+ (—1)x = O since both x and (—1)x are in V, so Axiom 6 is satisfied in
S. Therefore S is a subspace of V.
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Subspace

e Theorem
o V:vector space
o S:asubsetofV (S S V)
o Ifforeveryx,y € S,wehavex+y €S
o Andifforeveryx € S,t € R,we havetx € S
o Then S is also a vector space
e Given
o Ithas been shown that
o R!'= {(xl,xz, ...,xn)|x1,x2, v, Xp € ]R}
O s avector space
e Example
o IsS = {(xl,xz,x3)|2x2 +x, = 0} a vector space?
o S € R3, so we only need to verify the closure axioms
" x,yES>x+YyES
" xeES,teER>tx€ES
e Linear subspace
o IfVisavectorspaceand S C V is also a vector space,
o then S is called a linear subspace of V
e Function space example 1
o V = {all real — valued functions with domain [0,1]}
o ={f|f:[0,1] - R}is a vector space
e Function space example 2
o (xl, Xy e, xn) could be viewed as a function

o fromtheset{1,2,3,...,n}to R
Span of Vector Spaces

e Linear Combination
o Given
= V isavector space
" V,Vy, ..,V EV

" (C1,C9 ., Cp ER



o thenciv; + cyv, + -+ + vy, is called
o alinear combination of v;, vy, ..., v,
e Span
o IfVisavectorspaceand A € V is a subspace of V
o then the span of A is the set of all linear combinition of vectors in A

Vi, V3, ., Uy €S

v, , nZl}
ey, cq, 0 ER

o span(4) = {clvl +cv,+ 4y

e Example .1

o V=R? VR RN
29 |(1,0)

o A={(xy,x)|x¥ +x% <1}

o span(A) = R? \ /

(0,-1)

Span of Function spaces

e Example
o V ={all real-valued functions with domain [—m, +]}
o A={1xx?%x3x*}
o Span of A contains function of the form
* f(x) =ay+ a;x + azx? + azx® + aux*t
» where ay,a4,0a,,03,a4 ER

o = span(A4) = {all polynomials of degree < 4 with domain [, +7]}

e Change of Domain
o V ={all real-valued functions with domain {0,1}}
o A={1xx?x3x*}
o span(4) = {x}
e Question
o Does x° € span{1,x,x%, x3,x*} with domain [—7, +7]
o No, suppose x° € span{1,x, x%,x3, x*}, then

S=ay+aix + ax? + azx® + auxt, (Vx € [—m, +m])

" x
= letx=0=>qay,=0

o Differentiate both side, we get
» 5x* =a; + 2a,x + 3a3x? + 4a,x3
" etx=0=>a,=0

o Differentiate both side, we get
* 4.5x3 =2a, + 6azx + 12a,x?
" Lletx=0=2a,=0

o Similarly



.a0:a1:a2=a3:a4
» =x5=0,(Vx € [-m, +7])
o Letx=1,weget1l®>=1=0

5

o Therefore x° is not in span{1, x, x2, x3, x*}

Linear Dependence
e Definition
o If Visavector space, vy, ..., v, EV
o {vl, . vn} are linearly independent if for every c4, ..., ¢, € R
=Vt U+,
o We have
" =c==c, =0
o i.e. The only linear combination of{vl, s vn} thatadds up to 0 is
= Ovy +0v, +---+0v, =0
e Example 1
o v, =(1,0), v, = (0,1), vy = (2,2)
o {171,172,173} is linear dependent ,because 2v; + 2v, —v3 =0
e Example 2

o v = {0}is linear dependent, because 2 X 0 = 0
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Question 1
e LetV be avector space,S € T € V be subsets
e Prove or disprove:
e Sindependence = T independence
o False

o Counterexample 1

- V={0}
- T ={0}
= S5=0

o Counterexample 2
= V=R?

= T={(01),(1,0),(1,1)}
= §={(0,1),(1,0)}
e T independence = S independence
o True
e span(S) =V = span(T) =V
o True
e span(T) =V = span(S) =V
o False

o Counterexample

= V=R3
= T={(1,0,0),(0,1,0),(0,0,1)}
= $={(1,00)}

Question 2

e For which functions f: R = R is {f,f’} linear dependent
o f(x)=Ae*™ wherek # 1and A # 0
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Linear Independence
e Ifvy,..,v, €V then {vl, s vn} is linearly independent
e ifforeverycy, ..., c, € Ritfollows from
* ¢y + -+ cpv, =0thatey =+-=¢, =0
Basis
e Definition
o {vl, s vn} is a basis for V if
" {vl, s vn} are linearly independet
= Every x € V is alinear combination of {vl, . vn}
o ie.x=cv;+ -+ c,v, €V forcertaincy, ..., c,
e Theorem
o If{vy,...,v,}is abasis for V
o and {Wl, e wm} is also a basis for V
o Thenn =m
e Example of no basis
o V= {all function f:[0,1] » ]R{} have no basis
o IfV have no basis then V is called infinite dimensional
e Example of basis @
o @ isabasis forV = {0}
e Dimension
o If{vl, s vn} is a basis for IV
o Thenn is the dimension of VV

e Example 1

1 0
Cvew as() as()

o Conclusion
» {e,,e,}is abasis for R?
o Proof: {e;, e,} is independent

= Supposecq,c; € Rwithcje; +cye, =0

*» Thenc,e; + cye, = (2) = (8)

= Hencec; =c, =0

o Proof: {e;, e,} spans {R?}



. X1 2
= Givenx = ER
X2
* Wecan find ¢y, ¢, such thatx = c;e; + cye;

()=o) +e2(3) = ()

1 =X
C2 = xz’

= Choose {

» Therefore the basis spans R?

e Example 2

-2 as(l) as()
o V=NR4 e (1, e, 1

o Conclusion
» {e;,e,}is abasis for R?
o Proof: {e;,e,} is independent
= Trivial

o Proof: {e;, e,} spans {R?}

x
» Givenx = ( 1) € R?
X2

. xl _ 2 1 _ 2C1 + CZ
(xz)_cl(1>+cz<1> _<C1+Cz>
C]_ = x1 + xZ

Cy = —x1 +2x,

. Choose{
» Therefore the basis spans R?
e Theorem
o Statement
w If {el, . en} are linearly independent and if
" ce;+--+cpe, =bieg+ -+ bpe,
» for certaincy, ..., ¢y, by, ..., by
» thency =b;,c; =by,...,cp = b,
o Proof
* cye; +-+cpe, =bieg + -+ bye,
" (c1—by)er + -+ (cp—=bp)ey, =0
. {el, . en} are linearly independent
" 25¢—-b;=0,...,¢c,—b, =0
" ¢ =by,..,Ch, = b,
Coordinates / Components
e Theorem

o If {el, . en} is a basis for vector space V

o Then for every x € V, there is a unique choice of



O €1,C9,..,Cqp €E Rwithx = cie; + -+ cpe,

o ¢y,...,Cy are called the coordinates or components of x

Xz Se t3e,

e;«

(N
K/ >

e, Se,

e Example
o V= {all function f: R — ]R}
o W ={all f €V thatsatisfy f"' = f}
o Given
" f(x)=e*eWw
" gx)=eFewW
" h(x) =sinhx €W
* f(x)=coshxeWwW
o Aref, g h, klinear independent?

= No, because

. lex ——e l—sinhx=0
2 2
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Question 1
e Why is span(@) = {0}?
¢ ( is the additive identity
Question 2
* Thebasisof V = {f € B,|f(0) + f'(0) = 0}?
o f(x)=ag+aix+ax®+ -+ ax®
* fO)=ap [fO)=a
* fO+f(0)=0
s Dqay=—0
o f(xX)=a;(x — 1)+ azx?+ -+ apx™

o Therefore the basis of Vis {x — 1, x2, ..., x™}
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Theorem 1.5

THEOREM 1.5. Let S = {x,, ..., x;} be an independent set consisting of k elements in a
linear space V and let L(S) be the subspace spanned by S. Then every set of k + 1 elements
in L(S) is dependent.

Proof. The proof is by induction on k, the number of elements in S. First suppose
k =1. Then, by hypothesis, S consists of one element x,, where x; # O since S is
independent. Now take any two distinct elements y, and y, in L(S). Then each is a scalar
multiple of x,, say y, = ¢,x, and y, = ¢,x,, where ¢, and ¢, are not both 0. Multiplying
1 by ¢ and y, by ¢, and subtracting, we find that

Gy — )y =0.

This is a nontrivial representation of O so y, and y, are dependent. This proves the theorem
when k = 1.

Now we assume the theorem is true for k — 1 and prove that it is also true for k. Take
any set of k + 1 elements in L(S), say T = {yy, Vo, - - - » Viy1} - We wish to prove that T is
dependent. Since each y; is in L(S) we may write

k
(1.4) Vi =’Zlauxi

foreachi=1,2,...,k + 1. Weexamine all the scalars a,, that multiply x, and split the
proof into two cases according to whether all these scalars are 0 or not.

CASE I. a; = 0 for every i =1,2,...,k + 1. In this case the sum in (1.4) does not
involve x,, so each y; in T is in the linear span of the set §' = {x,,...,x;}. But §is
independent and consists of k — 1 elements. By the induction hypothesis, the theorem is
true for k — 1 so the set T is dependent. This proves the theorem in Case 1.

CASE 2. Not all the scalars a,, are zero. Let us assume that a,; # 0. (If necessary, we
can renumber the y’s to achieve this.) Taking i = 1 in Equation (1.4) and multiplying both
members by ¢;, where ¢, = a,/a,,, We get

k
Ciy1 = anX, +izgcnﬂl!xi .

From this we subtract Equation (1,4) to get

k
Y — Vi =j§;(f.-au — ag)x;,

fori=2,...,k + 1. Thisequation expresses each of the k elements ¢;y, — y, as a linear
combination of the k — 1 independent elements x,, . . ., x,. By the induction hypothesis,
the k elements ¢;y, — y; must be dependent. Hence, for some choice of scalars 1, ...,
Ii41, not all zero, we have

k1

zgf.'(fi}’l —y)=0,

from which we find
ki1 k1
(Z'.—f;)yn -2y, =0.
=2 =g

But this is a nontrivial linear combination of y,, ..., ¥x;, which represents the zero ele-
ment, so the elements y,, ..., y,,, must be dependent. This completes the proof.



Theorem 1.6

e Statement
o If{v; ..v,}and {wy,...,w,} are bases for VV,thenn = m
e Proof
o Supposen <m
O Wi, e, Wy, Winy1 € spanf{vy ...vp}
o = {wl, ey W, Wn+1} are linearly dependent by previous therom
o = {Wl, s Wi, Wy 1) ey Wm} are also linearly dependent
o But{wj,...,w,,}islinearly independet, because it a basis for IV
o Son < misnottrue
o Similarly the assumption n > m also leads to contradiction
o Thereforen =m
e Example
o Given
" f(x)=1+2x+x?
= g(x)=x*-4
* h(x) =2x —x2
" k(x)=x-3
o C(Claim
= Thereexist cq,cy,¢3,¢4 ER
» suchthatc,f(x) + c;g(x) + c3h(x) + c,k(x) =0
* And atleast one of ¢4, c,, c3,¢, isnOt 0
n V= {all polynomials of degree < 2} has basis {1, x, x?}
* f,9,hk € span{1,x,x?}
» = f,g,h karelinearly dependent
Theorem
e Statement
o IfV is an-dimensional vector space
o Andvy, ..., v, €V are linearly independence withm < n
o Then there exist v, 44, ..., 7, EV
o Suchthat{vy,...,v,}is a basis for V
e OQutline of proof
o span{vy, ..., vy, } # V by the previous theorem
o Choose v,,,1 € V such thatv,, ¢ span{vl, ...,vm}
o Then {vl, ey U,y vm+1} is also linearly independent

o Ifm+ 1 =n,then {vl, ey Uy vm+1} is a basis for V



o Orm+ 1 < n, then repeat the previous steps
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Span

IneN
dcq, ..., ER
x4, ., X, €S
X =0CxX1+ -+ oy

e L(S)=<x€V

Theorem
e Statement
o S cVisasubspace & S = L(S)
e Proof: S = L(S) = S € Vis asubspace
o Lets,teS, keR
o Thens+k-teL(S)
o L(S)=S=>s+k-tes
o = Sis closed under addition and scalar multiplication
o Therefore S is a subspace of V
* Proof: S € Visasubspace = S = L(S)
o IfT € VandT isasubspace, then L(S) ST
Setting T = S, we have L(S) €S S
We also know that S € L(S)

o

o

o

So S = L(S) by definition of set equality

Question 1
e Exampleof L(SNT) # L(S) N L(T), where S, T €V

AV

)
w.

2
7]
—l).
—_— Vd
v,

o V=R?



o S={v,v,},T = {wy,wy,}
o L(SNT)=L(®) = {0}
o L(S) =L(R) = R?
Question 2
e LetSy, ..., S, be subsets of
e Whenis L(Sl) U--u L(Sn) a subspace?
 L(S;)UL(S,)is asubspace & L(S;) € L(S,) or L(S;) € L(S;)
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Inner Product
» Definition (on real vector space)
o Aninner product on a real vector space V
o isareal-valued function (x,y) withx,y € V
o for which:
. (x+y,z)=(x,z)+(y,z), Vx,y,z€V
» (tx,y)=t(x,y), Vx,yeV,andt€eR
» (x,y)=(x), VxyevV
= (x,x) =0, Vx eV
" (x,x)=0=>x=0
e Definition (on complex vector space)
o An inner product on a real vector space V
o isareal-valued function (x,y) withx,y € V
o for which:
" (x+y,2)=(x2+ (v2), Vx,y,z €V
= (tx, y) = t(x, y), Vx,y €V,andt € R
= (xy)=(,x), VxyevV
= (x,x) =0, Vx eV
" (x,x)=0=>x=0
o Note: (x, ty) = m = f(x, y)
e Example in R?
o LetV = R?
o The following is an inner product for V
" (0y) = xy1 X0y + o+ Xy
o Proof: (tx, y) = t(x, y)
" (txy)
w = (txy)ys + (tx2)yz + o+ (Ex) v
= = t(xyy) + t(xy2) + -+ t(nyn)
= = t(xyy1 + x2y2 + o XnYn)
.= t(x, y)
e Example in C"

o LetV =¢C"



o The following is an inner product for V
" (0y) =201 X207+ Xy Ty
o Proof
Vi (x+y,2) =2+ (y2)
V= (txy) = t(xy)
Vi (x6y) = (%)
V= (x,x) =0
Vs (x,x)=0=>x=0
e Counterexample in R"
o LetV=R"
o Whether the following is an inner product for V
" (%) =151 — %272
o We need to check
Ve (x+y,2z) =(x2)+(y,2)
Vi (tx,y) = t(x,y)
e (xy)=(rx)
L () =0
(s (x,x)=0=2x=0
e Counterexample in R™
o LetV=R"
o Whether the following is an inner product for V
" (x, J’) = X1
o We need to check
Ve (x +y,z) =(x,2) + (y,2)
Vi (exy) = t(x.y)
Ve (xy)= (%)
Ve (x,x)=0
[ls (x,x)=0=>x=0
e Example in R"
o LetV =R"
o The following is an inner product for VV
" (0y) = (21 +22)(y1 +y2) + %272
e Example in function space
o V = (C([a, b]) = {all continuous function on [a, b]}

o The following is an inner product for V



b
* (f.9)= J f(x)g(x)dx, wherea < b

a

o We need to check
VI (F+g,h)=(f,n)+(g.h)
vi= (¢t f.9)=t(f.9)
vi= (f.9) = (9.f)
Ve (f.f) =0
Ve (f.f)=0=f=0
Length of Vector
e Definition
o \/(;95 = ||x|| is called the length of x
o Note: (x,x) = ||x||?
e (Cauchy Schwarz Inequality

o (xy)<lxlly
o Proof on page 16

, forallx,y eV

Angle
e Definition
o Ifx,y €V (x#0,y#0)

o Then the angle between x, y is 8 where

e Note

o Cauchy Schwarz Inequality implies
wy)

- Iyl

e Orthogonal

o Vectors x, y are called orthogonal or perpendicular if
o (x, y) =0
e Example

o Given

n V= {all polynomials}

1
'(ﬁw=ff@M@Mx
0

o Find the angle 8 between f(x) = 1and g(x) =1



1 1
= dx = 12dx =1
IF] j f FOf ()dx J f .
1 1 \/.?_’
”9” = \/-fo g(x)g(x)dx = \/fo x2dx = 5

1 1 1
(f'g) :J;)f(x)g(JC)(iDC:J;xdx:E
(xy) V3

cosf =—2 = —
lll - Iyl 2

9 T
= = —
6
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Theorem
e Statement
o LetW;,W, €V be subspace
o W; UW,isasubspace ©® W; € W, or W, € W,
e Proof:W; € W, or W, € W; = W, UW, is a subspace
o Obvious
e Proof: W; UW, isasubspace=> W, € W, or W, C W,
o Suppose
= Ju, € Wy, s.t. v € W,
= Ju, € W,, s.t. v, € W)
o Then
= v+, €W,
o Indeed, if
vt =weW;
o Then
"y, =w-—v  EW;
= Contradiction
o Likewise
= v, tv, €W,
o Therefore

"yt W, UW,

Question 1
e LetV be avector space, (-,-) is an inner product on V
e Prove
o Vy,weV
o (wvy=0s|lv+c-w|l =V, Vc €ER

e Proof:{u,v) =0=|lv+c-w| =]

o c?|w|l*=0

o |lvll* + c*lwll* = |lvl|?

o |vlI® + 2¢(u, v) + c2llwll* = ||v]|?
o lv+c-wl*=|lv|?

o flv+c-wl =l



e Proofi|lv+c-w||=|v]=(uv)=0
o lv+c-wl =l
o [wl* + 2¢(u,v) + 2wl = ||v]|?
o In order for the inequality to be true for all ¢

o (u,v)y=0

Question 2
e LetV be a finite-dimensional vector space

e () isaninner productonV

Let W € V be a subspace
Define W* = {v e V|{v,w) =0, Yw € W}

Prove that
o W+ isasubspace

o dimW +dimWt =dimV
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Distance
e Definition

o Distance between two vectors X, y is defined as

e Example 1
o Given
= |V =R?
» (x,y) =101 + %2,
o Distance between two vectors is

] distance(x, y)

= =llx=vl

"= J(x1 - 3"1)2 - (xz - 3"2)2
e Example 2

o Given

" V= {all continuous function f: [0,1] — ]R}

-(ﬂw=LVQMQMx

o Distance between two functions is
= distance(f, g)
= =|f -4l

1
2
+ = [ (e - g0 ax
0
o Also known as "root mean square distance"

Triangle Inequality (Version 1)
e Statement
o |la+bll < llall + bl
¢ Proof

o |la+b||l ¥ (a+b,a+b)



O

=(a,a)+ (a,b) + (b,a) + (b,b)
= (a,a) + 2(a,b) + (b,b)

< llall® + 2lallllbll + lIbII?

= (llall + 11>

Therefore ||a + b|| < ||all + ||b]|

o

o

o

o

Triangle Inequality (Version 2)
e Statement
o distance(x, y) < distance(x, z) + distance(z, y)
¢ Proof
o Leta=x—2z b=z-y
o thena+b=x—-y
o x=yll < lx—zll + ]}z =]
o distance(x, y) < distance(x, z) + distance(z, y)

Y

X
Orthogonal
¢ Definition
o {vy,..,v,}are orthogonal if (v, v;) = 0, Vk #
e Theorem
o If{vy,...,v,} are orthogonal
o andv, # 0 forallk € {1,2,...,n}
o then {vl, s vn} is linearly independent
e Proof
o Suppose
"Vt t v, =0
o Then we have to show
B =c==c, =0
o Letk €{1,2,...,n}, then

* (avy+ -+ cvp ) = (0,1)



= cl(vl,vk) + -+ ck(vk,vk) + 4 cn(vn,vk) =0
o Because (vk,vl) =0, Vk # [, we have

" 0+ +0+c(vevg)+0+-+0=0

- Ck(vk,vk) =0
o Becausevy # 0

- (Uk,vk) *0
0

" Cf == 0
‘ (”k'vk)
o Therefore
B =c=r=c, =0

e Theorem
o Ifx=cv;+-+cpv,

o and {vy, ..., v, } are non zero and orthogonal

(x, i)

o thency, = (_1]_17_)_
k» Yk

e Proof
o (x,v)
o =(clv1+---+cnvn,vk)
o) =cl(vl,vk)+--~+ck(vk,vk)+---+cn(vn,vk)
o =0+-+0+c(vp,v)+0+-+0

O =C (Vk» Uk)

@)
U
o
I
|
|
|

Gramm-Schmidt Process
 Introduction
o IfV has abasis {vl, s vn}
o then there is an orthogonal basis {Wl, e Wn}
o The process to find the orthogonal basis is called

o Gramm-Schmidt Process

e Process
O Wy =1,
_ (v21W1)
o Wy 2 (Wl'Wl) 1
0wy =y ) (Bawa)
(Wl' W1) (Wz, WZ)



e Proof: (W3,W2) =0
o Assume we've already shown (wy,w;) = (wy,w3) = 0
o (W3,W2)

o = (pewyzw) o (vawn)
_( 3 2) (W1:W1) ( L 2) (W1;W1) ( 1 2)

o = (v3wz) — (v3,w,)
o =0
e Example 1
o Given
= V=R?
" (%) =01 + %272

o Find the orthogonal basis for v; = (}),vz = (1)

2
1
- W1:V1:<1)

e Example 2

o Given

= V = {all continous functions f: [0,1] - R}
1
© (1.9) = [ FE9@x
0
o Find the orthogonal basis for f; (x) = 1, f,(x) = x

" g1 (x)=filx) =1

¢ 000 = i) L2 g oy - L

(91.91) 2
I



