Linear Space / Vector Space

- A set of vectors
- A set of numbers
- Addition of vectors
- Multiply vectors with numbers

Zero Vector

- There is a vector \mathcal{O} such that for all vector x

$$
\text { - } x+\mathcal{O}=x
$$

- Theorem
- If \mathcal{O}_{1} and \mathcal{O}_{2} are both zero vectors, then $\mathcal{O}_{1}=\mathcal{O}_{2}$
- Proof
$\circ\left\{\begin{array}{l}\mathcal{O}_{1}+\mathcal{O}_{2}=\mathcal{O}_{1} \\ \mathcal{O}_{2}+\mathcal{O}_{1}=\mathcal{O}_{2}\end{array} \Rightarrow \mathcal{O}_{1}=\mathcal{O}_{2}\right.$

Existence of Negative Vector

- For every vector x, there is a vector y such that
- $x+y=0$
- denoted as $-x$

Multiplication with Numbers (Scalers)

- x, y : vectors, $\quad s, t$: numbers (Number field: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$)
- $s(x+y)=s x+s y$
- $(s+t) x=s x+t x$
- $s(t x)=(s t) x$
- $0 \cdot x=0$
- $1 \cdot x=x$

Example of a Common Vector Spaces

- $\mathbb{R}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, x_{3} \in \mathbb{R}\right\}$ is a vector space
- Addition and multiplication defined as
- $\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right) \stackrel{\text { def }}{=}\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)$
- $t\left(x_{1}, x_{2}, x_{3}\right) \stackrel{\text { def }}{=}\left(t x_{1}, t x_{2}, t x_{3}\right)$

Example of a Strange Vector Spaces

- Number: \mathbb{R}
- Vector: $\mathbb{R}_{+}=(0, \infty)$
- Addition
- $\mathrm{x} \oplus y=x \times y$
- e.g. $\sqrt{2} \oplus \sqrt{2}=\sqrt{2} \times \sqrt{2}=2$
- Zero vector: 1
- Inverse of Addition
- Given x, find y
- $\mathrm{x} \oplus y=1$
- $\Rightarrow y=\frac{1}{x}$
- Multiplication with numbers
- $t \in R, x \in R_{+}$
- $t \odot x \stackrel{\text { def }}{=} x^{t}$
- Proof: Distributive law
- $t \odot(s \odot x)=\left(x^{s}\right)^{t}=x^{s t}=(t s) \odot x$

Field

- A field \mathbb{F} is a set together with 2 binary operations
-,$+ \times(-$ optional) that satisfies the following:
- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $a \times b=b \times a$
- $(a \times b) \times c=a \times(b \times c)$
- $a \times(b+c)=a \times b+a \times c$
- There is a special element \mathcal{O}, such that $a+\mathcal{O}=a$
- There is a special element 1 , such that $1 \times a=a$
- For all a, there is a b, such that $a+b=0$
- For any a $\neq \mathcal{O}$, there is a b, such that $a \times b=1$
- Optional: $1 \neq \mathcal{O}, \quad \mathcal{O} \neq 1$
- Example
- $\mathbb{F}=\{0,1\}$
$+:=\left\{\begin{array}{l}0+0=0 \\ 0+1=1 \\ 1+1=0\end{array}\right.$
- $x:=\left\{\begin{array}{l}0 \times 0=0 \\ 0 \times 1=0 \\ 1 \times 1=1\end{array}\right.$
- Example
- $\mathbb{F}=\{0,1,2\}$
$+:=\left\{\begin{array}{l}0+0=0 \\ 0+1=1 \\ 0+2=2 \\ 1+1=2 \\ 1+2=0 \\ 2+2=1\end{array}\right.$
$\bigcirc x:=\left\{\begin{array}{l}0 \times 0=0 \\ 0 \times 1=0 \\ 0 \times 2=0 \\ 1 \times 1=1 \\ 1 \times 2=2 \\ 2 \times 2=1\end{array}\right.$

Vector Space

- A vector space $V($ over $\mathbb{F})$ is a set together with binary operations
- $\left\{\begin{array}{l}+: V+V \rightarrow V \\ \times: F \times V \rightarrow V\end{array}\right.$, such that
- \mathbb{F} is a field
- $u+v=v+u, \quad \forall u, v \in V$
- $(u+v)+w=v+(u+w), \quad \forall u, v, w \in V$
- There is a 0 and vector $\overrightarrow{0}$, such that
- $\forall u, v \in V, \quad \forall a, b \in \mathbb{F}$
- $u+\overrightarrow{0}=u$
- $0 \times u=\overrightarrow{0}$
- $a \times \overrightarrow{0}=\overrightarrow{0}$
- $(a \times b) \times u=a \times(b \times u)$
- $(a+b) \times u=a \times u+b \times u$
- $a(u+v)=a \times u+a \times v$
- $u+(-1) u=(1+(-1)) \times u=0 \times u=\overrightarrow{0}$

What does a proof look like?

- Assumptions
- Conclusion
- Proof

Example 1

- Assumption
- $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}, x_{2}, x_{3} \in \mathbb{R}\right.$ and $\left.x_{1}+x_{3}=0\right\}$
- $\forall x, y \in V, x+y$ is defined by
- $z=x+y$ if $z=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)$
- $t x$ is defined by $t x=\left(t x_{1}, t x_{2}, t x_{3}\right)$ for every $x \in V, t \in \mathbb{R}$
- Conclusion
- V is a vector space
- Proof: Axiom $1(\forall x, y \in V: x+y \in V)$
- let $z=\left(z_{1}, z_{2}, z_{3}\right)=x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)$
- $z_{1}+z_{3}=x_{1}+y_{1}+x_{3}+y_{3}=\left(x_{1}+x_{3}\right)+\left(z_{1}+z_{3}\right)=0$
- $\Rightarrow z \in V$

Example 2

- Assumption
- $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}, x_{2}, x_{3} \in \mathbb{R}\right.$ and $\left.x_{1}+x_{3}=1\right\}$
- $\forall x, y \in V, x+y$ is defined by
- $z=x+y$ if $z=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)$
- $t x$ is defined by $t x=\left(t x_{1}, t x_{2}, t x_{3}\right)$ for every $x \in V, t \in \mathbb{R}$
- Conclusion
- V is not a vector Space
- Proof: $\exists x, y \in V: x+y \notin V$

Axiom 5

- To show Axiom 5 does not hold,
- we have to prove for every $\mathcal{O} \in V$,
- there is an $x \in V$ with $\mathcal{O}+x \neq x$

Example 3

- Assumption
- $V=\{$ all functions $f:[0,1] \rightarrow R\}$
- Conclusion
- V is a vector space
- Proof: Axiom 3 ($\forall f, g \in V: f+g=g+f)$
- Let $h=f+g$ and $k=g+f$
- Both h and g has a domain of $[0,1]$
- $h(x)=f(x)+g(x)=g(x)+f(x)=k(x)$

How to Check Vector Space

- Check 10 axioms
- Check that it's a nonempty subset of a vector space and closed under addition and scalar multiplication
- (By Theorem 1.4, this is enough)

1.6 Subspaces of a linear space

Given a linear space V, let S be a nonempty subset of V. If S is also a linear space, with the same operations of addition and multiplication by scalars, then S is called a subspace of V. The next theorem gives a simple criterion for determining whether or not a subset of a linear space is a subspace.
theorem 1.4. Let S be a nonempty subset of a linear space V. Then S is a subspace if and only if S satisfies the closure axioms.

Proof. If S is a subspace, it satisfies all the axioms for a linear space, and hence, in particular, it satisfies the closure axioms.
Now we show that if S satisfies the closure axioms it satisfies the others as well. The commutative and associative laws for addition (Axioms 3 and 4) and the axioms for multiplication by scalars (Axioms 7 through 10) are automatically satisfied in S because they hold for all elements of V. It remains to verify Axioms 5 and 6 , the existence of a zero element in S, and the existence of a negative for each element in S.
Let x be any element of S. (S has at least one element since S is not empty.) By Axiom 2, $a x$ is in S for every scalar a. Taking $a=0$, it follows that $0 x$ is in S. But $0 x=O$, by Theorem 1.3(a), so $O \in S$, and Axiom 5 is satisfied. Taking $a=-1$, we see that $(-1) x$ is in S. But $x+(-1) x=O$ since both x and $(-1) x$ are in V, so Axiom 6 is satisfied in S. Therefore S is a subspace of V.

Subspace

- Theorem
- V : vector space
- S : a subset of $V(S \subseteq V)$
- If for every $x, y \in S$, we have $x+y \in S$
- And if for every $x \in S, t \in \mathbb{R}$, we have $t x \in S$
- Then S is also a vector space
- Given
- It has been shown that
- $\mathbb{R}^{\mathrm{n}}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\}$
- is a vector space
- Example
- Is $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 2 x_{2}+x_{2}=0\right\}$ a vector space?
- $S \in \mathbb{R}^{3}$, so we only need to verify the closure axioms
- $x, y \in S \Rightarrow x+y \in S$
- $x \in S, t \in \mathbb{R} \Rightarrow t x \in S$
- Linear subspace
- If V is a vector space and $S \subseteq V$ is also a vector space,
- then S is called a linear subspace of V
- Function space example 1
- $V=\{$ all real - valued functions with domain $[0,1]\}$
- $=\{f \mid f:[0,1] \rightarrow R\}$ is a vector space
- Function space example 2
- $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ could be viewed as a function
- from the set $\{1,2,3, \ldots, n\}$ to \mathbb{R}

Span of Vector Spaces

- Linear Combination
- Given
- V is a vector space
- $v_{1}, v_{2}, \ldots, v_{n} \in V$
- $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$
- then $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ is called
- a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$
- Span
- If V is a vector space and $A \subseteq V$ is a subspace of V
- then the span of A is the set of all linear combinition of vectors in A
$\circ \operatorname{span}(A)=\left\{c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n} \left\lvert\, \begin{array}{l}v_{1}, v_{2}, \ldots, v_{n} \in S \\ c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}\end{array}\right., n \geq 1\right\}$
- Example
- $V=\mathbb{R}^{2}$
- $A=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2} \leq 1\right\}$
- $\operatorname{span}(A)=\mathbb{R}^{2}$

Span of Function spaces

- Example
- $V=\{$ all real-valued functions with domain $[-\pi,+\pi]\}$
- $A=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$
- Span of A contains function of the form
- $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$
- where $a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}$
$\circ \Rightarrow \operatorname{span}(A)=\{$ all polynomials of degree ≤ 4 with domain $[-\pi,+\pi]\}$
- Change of Domain
- $V=\{$ all real-valued functions with domain $\{0,1\}\}$
- $A=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$
- $\operatorname{span}(A)=\{x\}$
- Question
- Does $x^{5} \in \operatorname{span}\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ with domain $[-\pi,+\pi]$
- No, suppose $x^{5} \in \operatorname{span}\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$, then
- $x^{5}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}, \quad(\forall x \in[-\pi,+\pi])$
- Let $x=0 \Rightarrow a_{0}=0$
- Differentiate both side, we get
- $5 x^{4}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}$
- Let $x=0 \Rightarrow a_{1}=0$
- Differentiate both side, we get
- $4 \cdot 5 x^{3}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}$
- Let $x=0 \Rightarrow a_{2}=0$
- Similarly
- $a_{0}=a_{1}=a_{2}=a_{3}=a_{4}$
- $\Rightarrow x^{5}=0,(\forall x \in[-\pi,+\pi])$
- Let $x=1$, we get $1^{5}=1=0$
- Therefore x^{5} is not in $\operatorname{span}\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$

Linear Dependence

- Definition
- If V is a vector space, $v_{1}, \ldots, v_{n} \in V$
- $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent if for every $c_{1}, \ldots, c_{n} \in \mathbb{R}$
- $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$
- We have
- $c_{1}=c_{2}=\cdots=c_{n}=0$
- i.e. The only linear combination of $\left\{v_{1}, \ldots, v_{n}\right\}$ that adds up to 0 is
- $0 v_{1}+0 v_{2}+\cdots+0 v_{n}=0$
- Example 1
- $v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(2,2)$
- $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linear dependent , because $2 v_{1}+2 v_{2}-v_{3}=0$
- Example 2
- $v=\{0\}$ is linear dependent, because $2 \times 0=0$

Question 1

- Let V be a vector space, $S \subseteq T \subseteq V$ be subsets
- Prove or disprove:
- S independence $\Rightarrow T$ independence
- False
- Counterexample 1
- $V=\{0\}$
- $T=\{0\}$
- $S=\varnothing$
- Counterexample 2
- $V=\mathbb{R}^{2}$
- $T=\{(0,1),(1,0),(1,1)\}$
- $S=\{(0,1),(1,0)\}$
- T independence $\Rightarrow S$ independence
- True
- $\operatorname{span}(S)=V \Rightarrow \operatorname{span}(T)=V$
- True
- $\operatorname{span}(T)=V \Rightarrow \operatorname{span}(S)=V$
- False
- Counterexample
- $\mathrm{V}=\mathbb{R}^{3}$
- $\mathrm{T}=\{(1,0,0),(0,1,0),(0,0,1)\}$
- $S=\{(1,0,0)\}$

Question 2

- For which functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is $\left\{f, f^{\prime}\right\}$ linear dependent
- $f(x)=A e^{t x}$ where $k \neq 1$ and $A \neq 0$

Linear Independence

- If $v_{1}, \ldots, v_{n} \in V$ then $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent
- if for every $c_{1}, \ldots, c_{n} \in \mathbb{R}$ it follows from
- $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$ that $c_{1}=\cdots=c_{n}=0$

Basis

- Definition
- $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V if
- $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independet
- Every $x \in V$ is a linear combination of $\left\{v_{1}, \ldots, v_{n}\right\}$
- i.e. $x=c_{1} v_{1}+\cdots+c_{n} v_{n} \in V$ for certain c_{1}, \ldots, c_{n}
- Theorem
- If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V
- and $\left\{w_{1}, \ldots, w_{m}\right\}$ is also a basis for V
- Then $n=m$
- Example of no basis
- $V=\{$ all function $f:[0,1] \rightarrow \mathbb{R}\}$ have no basis
- If V have no basis then V is called infinite dimensional
- Example of basis \emptyset
- \varnothing is a basis for $V=\{0\}$
- Dimension
- If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V
- Then n is the dimension of V
- Example 1
- $V=\mathbb{R}^{2}, \quad e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}$
- Conclusion
- $\left\{e_{1}, e_{2}\right\}$ is a basis for \mathbb{R}^{2}
- Proof: $\left\{e_{1}, e_{2}\right\}$ is independent
- Suppose $c_{1}, c_{2} \in \mathbb{R}$ with $c_{1} e_{1}+c_{2} e_{2}=0$
- Then $c_{1} e_{1}+c_{2} e_{2}=\binom{c_{1}}{c_{2}}=\binom{0}{0}$
- Hence $c_{1}=c_{2}=0$
- Proof: $\left\{e_{1}, e_{2}\right\}$ spans $\left\{\mathbb{R}^{2}\right\}$
- Given $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$
- We can find c_{1}, c_{2} such that $x=c_{1} e_{1}+c_{2} e_{2}$
- $\binom{x_{1}}{x_{2}}=c_{1}\binom{1}{0}+c_{2}\binom{0}{1}=\binom{c_{1}}{c_{2}}$
- Choose $\left\{\begin{array}{l}c_{1}=x_{1} \\ c_{2}=x_{2}\end{array}\right.$
- Therefore the basis spans \mathbb{R}^{2}
- Example 2
- $V=\mathbb{R}^{2}, \quad e_{1}=\binom{2}{1}, \quad e_{2}=\binom{1}{1}$
- Conclusion
- $\left\{e_{1}, e_{2}\right\}$ is a basis for \mathbb{R}^{2}
- Proof: $\left\{e_{1}, e_{2}\right\}$ is independent
- Trivial
- Proof: $\left\{e_{1}, e_{2}\right\}$ spans $\left\{\mathbb{R}^{2}\right\}$
- Given $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$
- $\binom{x_{1}}{x_{2}}=c_{1}\binom{2}{1}+c_{2}\binom{1}{1}=\binom{2 c_{1}+c_{2}}{c_{1}+c_{2}}$
- Choose $\left\{\begin{array}{c}c_{1}=x_{1}+x_{2} \\ c_{2}=-x_{1}+2 x_{2}\end{array}\right.$
- Therefore the basis spans \mathbb{R}^{2}
- Theorem
- Statement
- If $\left\{e_{1}, . ., e_{n}\right\}$ are linearly independent and if
- $c_{1} e_{1}+\cdots+c_{n} e_{n}=b_{1} e_{1}+\cdots+b_{n} e_{n}$
- for certain $c_{1}, \ldots, c_{n}, b_{1}, \ldots, b_{n}$
- then $c_{1}=b_{1}, c_{2}=b_{2}, \ldots, c_{n}=b_{n}$
- Proof
- $c_{1} e_{1}+\cdots+c_{n} e_{n}=b_{1} e_{1}+\cdots+b_{n} e_{n}$
- $\left(c_{1}-b_{1}\right) e_{1}+\cdots+\left(c_{n}-b_{n}\right) e_{n}=0$
- $\left\{e_{1}, . ., e_{n}\right\}$ are linearly independent
- $\Rightarrow c_{1}-b_{1}=0, \ldots, c_{n}-b_{n}=0$
- $\Rightarrow c_{1}=b_{1}, \ldots, c_{n}=b_{n}$

Coordinates / Components

- Theorem
- If $\left\{e_{1}, . ., e_{n}\right\}$ is a basis for vector space V
- Then for every $x \in V$, there is a unique choice of
- $c_{1}, c_{2}, \ldots, c_{n} \in R$ with $x=c_{1} e_{1}+\cdots+c_{n} e_{n}$
- c_{1}, \ldots, c_{n} are called the coordinates or components of x

- Example
- $V=\{$ all function $f: \mathbb{R} \rightarrow \mathbb{R}\}$
- $\mathrm{W}=\left\{\right.$ all $f \in V$ that satisfy $\left.f^{\prime \prime}=f\right\}$
- Given
- $f(x)=e^{x} \in W$
- $g(x)=e^{-x} \in W$
- $h(x)=\sinh x \in W$
- $f(x)=\cosh x \in W$
- Are $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{k}$ linear independent?
- No, because
- $\frac{1}{2} e^{x}-\frac{1}{2} e^{-1}-\sinh x=0$

9/20

Wednesday, September 20, 2017

Question 1

- Why is $\operatorname{span}(\varnothing)=\{0\}$?
- 0 is the additive identity

Question 2

- The basis of $V=\left\{f \in P_{n} \mid f(0)+f^{\prime}(0)=0\right\}$?
- $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$
- $f(0)=a_{0}, \quad f^{\prime}(0)=a_{1}$
- $f(0)+f^{\prime}(0)=0$
- $\Rightarrow a_{0}=-a_{1}$
- $f(x)=a_{1}(x-1)+a_{2} x^{2}+\cdots+a_{n} x^{n}$
- Therefore the basis of V is $\left\{x-1, x^{2}, \ldots, x^{n}\right\}$

Theorem 1.5

theorem 1.5. Let $S=\left\{x_{1}, \ldots, x_{k}\right\}$ be an independent set consisting of k elements in a linear space V and let $L(S)$ be the subspace spanned by S. Then every set of $k+1$ elements in $L(S)$ is dependent.

Proof. The proof is by induction on k, the number of elements in S. First suppose $k=1$. Then, by hypothesis, S consists of one element x_{1}, where $x_{1} \neq O$ since S is independent. Now take any two distinct elements y_{1} and y_{2} in $L(S)$. Then each is a scalar multiple of x_{1}, say $y_{1}=c_{1} x_{1}$ and $y_{2}=c_{2} x_{1}$, where c_{1} and c_{2} are not both 0 . Multiplying y_{1} by c_{2} and y_{2} by c_{1} and subtracting, we find that

$$
c_{2} y_{1}-c_{1} y_{2}=O
$$

This is a nontrivial representation of O so y_{1} and y_{2} are dependent. This proves the theorem when $k=1$.
Now we assume the theorem is true for $k-1$ and prove that it is also true for k. Take any set of $k+1$ elements in $L(S)$, say $T=\left\{y_{1}, y_{2}, \ldots, y_{k+1}\right\}$. We wish to prove that T is dependent. Since each y_{i} is in $L(S)$ we may write

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{k} a_{i j} x_{j} \tag{1.4}
\end{equation*}
$$

for each $i=1,2, \ldots, k+1$. We examine all the scalars $a_{i 1}$ that multiply x_{1} and split the proof into two cases according to whether all these scalars are 0 or not.

CASE 1. $a_{i 1}=0$ for every $i=1,2, \ldots, k+1$. In this case the sum in (1.4) does not involve x_{1}, so each y_{i} in T is in the linear span of the set $S^{\prime}=\left\{x_{2}, \ldots, x_{k}\right\}$. But S^{\prime} is independent and consists of $k-1$ elements. By the induction hypothesis, the theorem is true for $k-1$ so the set T is dependent. This proves the theorem in Case 1.

CASE 2. Not all the scalars $a_{i 1}$ are zero. Let us assume that $a_{11} \neq 0$. (If necessary, we can renumber the y 's to achieve this.) Taking $i=1$ in Equation (1.4) and multiplying both members by c_{i}, where $c_{i}=a_{i 1} / a_{11}$, we get

$$
c_{i} y_{1}=a_{i 1} x_{1}+\sum_{j=2}^{k} c_{i} a_{1 j} x_{j}
$$

From this we subtract Equation (1,4) to get

$$
c_{i} y_{1}-y_{i}=\sum_{j=2}^{k}\left(c_{i} a_{1 j}-a_{i j}\right) x_{j},
$$

for $i=2, \ldots, k+1$. This equation expresses each of the k elements $c_{i} y_{1}-y_{i}$ as a linear combination of the $k-1$ independent elements x_{2}, \ldots, x_{k}. By the induction hypothesis, the k elements $c_{i} y_{1}-y_{i}$ must be dependent. Hence, for some choice of scalars t_{2}, \ldots, t_{k+1}, not all zero, we have

$$
\sum_{i=2}^{k+1} t_{i}\left(c_{i} y_{1}-y_{i}\right)=O
$$

from which we find

$$
\left(\sum_{i=2}^{k+1} t_{i} c_{i}\right) y_{1,}-\sum_{i=2}^{k+1} t_{i} y_{i}=O
$$

But this is a nontrivial linear combination of y_{1}, \ldots, y_{k+1} which represents the zero element, so the elements y_{1}, \ldots, y_{k+1} must be dependent. This completes the proof.

Theorem 1.6

- Statement
- If $\left\{v_{1} \ldots v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ are bases for V, then $n=m$
- Proof
- Suppose $n<m$
- $w_{1}, \ldots, w_{m}, w_{m+1} \in \operatorname{span}\left\{v_{1} \ldots v_{n}\right\}$
$\circ \Rightarrow\left\{w_{1}, \ldots, w_{n}, w_{n+1}\right\}$ are linearly dependent by previous therom
$\circ \Rightarrow\left\{w_{1}, \ldots, w_{n}, w_{n+1}, \ldots, w_{m}\right\}$ are also linearly dependent
- But $\left\{w_{1}, \ldots, w_{m}\right\}$ is linearly independet, because it a basis for V
- So $n<m$ is not true
- Similarly the assumption $n>m$ also leads to contradiction
- Therefore $n=m$
- Example
- Given
- $f(x)=1+2 x+x^{2}$
- $g(x)=x^{2}-4$
- $h(x)=2 x-x^{2}$
- $k(x)=x-3$
- Claim
- There exist $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{R}$
- such that $c_{1} f(x)+c_{2} g(x)+c_{3} h(x)+c_{4} k(x)=0$
- And at least one of $c_{1}, c_{2}, c_{3}, c_{4}$ is not 0
- $V=\{$ all polynomials of degree $\leq 2\}$ has basis $\left\{1, x, x^{2}\right\}$
- $f, g, h, k \in \operatorname{span}\left\{1, x, x^{2}\right\}$
- $\Rightarrow f, g, h, k$ are linearly dependent

Theorem

- Statement
- If V is a n-dimensional vector space
- And $v_{1}, \ldots, v_{m} \in V$ are linearly independence with $m<n$
- Then there exist $v_{m+1}, \ldots, v_{n} \in V$
- Such that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V
- Outline of proof
- $\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} \neq V$ by the previous theorem
- Choose $v_{m+1} \in V$ such that $v_{m} \notin \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$
- Then $\left\{v_{1}, \ldots, v_{m}, v_{m+1}\right\}$ is also linearly independent
- If $m+1=n$, then $\left\{v_{1}, \ldots, v_{m}, v_{m+1}\right\}$ is a basis for V
- Or $m+1<n$, then repeat the previous steps

Span

- $\mathrm{L}(S)=\left\{x \in V \left\lvert\, \begin{array}{c}\exists n \in \mathbb{N} \\ \exists c_{1}, \ldots, c_{n} \in \mathbb{R} \\ \exists x_{1}, \ldots, x_{n} \in S \\ x=c_{1} x_{1}+\cdots+c_{n} x_{n}\end{array}\right.\right\}$

Theorem

- Statement
- $S \subseteq V$ is a subspace $\Leftrightarrow S=L(S)$
- Proof: $S=L(S) \Rightarrow S \subseteq V$ is a subspace
- Let $s, t \in S, k \in \mathbb{R}$
- Then $s+k \cdot t \in L(S)$
- $\mathrm{L}(\mathrm{S})=S \Rightarrow s+k \cdot t \in S$
- $\Rightarrow S$ is closed under addition and scalar multiplication
- Therefore S is a subspace of V
- Proof: $S \subseteq V$ is a subspace $\Rightarrow S=L(S)$
- If $T \subseteq V$ and T is a subspace, then $L(S) \subseteq T$
- Setting $T=S$, we have $L(S) \subseteq S$
- We also know that $\mathrm{S} \subseteq \mathrm{L}(\mathrm{S})$
- So $S=L(S)$ by definition of set equality

Question 1

- Example of $L(S \cap T) \neq \mathrm{L}(\mathrm{S}) \cap \mathrm{L}(\mathrm{T})$, where $S, T \subseteq V$

- $V=\mathbb{R}^{2}$
- $\mathrm{S}=\left\{v_{1}, v_{2}\right\}, T=\left\{w_{1}, w_{2}\right\}$
- $\mathrm{L}(\mathrm{S} \cap \mathrm{T})=\mathrm{L}(\varnothing)=\{0\}$
- $L(S)=L(R)=\mathbb{R}^{2}$

Question 2

- Let S_{1}, \ldots, S_{n} be subsets of V
- When is $L\left(S_{1}\right) \cup \cdots \cup L\left(S_{n}\right)$ a subspace?
- $L\left(S_{1}\right) \cup L\left(S_{2}\right)$ is a subspace $\Leftrightarrow L\left(S_{1}\right) \subseteq L\left(S_{2}\right)$ or $L\left(S_{2}\right) \subseteq L\left(S_{1}\right)$

Inner Product

- Definition (on real vector space)
- An inner product on a real vector space V
- is a real-valued function (x, y) with $x, y \in V$
- for which:
- $(x+y, z)=(x, z)+(y, z), \quad \forall x, y, z \in V$
- $(t x, y)=t(x, y), \quad \forall x, y \in V$, and $t \in \mathbb{R}$
- $(x, y)=(y, x), \quad \forall x, y \in V$
- $(x, x) \geq 0, \quad \forall x \in V$
- $(x, x)=0 \Rightarrow x=0$
- Definition (on complex vector space)
- An inner product on a real vector space V
- is a real-valued function (x, y) with $x, y \in V$
- for which:
- $(x+y, z)=(x, z)+(y, z), \quad \forall x, y, z \in V$
- $(t x, y)=t(x, y), \quad \forall x, y \in V$, and $t \in \mathbb{R}$
- $(x, y)=\overline{(y, x)}, \quad \forall x, y \in V$
- $(x, x) \geq 0, \quad \forall x \in V$
- $(x, x)=0 \Rightarrow x=0$
- Note: $(x, t y)=\overline{(t y, x)}=\bar{t}(x, y)$
- Example in \mathbb{R}^{2}
- Let $V=\mathbb{R}^{2}$
- The following is an inner product for V
- $(x, y)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$
- Proof: $(t x, y)=t(x, y)$
- $(t x, y)$
- $=\left(t x_{1}\right) y_{1}+\left(t x_{2}\right) y_{2}+\cdots+\left(t x_{n}\right) y_{n}$
- $=t\left(x_{1} y_{1}\right)+t\left(x_{2} y_{2}\right)+\cdots+t\left(x_{n} y_{n}\right)$
- $=t\left(x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}\right)$
- $=t(x, y)$
- Example in \mathbb{C}^{n}
- Let $V=\mathbb{C}^{\mathrm{n}}$
- The following is an inner product for V
- $(x, y)=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\cdots+x_{n} \overline{y_{n}}$
- Proof

$$
\begin{array}{ll}
\checkmark \cdot & (x+y, z)=(x, z)+(y, z) \\
\checkmark \cdot & (t x, y)=t(x, y) \\
\checkmark \cdot & (x, y)=\overline{(y, x)} \\
\checkmark \cdot & (x, x) \geq 0 \\
\checkmark \cdot & (x, x)=0 \Rightarrow x=0
\end{array}
$$

- Counterexample in \mathbb{R}^{n}
- Let $V=\mathbb{R}^{n}$
- Whether the following is an inner product for V
- $(x, y)=x_{1} y_{1}-x_{2} y_{2}$
- We need to check

$$
\begin{aligned}
& \checkmark \cdot(x+y, z)=(x, z)+(y, z) \\
& \checkmark \cdot(t x, y)=t(x, y) \\
& \checkmark \cdot(x, y)=\overline{(y, x)} \\
& \square \cdot(x, x) \geq 0 \\
& \square \cdot(x, x)=0 \Rightarrow x=0
\end{aligned}
$$

- Counterexample in \mathbb{R}^{n}
- Let $V=\mathbb{R}^{n}$
- Whether the following is an inner product for V
- $(x, y)=x_{1} y_{1}$
- We need to check

$$
\begin{array}{ll}
\checkmark & =(x+y, z)=(x, z)+(y, z) \\
\checkmark \cdot & (t x, y)=t(x, y) \\
\checkmark \cdot & (x, y)=\overline{(y, x)} \\
\checkmark \cdot & (x, x) \geq 0 \\
\square \cdot & (x, x)=0 \Rightarrow x=0
\end{array}
$$

- Example in \mathbb{R}^{n}
- Let $V=\mathbb{R}^{n}$
- The following is an inner product for V

$$
\text { - }(x, y)=\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)+x_{2} y_{2}
$$

- Example in function space
- $V=C([a, b])=\{$ all continuous function on $[a, b]\}$
- The following is an inner product for V
- $(f, g)=\int_{a}^{b} f(x) g(x) d x, \quad$ where $a<b$
- We need to check

$$
\begin{aligned}
& \checkmark \cdot(f+g, h)=(f, h)+(g, h) \\
& \checkmark \cdot(t \cdot f, g)=t(f, g) \\
& \checkmark \cdot(f, g)=(g, f) \\
& \checkmark \cdot(f, f) \geq 0 \\
& \checkmark \cdot(f, f)=0 \Rightarrow f=0
\end{aligned}
$$

Length of Vector

- Definition
- $\sqrt{(x, x)}=\|x\|$ is called the length of x
- Note: $(x, x)=\|x\|^{2}$
- Cauchy Schwarz Inequality
- $(x, y) \leq|x||y|, \quad$ for all $x, y \in V$
- Proof on page 16

Angle

- Definition
- If $x, y \in V(x \neq 0, y \neq 0)$
- Then the angle between x, y is θ where
- $\cos \theta=\frac{(x, y)}{\|x\| \cdot\|y\|}$
- Note
- Cauchy Schwarz Inequality implies
- $-1 \leq \frac{(x, y)}{\|x\| \cdot\|y\|} \leq 1$
- Orthogonal
- Vectors x, y are called orthogonal or perpendicular if
- $(x, y)=0$
- Example
- Given
- $V=\{$ all polynomials $\}$
- $(f, g)=\int_{0}^{1} f(x) g(x) d x$
- Find the angle θ between $f(x)=1$ and $g(x)=1$
- $\|f\|=\sqrt{\int_{0}^{1} f(x) f(x) d x}=\sqrt{\int_{0}^{1} 1^{2} d x}=1$
- $\|g\|=\sqrt{\int_{0}^{1} g(x) g(x) d x}=\sqrt{\int_{0}^{1} x^{2} d x}=\frac{\sqrt{3}}{3}$
- $(f, g)=\int_{0}^{1} f(x) g(x) d x=\int_{0}^{1} x d x=\frac{1}{2}$
- $\cos \theta=\frac{(x, y)}{\|x\| \cdot\|y\|}=\frac{\sqrt{3}}{2}$
- $\Rightarrow \theta=\frac{\pi}{6}$

Theorem

- Statement
- Let $W_{1}, W_{2} \subseteq V$ be subspace
- $W_{1} \cup W_{2}$ is a subspace $\Leftrightarrow W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$
- Proof: $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1} \Rightarrow W_{1} \cup W_{2}$ is a subspace
- Obvious
- Proof: $W_{1} \cup W_{2}$ is a subspace $\Rightarrow W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$
- Suppose
- $\exists v_{1} \in W_{1}$,
s.t. $v_{1} \notin W_{2}$
- $\exists v_{2} \in W_{2}$,
s. t. $v_{2} \notin W_{1}$
- Then
- $v_{1}+v_{2} \notin W_{1}$
- Indeed, if
- $v_{1}+v_{2}=w \in W_{1}$
- Then
- $v_{2}=w-v_{1} \in W_{1}$
- Contradiction
- Likewise
- $v_{1}+v_{2} \notin W_{2}$
- Therefore
- $v_{1}+v_{2} \notin W_{1} \cup W_{2}$

Question 1

- Let V be a vector space, $\langle\cdot, \cdot\rangle$ is an inner product on V
- Prove
- $\forall v, w \in V$
- $\langle u, v\rangle=0 \Leftrightarrow\|v+c \cdot w\| \geq\|v\|, \quad \forall c \in R$
- Proof: $\langle u, v\rangle=0 \Rightarrow\|v+c \cdot w\| \geq\|v\|$
- $c^{2}\|w\|^{2} \geq 0$
- $\|v\|^{2}+c^{2}\|w\|^{2} \geq\|v\|^{2}$
- $\|v\|^{2}+2 c\langle u, v\rangle+c^{2}\|w\|^{2} \geq\|v\|^{2}$
- $\|v+c \cdot w\|^{2} \geq\|v\|^{2}$
- $\|v+c \cdot w\| \geq\|v\|$
- Proof: $\|v+c \cdot w\| \geq\|v\| \Rightarrow\langle u, v\rangle=0$
- $\|v+c \cdot w\| \geq\|v\|$
- $\|v\|^{2}+2 c\langle u, v\rangle+c^{2}\|w\|^{2} \geq\|v\|^{2}$
- In order for the inequality to be true for all c
- $\langle u, v\rangle=0$

Question 2

- Let V be a finite-dimensional vector space
- $\langle\cdot, \cdot\rangle$ is an inner product on V
- Let $W \subseteq V$ be a subspace
- Define $\mathrm{W}^{\perp}=\{v \in V \mid\langle v, w\rangle=0, \forall w \in W\}$
- Prove that
- W^{\perp} is a subspace
- $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V$

Distance

- Definition
- Distance between two vectors x, y is defined as
- distance $(x, y)=\|x-y\|=\sqrt{(x-y, x-y)}$
- Example 1
- Given
- $V=\mathbb{R}^{2}$
- $(x, y)=x_{1} y_{1}+x_{2} y_{2}$
- Distance between two vectors is
- distance (x, y)
- $=\|x-y\|$
- $=\sqrt{(x-y, x-y)}$
- $=\sqrt{\left(x_{1}-y_{1}\right)^{2}-\left(x_{2}-y_{2}\right)^{2}}$
- Example 2
- Given
- $V=\{$ all continuous function $f:[0,1] \rightarrow \mathbb{R}\}$
- $(f, g)=\int_{0}^{1} f(x) g(x) d x$
- Distance between two functions is
- distance (f, g)
- $=\|f-g\|$
- $=\sqrt{(f-g, f-g)}$
- $=\int_{0}^{1}(f(x)-g(x))^{2} d x$
- Also known as "root mean square distance"

Triangle Inequality (Version 1)

- Statement
- $\|a+b\| \leq\|a\|+\|b\|$
- Proof
- $\|a+b\| \xlongequal{\text { def }}(a+b, a+b)$
- $=(a, a)+(a, b)+(b, a)+(b, b)$
- $=(a, a)+2(a, b)+(b, b)$
- $\leq\|a\|^{2}+2\|a\|\|b\|+\|b\|^{2}$
- $=(\|a\|+\|b\|)^{2}$
- Therefore $\|a+b\| \leq\|a\|+\|b\|$

Triangle Inequality (Version 2)

- Statement
- distance $(x, y) \leq \operatorname{distance}(x, z)+\operatorname{distance}(z, y)$
- Proof
- Let $a=x-z, \quad b=z-y$
- then $a+b=x-y$
- $\|x-y\| \leq\|x-z\|+\|z-y\|$
- distance $(x, y) \leq \operatorname{distance}(x, z)+\operatorname{distance}(z, y)$

Orthogonal

- Definition
- $\left\{v_{1}, \ldots, v_{n}\right\}$ are orthogonal if $\left(v_{k}, v_{l}\right)=0, \forall k \neq l$
- Theorem
- If $\left\{v_{1}, \ldots, v_{n}\right\}$ are orthogonal
- and $v_{k} \neq 0$ for all $k \in\{1,2, \ldots, n\}$
- then $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent
- Proof
- Suppose
- $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$
- Then we have to show
- $c_{1}=c_{2}=\cdots=c_{n}=0$
- Let $k \in\{1,2, \ldots, n\}$, then
- $\left(c_{1} v_{1}+\cdots+c_{n} v_{n}, v_{k}\right)=\left(0, v_{k}\right)$
- $c_{1}\left(v_{1}, v_{k}\right)+\cdots+c_{k}\left(v_{k}, v_{k}\right)+\cdots+c_{n}\left(v_{n}, v_{k}\right)=0$
- Because $\left(v_{k}, v_{l}\right)=0, \forall k \neq l$, we have
- $0+\cdots+0+c_{k}\left(v_{k}, v_{k}\right)+0+\cdots+0=0$
- $c_{k}\left(v_{k}, v_{k}\right)=0$
- Because $v_{k} \neq 0$
- $\left(v_{k}, v_{k}\right) \neq 0$
- $c_{k}=\frac{0}{\left(v_{k}, v_{k}\right)}=0$
- Therefore
- $c_{1}=c_{2}=\cdots=c_{n}=0$
- Theorem
- If $x=c_{1} v_{1}+\cdots+c_{n} v_{n}$
- and $\left\{v_{1}, \ldots, v_{n}\right\}$ are non zero and orthogonal
- then $c_{k}=\frac{\left(x, v_{k}\right)}{\left(v_{k}, v_{k}\right)}$
- Proof
- $\left(x, v_{k}\right)$
- $=\left(c_{1} v_{1}+\cdots+c_{n} v_{n}, v_{k}\right)$
- $=c_{1}\left(v_{1}, v_{k}\right)+\cdots+c_{k}\left(v_{k}, v_{k}\right)+\cdots+c_{n}\left(v_{n}, v_{k}\right)$
- $=0+\cdots+0+c_{k}\left(v_{k}, v_{k}\right)+0+\cdots+0$
- $=c_{k}\left(v_{k}, v_{k}\right)$
$\circ \Rightarrow c_{k}=\frac{\left(x, v_{k}\right)}{\left(v_{k}, v_{k}\right)}$

Gramm-Schmidt Process

- Introduction
- If V has a basis $\left\{v_{1}, \ldots, v_{n}\right\}$
- then there is an orthogonal basis $\left\{w_{1}, \ldots, w_{n}\right\}$
- The process to find the orthogonal basis is called
- Gramm-Schmidt Process
- Process
- $w_{1}=v_{1}$
- $w_{2}=v_{2}-\frac{\left(v_{2}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} w_{1}$
$w_{3}=v_{3}-\frac{\left(v_{3}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} w_{1}-\frac{\left(v_{3}, w_{2}\right)}{\left(w_{2}, w_{2}\right)} w_{2}$

○ $w_{k}=v_{k}-\sum_{i=0}^{k-1} \frac{\left(w_{k}, w_{i}\right)}{\left(w_{i}, w_{i}\right)} w_{i}$

- Proof: $\left(w_{3}, w_{2}\right)=0$
- Assume we've already shown $\left(w_{1}, w_{2}\right)=\left(w_{1}, w_{3}\right)=0$
- $\left(w_{3}, w_{2}\right)$
$\circ=\left(v_{3}, w_{2}\right)-\frac{\left(v_{3}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} \cdot\left(w_{1}, w_{2}\right)-\frac{\left(v_{3}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} \cdot\left(w_{1}, w_{2}\right)$
$\circ=\left(v_{3}, w_{2}\right)-\left(v_{3}, w_{2}\right)$
- $=0$
- Example 1
- Given
- $V=\mathbb{R}^{2}$
- $(x, y)=x_{1} y_{1}+x_{2} y_{2}$
- Find the orthogonal basis for $v_{1}=\binom{1}{1}, v_{2}=\binom{1}{2}$
- $w_{1}=v_{1}=\binom{1}{1}$
- $w_{2}=v_{2}-\frac{\left(v_{2}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} w_{1}=\binom{-1 / 2}{1 / 2}$
- $\left\{\binom{1}{1},\binom{-1 / 2}{1 / 2}\right\}$
- Example 2
- Given
- $V=\{$ all continous functions $f:[0,1] \rightarrow \mathbb{R}\}$
- $(f, g)=\int_{0}^{1} f(x) g(x) d x$
- Find the orthogonal basis for $f_{1}(x)=1, f_{2}(x)=x$
- $g_{1}(x)=f_{1}(x)=1$
- $g_{2}(x)=f_{2}(x)-\frac{\left(f_{2}, g_{1}\right)}{\left(g_{1}, g_{1}\right)} g_{1}(x)=x-\frac{1}{2}$
- $\left\{1, x-\frac{1}{2}\right\}$

