9/7 Thursday, September 7, 2017

Linear Space / Vector Space

- A set of vectors
- A set of numbers
- Addition of vectors
- Multiply vectors with numbers

Zero Vector

• There is a vector O such that for all vector x

 $\circ \ x + \mathcal{O} = x$

- Theorem
 - $\circ~$ If \mathcal{O}_1 and \mathcal{O}_2 are both zero vectors, then $\mathcal{O}_1=\mathcal{O}_2$
- Proof

$$\circ \quad \begin{cases} \mathcal{O}_1 + \mathcal{O}_2 = \mathcal{O}_1 \\ \mathcal{O}_2 + \mathcal{O}_1 = \mathcal{O}_2 \end{cases} \Rightarrow \mathcal{O}_1 = \mathcal{O}_2$$

Existence of Negative Vector

- For every vector *x*, there is a vector *y* such that
- x + y = 0
- denoted as -x

Multiplication with Numbers (Scalers)

- x, y: vectors, s, t: numbers (Number field: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$)
- s(x+y) = sx + sy
- (s+t)x = sx + tx
- s(tx) = (st)x
- $0 \cdot x = 0$
- $1 \cdot x = x$

Example of a Common Vector Spaces

- $\mathbb{R}^3 = \{(x_1, x_2, x_3) | x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}\}$ is a vector space
- Addition and multiplication defined as

$$\circ (x_1, x_2, x_3) + (y_1, y_2, y_3) \stackrel{\text{\tiny def}}{=} (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$\circ t(x_1, x_2, x_3) \stackrel{\text{\tiny def}}{=} (tx_1, tx_2, tx_3)$$

Example of a Strange Vector Spaces

• Number: \mathbb{R}

- Vector: $\mathbb{R}_+ = (0, \infty)$
- Addition
 - $\circ \quad \mathbf{x} \oplus \mathbf{y} = \mathbf{x} \times \mathbf{y}$
 - e.g. $\sqrt{2} \oplus \sqrt{2} = \sqrt{2} \times \sqrt{2} = 2$
 - \circ Zero vector: 1
- Inverse of Addition
 - Given x, find y

$$\circ x \oplus y = 1$$

$$\circ \quad \Rightarrow y = \frac{1}{x}$$

- Multiplication with numbers
 - $\circ t \in R, x \in R_+$
 - $\circ t \odot x \stackrel{\text{\tiny def}}{=} x^t$
- Proof: Distributive law

•
$$t \odot (s \odot x) = (x^s)^t = x^{st} = (ts) \odot x$$

9/11

Monday, September 11, 2017

Field

- A field F is a set together with 2 binary operations
- +, × (– optional) that satisfies the following:
 - $\circ a + b = b + a$
 - $\circ (a+b) + c = a + (b+c)$
 - $\circ \ a \times b = b \times a$
 - $\circ \ (a \times b) \times c = a \times (b \times c)$
 - $\circ \quad a \times (b + c) = a \times b + a \times c$
 - There is a special element O, such that a + O = a
 - There is a special element 1, such that $1 \times a = a$
 - For all *a*, there is a *b*, such that a + b = 0
 - For any $a \neq O$, there is a *b*, such that $a \times b = 1$
 - $\circ \quad \text{Optional: } 1 \neq \mathcal{O}, \qquad \mathcal{O} \neq 1$
- Example
 - $\circ \quad \mathbb{F} = \{0,1\}$ $\circ \quad +:= \begin{cases} 0+0=0\\ 0+1=1\\ 1+1=0 \end{cases}$ $\circ \quad \times:= \begin{cases} 0\times 0=0\\ 0\times 1=0\\ 1\times 1=1 \end{cases}$
- Example

$$\circ \quad \mathbb{F} = \{0,1,2\} \\ \circ \quad +:= \begin{cases} 0+0=0\\ 0+1=1\\ 0+2=2\\ 1+1=2\\ 1+2=0\\ 2+2=1 \end{cases} \\ \circ \quad \times:= \begin{cases} 0\times 0=0\\ 0\times 1=0\\ 0\times 2=0\\ 1\times 1=1\\ 1\times 2=2\\ 2\times 2=1 \end{cases}$$

Vector Space

• A vector space $V(\text{over } \mathbb{F})$ is a set together with binary operations

• $\begin{cases} +: V + V \to V \\ \times: F \times V \to V \end{cases}$ such that

- $\circ \mathbb{F}$ is a field
- $\circ \quad u + v = v + u, \qquad \forall u, v \in V$
- $\circ \quad (u+v)+w=v+(u+w), \qquad \forall u,v,w \in V$
- There is a 0 and vector $\vec{0}$, such that
 - $\forall u, v \in V$, $\forall a, b \in \mathbb{F}$
 - $u + \vec{0} = u$
 - $0 \times u = \vec{0}$
 - $a \times \vec{0} = \vec{0}$
 - $(a \times b) \times u = a \times (b \times u)$
 - $(a+b) \times u = a \times u + b \times u$
 - $a(u+v) = a \times u + a \times v$
 - $u + (-1)u = (1 + (-1)) \times u = 0 \times u = \vec{0}$

What does a proof look like?

- Assumptions
- Conclusion
- Proof

Example 1

- Assumption
 - $V = \{(x_1, x_2, x_3) | x_1, x_2, x_3 \in \mathbb{R} \text{ and } x_1 + x_3 = 0\}$
 - $\forall x, y \in V, x + y$ is defined by
 - z = x + y if $z = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$
 - tx is defined by $tx = (tx_1, tx_2, tx_3)$ for every $x \in V, t \in \mathbb{R}$
- Conclusion
 - *V* is a vector space
- Proof: Axiom 1 $(\forall x, y \in V: x + y \in V)$
 - let $z = (z_1, z_2, z_3) = x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$
 - $\circ \ z_1 + z_3 = x_1 + y_1 + x_3 + y_3 = (x_1 + x_3) + (z_1 + z_3) = 0$
 - $\circ \Rightarrow z \in V$

Example 2

- Assumption
 - $V = \{(x_1, x_2, x_3) | x_1, x_2, x_3 \in \mathbb{R} \text{ and } x_1 + x_3 = 1\}$
 - $\forall x, y \in V, x + y$ is defined by
 - z = x + y if $z = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$
 - tx is defined by $tx = (tx_1, tx_2, tx_3)$ for every $x \in V, t \in \mathbb{R}$
- Conclusion
 - \circ V is not a vector Space
- Proof: $\exists x, y \in V: x + y \notin V$

Axiom 5

- To show Axiom 5 does not hold,
- we have to prove for every $\mathcal{O} \in V$,
- there is an $x \in V$ with $\mathcal{O} + x \neq x$

Example 3

• Assumption

- $\circ \quad V = \{ \text{all functions } f : [0,1] \to R \}$
- Conclusion
 - *V* is a vector space
- Proof: Axiom 3 $(\forall f, g \in V: f + g = g + f)$
 - Let h = f + g and k = g + f
 - Both *h* and *g* has a domain of [0,1]
 - h(x) = f(x) + g(x) = g(x) + f(x) = k(x)

How to Check Vector Space

- Check 10 axioms
- Check that it's a nonempty subset of a vector space and closed under addition and scalar multiplication
- (By Theorem 1.4, this is enough)

1.6 Subspaces of a linear space

Given a linear space V, let S be a nonempty subset of V. If S is also a linear space, with the same operations of addition and multiplication by scalars, then S is called a *subspace* of V. The next theorem gives a simple criterion for determining whether or not a subset of a linear space is a subspace.

THEOREM 1.4. Let S be a nonempty subset of a linear space V. Then S is a subspace if and only if S satisfies the closure axioms.

Proof. If S is a subspace, it satisfies all the axioms for a linear space, and hence, in particular, it satisfies the closure axioms.

Now we show that if S satisfies the closure axioms it satisfies the others as well. The commutative and associative laws for addition (Axioms 3 and 4) and the axioms for multiplication by scalars (Axioms 7 through 10) are automatically satisfied in S because they hold for all elements of V. It remains to verify Axioms 5 and 6, the existence of a zero element in S, and the existence of a negative for each element in S.

Let x be any element of S. (S has at least one element since S is not empty.) By Axiom 2, ax is in S for every scalar a. Taking a = 0, it follows that 0x is in S. But 0x = 0, by Theorem 1.3(a), so $0 \in S$, and Axiom 5 is satisfied. Taking a = -1, we see that (-1)x is in S. But x + (-1)x = 0 since both x and (-1)x are in V, so Axiom 6 is satisfied in S. Therefore S is a subspace of V.

9/14 Thursday, September 14, 2017

Subspace

• Theorem

- *V*: vector space
- *S*: a subset of $V (S \subseteq V)$
- If for every $x, y \in S$, we have $x + y \in S$
- And if for every $x \in S$, $t \in \mathbb{R}$, we have $tx \in S$
- Then *S* is also a vector space
- Given
 - \circ It has been shown that
 - $\mathbb{R}^{n} = \{(x_{1}, x_{2}, ..., x_{n}) | x_{1}, x_{2}, ..., x_{n} \in \mathbb{R}\}$
 - is a vector space
- Example
 - Is $S = \{(x_1, x_2, x_3) | 2x_2 + x_2 = 0\}$ a vector space?
 - $S \in \mathbb{R}^3$, so we only need to verify the closure axioms
 - $x, y \in S \Rightarrow x + y \in S$
 - $x \in S, t \in \mathbb{R} \Rightarrow tx \in S$
- Linear subspace
 - If *V* is a vector space and $S \subseteq V$ is also a vector space,
 - then S is called a linear subspace of V
- Function space example 1
 - $V = \{ all real valued functions with domain [0,1] \} \}$
 - = { $f | f: [0,1] \rightarrow R$ } is a vector space
- Function space example 2
 - $(x_1, x_2, ..., x_n)$ could be viewed as a function
 - from the set $\{1, 2, 3, \dots, n\}$ to \mathbb{R}

Span of Vector Spaces

- Linear Combination
 - $\circ \ \ Given$
 - *V* is a vector space
 - $v_1, v_2, \dots, v_n \in V$
 - $c_1, c_2, \dots, c_n \in \mathbb{R}$

- then $c_1v_1 + c_2v_2 + \dots + c_nv_n$ is called
- a linear combination of $v_1, v_2, ..., v_n$

Span

- If *V* is a vector space and $A \subseteq V$ is a subspace of *V*
- then the span of *A* is the set of all linear combinition of vectors in *A*

• span(A) =
$$\left\{ c_1 v_1 + c_2 v_2 + \dots + c_n v_n \middle| \begin{matrix} v_1, v_2, \dots, v_n \in S \\ c_1, c_2, \dots, c_n \in \mathbb{R} \end{matrix}, n \ge 1 \right\}$$

- Example
 - $\circ \ V = \mathbb{R}^2$

•
$$A = \{(x_1, x_2) | x_1^2 + x_2^2 \le 1\}$$

 \circ span(A) = \mathbb{R}^2

Span of Function spaces

- Example
 - $V = \{ all real-valued functions with domain [-\pi, +\pi] \}$
 - $\circ \ A = \{1, x, x^2, x^3, x^4\}$
 - $\circ~$ Span of A contains function of the form
 - $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$
 - where $a_0, a_1, a_2, a_3, a_4 \in \mathbb{R}$
 - ∘ \Rightarrow span(*A*) = {all polynomials of degree ≤ 4 with domain [$-\pi$, $+\pi$]}
- Change of Domain
 - $V = \{ all real-valued functions with domain \{0,1\} \}$
 - $\circ \ A = \{1, x, x^2, x^3, x^4\}$
 - \circ span(A) = {x}
- Question
 - Does $x^5 \in \text{span}\{1, x, x^2, x^3, x^4\}$ with domain $[-\pi, +\pi]$
 - No, suppose $x^5 \in \text{span}\{1, x, x^2, x^3, x^4\}$, then
 - $x^5 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$, $(\forall x \in [-\pi, +\pi])$
 - Let $x = 0 \Rightarrow a_0 = 0$
 - Differentiate both side, we get
 - $5x^4 = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3$
 - Let $x = 0 \Rightarrow a_1 = 0$
 - Differentiate both side, we get
 - $4 \cdot 5x^3 = 2a_2 + 6a_3x + 12a_4x^2$
 - Let $x = 0 \Rightarrow a_2 = 0$
 - Similarly

- $a_0 = a_1 = a_2 = a_3 = a_4$
- $\Rightarrow x^5 = 0$, $(\forall x \in [-\pi, +\pi])$
- Let x = 1, we get $1^5 = 1 = 0$
- Therefore x^5 is not in span $\{1, x, x^2, x^3, x^4\}$

Linear Dependence

- Definition
 - If *V* is a vector space, $v_1, \dots, v_n \in V$
 - $\{v_1, ..., v_n\}$ are linearly independent if for every $c_1, ..., c_n \in \mathbb{R}$
 - $c_1v_1 + c_2v_2 + \dots + c_nv_n$
 - $\circ \quad \text{We have} \quad$
 - $c_1 = c_2 = \dots = c_n = 0$
 - i.e. The only linear combination of $\{v_1, ..., v_n\}$ that adds up to 0 is
 - $0v_1 + 0v_2 + \dots + 0v_n = 0$
- Example 1
 - $\circ \ v_1 = (1,0), \qquad v_2 = (0,1), \qquad v_3 = (2,2)$
 - $\circ \ \{v_1,v_2,v_3\}$ is linear dependent , because $2v_1+2v_2-v_3=0$
- Example 2
 - $v = \{0\}$ is linear dependent, because $2 \times 0 = 0$

9/18

Monday, September 18, 2017

Question 1

- Let *V* be a vector space, $S \subseteq T \subseteq V$ be subsets
- Prove or disprove:
- *S* independence \Rightarrow *T* independence
 - False
 - Counterexample 1
 - $V = \{0\}$
 - $T = \{0\}$
 - *S* = Ø
 - Counterexample 2
 - $V = \mathbb{R}^2$
 - $T = \{(0,1), (1,0), (1,1)\}$
 - $S = \{(0,1), (1,0)\}$
- *T* independence \Rightarrow *S* independence
 - True
- $\operatorname{span}(S) = V \Rightarrow \operatorname{span}(T) = V$
 - True
- $\operatorname{span}(T) = V \Rightarrow \operatorname{span}(S) = V$
 - False
 - Counterexample
 - $V = \mathbb{R}^3$
 - $T = \{(1,0,0), (0,1,0), (0,0,1)\}$
 - $S = \{(1,0,0)\}$

Question 2

- For which functions f: $\mathbb{R} \to \mathbb{R}$ is $\{f, f'\}$ linear dependent
- $f(x) = Ae^{tx}$ where $k \neq 1$ and $A \neq 0$

9/19 Tuesday, September 19, 2017

Linear Independence

- If $v_1, ..., v_n \in V$ then $\{v_1, ..., v_n\}$ is linearly independent
- if for every $c_1, \ldots, c_n \in \mathbb{R}$ it follows from
- $c_1v_1 + \dots + c_nv_n = 0$ that $c_1 = \dots = c_n = 0$

Basis

- Definition
 - $\{v_1, \dots, v_n\}$ is a basis for *V* if
 - $\{v_1, \dots, v_n\}$ are linearly independet
 - Every $x \in V$ is a linear combination of $\{v_1, \dots, v_n\}$
 - i.e. $x = c_1v_1 + \dots + c_nv_n \in V$ for certain c_1, \dots, c_n
- Theorem
 - If $\{v_1, \dots, v_n\}$ is a basis for *V*
 - and $\{w_1, \dots, w_m\}$ is also a basis for V
 - Then n = m
- Example of no basis
 - $V = \{ all function f : [0,1] \rightarrow \mathbb{R} \}$ have no basis
 - If *V* have no basis then *V* is called infinite dimensional
- Example of basis Ø
 - \emptyset is a basis for $V = \{0\}$
- Dimension
 - If $\{v_1, \dots, v_n\}$ is a basis for *V*
 - Then n is the dimension of V
- Example 1

$$\circ \quad V = \mathbb{R}^2, \qquad e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- \circ Conclusion
 - $\{e_1, e_2\}$ is a basis for \mathbb{R}^2
- Proof: $\{e_1, e_2\}$ is independent
 - Suppose $c_1, c_2 \in \mathbb{R}$ with $c_1e_1 + c_2e_2 = 0$
 - Then $c_1 e_1 + c_2 e_2 = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 - Hence $c_1 = c_2 = 0$
- Proof: $\{e_1, e_2\}$ spans $\{\mathbb{R}^2\}$

- Given $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$
- We can find c_1, c_2 such that $x = c_1e_1 + c_2e_2$

•
$$\binom{x_1}{x_2} = c_1 \binom{1}{0} + c_2 \binom{0}{1} = \binom{c_1}{c_2}$$

• $\binom{c_1 = x_1}{c_1}$

• Choose $\begin{cases} c_1 & c_2 \\ c_2 & = x_2 \end{cases}$

- Therefore the basis spans \mathbb{R}^2
- Example 2

$$\circ \quad V = \mathbb{R}^2, \qquad e_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- \circ Conclusion
 - $\{e_1, e_2\}$ is a basis for \mathbb{R}^2
- Proof: $\{e_1, e_2\}$ is independent
 - Trivial
- Proof: $\{e_1, e_2\}$ spans $\{\mathbb{R}^2\}$
 - Given $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$

•
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2c_1 + c_2 \\ c_1 + c_2 \end{pmatrix}$$

- Choose $\begin{cases} c_1 = x_1 + x_2 \\ c_2 = -x_1 + 2x_2 \end{cases}$
- Therefore the basis spans \mathbb{R}^2
- Theorem
 - Statement
 - If $\{e_1, \dots, e_n\}$ are linearly independent and if
 - $c_1e_1 + \dots + c_ne_n = b_1e_1 + \dots + b_ne_n$
 - for certain $c_1, \ldots, c_n, b_1, \ldots, b_n$
 - then $c_1 = b_1$, $c_2 = b_2$, ..., $c_n = b_n$
 - \circ Proof
 - $c_1e_1 + \dots + c_ne_n = b_1e_1 + \dots + b_ne_n$
 - $(c_1 b_1)e_1 + \dots + (c_n b_n)e_n = 0$
 - $\{e_1, \ldots, e_n\}$ are linearly independent
 - $\Rightarrow c_1 b_1 = 0, \dots, c_n b_n = 0$
 - $\Rightarrow c_1 = b_1, \dots, c_n = b_n$

Coordinates / Components

- Theorem
 - If $\{e_1, \dots, e_n\}$ is a basis for vector space V
 - Then for every $x \in V$, there is a unique choice of

- $\circ \quad c_1, c_2, \dots, c_n \in R \text{ with } x = c_1 e_1 + \dots + c_n e_n$
- $\circ \ \ c_1, \ldots, c_n$ are called the coordinates or components of x

- Example
 - $\circ \quad V = \{ \text{all function } f \colon \mathbb{R} \to \mathbb{R} \}$
 - $W = \{ all f \in V \text{ that satisfy } f'' = f \}$
 - \circ Given
 - $f(x) = e^x \in W$
 - $g(x) = e^{-x} \in W$
 - $h(x) = \sinh x \in W$
 - $f(x) = \cosh x \in W$
 - Are f, g, h, k linear independent?
 - No, because

•
$$\frac{1}{2}e^x - \frac{1}{2}e^{-1} - \sinh x = 0$$

9/20

Wednesday, September 20, 2017

Question 1

- Why is span(\emptyset) = {0}?
- 0 is the additive identity

Question 2

- The basis of $V = \{ f \in P_n | f(0) + f'(0) = 0 \}$?
- $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$
- $f(0) = a_0, \qquad f'(0) = a_1$
- f(0) + f'(0) = 0
- $\Rightarrow a_0 = -a_1$
- $f(x) = a_1(x-1) + a_2x^2 + \dots + a_nx^n$
- Therefore the basis of *V* is $\{x 1, x^2, ..., x^n\}$

9/21 Thursday, September 21, 2017

Theorem 1.5

THEOREM 1.5. Let $S = \{x_1, \ldots, x_k\}$ be an independent set consisting of k elements in a linear space V and let L(S) be the subspace spanned by S. Then every set of k + 1 elements in L(S) is dependent.

Proof. The proof is by induction on k, the number of elements in S. First suppose k = 1. Then, by hypothesis, S consists of one element x_1 , where $x_1 \neq 0$ since S is independent. Now take any two distinct elements y_1 and y_2 in L(S). Then each is a scalar multiple of x_1 , say $y_1 = c_1x_1$ and $y_2 = c_2x_1$, where c_1 and c_2 are not both 0. Multiplying y_1 by c_2 and y_2 by c_1 and subtracting, we find that

$$c_2 y_1 - c_1 y_2 = 0$$

This is a nontrivial representation of O so y_1 and y_2 are dependent. This proves the theorem when k = 1.

Now we assume the theorem is true for k - 1 and prove that it is also true for k. Take any set of k + 1 elements in L(S), say $T = \{y_1, y_2, \dots, y_{k+1}\}$. We wish to prove that T is dependent. Since each y_i is in L(S) we may write

$$(1.4) y_i = \sum_{j=1}^k a_{ij} x_j$$

for each i = 1, 2, ..., k + 1. We examine all the scalars a_{i1} that multiply x_1 and split the proof into two cases according to whether all these scalars are 0 or not.

CASE 1. $a_{i1} = 0$ for every i = 1, 2, ..., k + 1. In this case the sum in (1.4) does not involve x_1 , so each y_i in T is in the linear span of the set $S' = \{x_2, ..., x_k\}$. But S' is independent and consists of k - 1 elements. By the induction hypothesis, the theorem is true for k - 1 so the set T is dependent. This proves the theorem in Case 1.

CASE 2. Not all the scalars a_{i1} are zero. Let us assume that $a_{11} \neq 0$. (If necessary, we can renumber the y's to achieve this.) Taking i = 1 in Equation (1.4) and multiplying both members by c_i , where $c_i = a_{i1}/a_{11}$, we get

$$c_i y_1 = a_{i1} x_1 + \sum_{j=2}^k c_j a_{1j} x_j.$$

From this we subtract Equation (1,4) to get

$$c_i y_1 - y_i = \sum_{j=2}^k (c_i a_{1j} - a_{ij}) x_j,$$

for i = 2, ..., k + 1. This equation expresses each of the k elements $c_i y_1 - y_i$ as a linear combination of the k - 1 independent elements $x_2, ..., x_k$. By the induction hypothesis, the k elements $c_i y_1 - y_i$ must be dependent. Hence, for some choice of scalars $t_2, ..., t_{k+1}$, not all zero, we have

$$\sum_{i=2}^{k+1} t_i (c_i y_1 - y_i) = 0,$$

from which we find

$$\left(\sum_{i=2}^{k+1} t_i c_i\right) y_{1_i} - \sum_{i=2}^{k+1} t_i y_i = O \, .$$

But this is a nontrivial linear combination of y_1, \ldots, y_{k+1} which represents the zero element, so the elements y_1, \ldots, y_{k+1} must be dependent. This completes the proof.

Theorem 1.6

- Statement
 - If $\{v_1 \dots v_n\}$ and $\{w_1, \dots, w_m\}$ are bases for *V*, then n = m
- Proof
 - Suppose n < m
 - $\circ \quad w_1, \dots, w_m, w_{m+1} \in span\{v_1 \dots v_n\}$
 - \Rightarrow { w_1 , ..., w_n , w_{n+1} } are linearly dependent by previous therom
 - \Rightarrow { w_1 , ..., w_n , w_{n+1} , ..., w_m } are also linearly dependent
 - But $\{w_1, \dots, w_m\}$ is linearly independet, because it a basis for V
 - So n < m is not true
 - Similarly the assumption n > m also leads to contradiction
 - Therefore n = m
- Example
 - Given
 - $f(x) = 1 + 2x + x^2$
 - $g(x) = x^2 4$
 - $h(x) = 2x x^2$
 - k(x) = x 3
 - \circ Claim
 - There exist $c_1, c_2, c_3, c_4 \in \mathbb{R}$
 - such that $c_1 f(x) + c_2 g(x) + c_3 h(x) + c_4 k(x) = 0$
 - And at least one of c_1, c_2, c_3, c_4 is not 0
 - $V = \{ \text{all polynomials of degree} \le 2 \}$ has basis $\{1, x, x^2\}$
 - $f, g, h, k \in \text{span}\{1, x, x^2\}$
 - \Rightarrow f, g, h, k are linearly dependent

Theorem

- Statement
 - If *V* is a *n*-dimensional vector space
 - And $v_1, \dots, v_m \in V$ are linearly independence with m < n
 - Then there exist $v_{m+1}, \dots, v_n \in V$
 - Such that $\{v_1, \dots, v_n\}$ is a basis for V
- Outline of proof
 - ∘ span{ v_1 , ..., v_m } ≠ V by the previous theorem
 - Choose $v_{m+1} \in V$ such that $v_m \notin \operatorname{span}\{v_1, \dots, v_m\}$
 - Then $\{v_1, \dots, v_m, v_{m+1}\}$ is also linearly independent
 - If m + 1 = n, then $\{v_1, \dots, v_m, v_{m+1}\}$ is a basis for V

 $\circ~~$ Or m+1 < n , then repeat the previous steps

9/25

Monday, September 25, 2017

Span

•
$$L(S) = \begin{cases} \exists n \in \mathbb{N} \\ \exists c_1, \dots, c_n \in \mathbb{R} \\ \exists x_1, \dots, x_n \in S \\ x = c_1 x_1 + \dots + c_n x_n \end{cases}$$

Theorem

- Statement
 - $\circ \ S \subseteq V \text{ is a subspace } \Leftrightarrow S = L(S)$
- Proof: $S = L(S) \Rightarrow S \subseteq V$ is a subspace
 - Let $s, t \in S, k \in \mathbb{R}$
 - Then $s + k \cdot t \in L(S)$
 - $\circ \ \mathsf{L}(\mathsf{S}) = \mathsf{S} \Rightarrow \mathsf{s} + k \cdot t \in \mathsf{S}$
 - $\circ \Rightarrow S$ is closed under addition and scalar multiplication
 - Therefore *S* is a subspace of *V*
- Proof: $S \subseteq V$ is a subspace $\Rightarrow S = L(S)$
 - If $T \subseteq V$ and T is a subspace, then $L(S) \subseteq T$
 - Setting T = S, we have $L(S) \subseteq S$
 - We also know that $S \subseteq L(S)$
 - So S = L(S) by definition of set equality

Question 1

• Example of $L(S \cap T) \neq L(S) \cap L(T)$, where $S, T \subseteq V$

- $S = \{v_1, v_2\}, T = \{w_1, w_2\}$
- $\circ L(S \cap T) = L(\emptyset) = \{0\}$
- $\circ L(S) = L(R) = \mathbb{R}^2$

Question 2

- Let S_1, \dots, S_n be subsets of V
- When is $L(S_1) \cup \cdots \cup L(S_n)$ a subspace?
- $L(S_1) \cup L(S_2)$ is a subspace $\Leftrightarrow L(S_1) \subseteq L(S_2)$ or $L(S_2) \subseteq L(S_1)$

Inner Product

- Definition (on real vector space)
 - An inner product on a real vector space *V*
 - is a real-valued function (x, y) with $x, y \in V$
 - for which:
 - $(x + y, z) = (x, z) + (y, z), \quad \forall x, y, z \in V$
 - $(tx, y) = t(x, y), \quad \forall x, y \in V, \text{ and } t \in \mathbb{R}$
 - $(x, y) = (y, x), \quad \forall x, y \in V$
 - $(x, x) \ge 0, \quad \forall x \in V$
 - $(x, x) = 0 \Rightarrow x = 0$
- Definition (on complex vector space)
 - $\circ~$ An inner product on a real vector space V
 - is a real-valued function (x, y) with $x, y \in V$
 - \circ for which:
 - $(x + y, z) = (x, z) + (y, z), \quad \forall x, y, z \in V$
 - $(tx, y) = t(x, y), \quad \forall x, y \in V, \text{ and } t \in \mathbb{R}$

•
$$(x, y) = \overline{(y, x)}, \quad \forall x, y \in V$$

- $(x, x) \ge 0$, $\forall x \in V$
- $(x, x) = 0 \Rightarrow x = 0$
- Note: $(x, ty) = \overline{(ty, x)} = \overline{t}(x, y)$
- Example in \mathbb{R}^2
 - Let $V = \mathbb{R}^2$
 - The following is an inner product for V

•
$$(x, y) = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

- Proof: (tx, y) = t(x, y)
 - (tx, y)
 - = $(tx_1)y_1 + (tx_2)y_2 + \dots + (tx_n)y_n$
 - $= t(x_1y_1) + t(x_2y_2) + \dots + t(x_ny_n)$
 - = $t(x_1y_1 + x_2y_2 + \dots + x_ny_n)$

• =
$$t(x, y)$$

- Example in \mathbb{C}^n
 - Let $V = \mathbb{C}^n$

• The following is an inner product for *V*

•
$$(x, y) = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n}$$

 $\circ \ Proof$

$$(x + y, z) = (x, z) + (y, z)$$

$$(tx, y) = t(x, y)$$

$$(x, y) = \overline{(y, x)}$$

$$(x, x) \ge 0$$

$$(x, x) = 0 \Rightarrow x = 0$$

- Counterexample in \mathbb{R}^n
 - Let $V = \mathbb{R}^n$
 - $\circ~$ Whether the following is an inner product for V

•
$$(x, y) = x_1 y_1 - x_2 y_2$$

- $\circ~$ We need to check
 - $\checkmark (x+y,z) = (x,z) + (y,z)$

$$\checkmark \quad (tx,y) = t(x,y)$$

- $\checkmark \bullet (x,y) = \overline{(y,x)}$
- $(x, x) \ge 0$

•
$$(x, x) = 0 \Rightarrow x = 0$$

- Counterexample in \mathbb{R}^n
 - Let $V = \mathbb{R}^n$
 - $\circ~$ Whether the following is an inner product for V
 - $(x, y) = x_1 y_1$
 - $\circ~$ We need to check

$$\checkmark \quad (x+y,z) = (x,z) + (y,z)$$

- $\checkmark \quad (tx,y) = t(x,y)$
- $\checkmark \bullet (x, y) = \overline{(y, x)}$
- $\checkmark \quad (x, x) \ge 0$
- $(x, x) = 0 \Rightarrow x = 0$
- Example in \mathbb{R}^n
 - Let $V = \mathbb{R}^n$
 - $\circ~$ The following is an inner product for V

•
$$(x, y) = (x_1 + x_2)(y_1 + y_2) + x_2y_2$$

- Example in function space
 - $V = C([a, b]) = \{ all continuous function on [a, b] \}$
 - The following is an inner product for *V*

•
$$(f,g) = \int_a^b f(x)g(x)dx$$
, where $a < b$

- $\circ~$ We need to check
 - $\checkmark \quad (f+g,h) = (f,h) + (g,h)$
 - $\checkmark \quad (t \cdot f, g) = t(f, g)$
 - $\checkmark \bullet (f,g) = (g,f)$
 - $\checkmark \bullet (f, f) \ge 0$

$$\checkmark \quad (f,f) = 0 \Rightarrow f = 0$$

Length of Vector

- Definition
 - $\sqrt{(x,x)} = ||x||$ is called the length of x
 - Note: $(x, x) = ||x||^2$
- Cauchy Schwarz Inequality
 - $\circ (x, y) \le |x| |y|, \quad \text{for all } x, y \in V$
 - Proof on page 16

Angle

- Definition
 - If $x, y \in V (x \neq 0, y \neq 0)$
 - Then the angle between *x*, *y* is θ where

$$\circ \ \cos\theta = \frac{(x,y)}{\|x\| \cdot \|y\|}$$

- Note
 - Cauchy Schwarz Inequality implies

$$\circ \quad -1 \le \frac{(x, y)}{\|x\| \cdot \|y\|} \le 1$$

- Orthogonal
 - Vectors *x*, *y* are called orthogonal or perpendicular if

$$\circ (x,y) = 0$$

- Example
 - \circ Given
 - V = {all polynomials}

•
$$(f,g) = \int_0^1 f(x)g(x)dx$$

• Find the angle θ between f(x) = 1 and g(x) = 1

•
$$||f|| = \sqrt{\int_0^1 f(x)f(x)dx} = \sqrt{\int_0^1 1^2 dx} = 1$$

• $||g|| = \sqrt{\int_0^1 g(x)g(x)dx} = \sqrt{\int_0^1 x^2 dx} = \frac{\sqrt{3}}{3}$
• $(f,g) = \int_0^1 f(x)g(x)dx = \int_0^1 x dx = \frac{1}{2}$
• $\cos \theta = \frac{(x,y)}{||x|| \cdot ||y||} = \frac{\sqrt{3}}{2}$
• $\Rightarrow \theta = \frac{\pi}{6}$

9/27

Wednesday, September 27, 2017

Theorem

- Statement
 - Let $W_1, W_2 \subseteq V$ be subspace
 - $W_1 \cup W_2$ is a subspace $\Leftrightarrow W_1 \subseteq W_2$ or $W_2 \subseteq W_1$
- Proof: $W_1 \subseteq W_2$ or $W_2 \subseteq W_1 \Rightarrow W_1 \cup W_2$ is a subspace
 - \circ Obvious
- Proof: $W_1 \cup W_2$ is a subspace $\Rightarrow W_1 \subseteq W_2$ or $W_2 \subseteq W_1$
 - Suppose
 - $\exists v_1 \in W_1$, s.t. $v_1 \notin W_2$
 - $\exists v_2 \in W_2$, s.t. $v_2 \notin W_1$
 - \circ Then
 - $v_1 + v_2 \notin W_1$
 - $\circ~$ Indeed, if
 - $v_1 + v_2 = w \in W_1$
 - \circ Then
 - $v_2 = w v_1 \in W_1$
 - Contradiction
 - Likewise
 - $v_1 + v_2 \notin W_2$
 - \circ Therefore
 - $v_1 + v_2 \notin W_1 \cup W_2$

Question 1

- Let *V* be a vector space, $\langle \cdot, \cdot \rangle$ is an inner product on V
- Prove
 - $\circ \quad \forall \ v, w \in V$
 - $\circ \ \langle u,v\rangle = 0 \Leftrightarrow \|v+c\cdot w\| \geq \|v\|, \qquad \forall c \in R$
- Proof: $\langle u, v \rangle = 0 \Rightarrow ||v + c \cdot w|| \ge ||v||$
 - $\circ \ c^2 \|w\|^2 \geq 0$
 - $\circ \|v\|^2 + c^2 \|w\|^2 \geq \|v\|^2$
 - $\circ ||v||^{2} + 2c\langle u, v \rangle + c^{2} ||w||^{2} \ge ||v||^{2}$
 - $\circ \|v + c \cdot w\|^2 \ge \|v\|^2$
 - $\circ \|v + c \cdot w\| \ge \|v\|$

- Proof: $||v + c \cdot w|| \ge ||v|| \Rightarrow \langle u, v \rangle = 0$
 - $\circ \|v + c \cdot w\| \ge \|v\|$
 - $\circ ||v||^{2} + 2c\langle u, v \rangle + c^{2} ||w||^{2} \ge ||v||^{2}$
 - In order for the inequality to be true for all *c*
 - $\circ \langle u, v \rangle = 0$

Question 2

- Let *V* be a finite-dimensional vector space
- $\langle \cdot, \cdot \rangle$ is an inner product on V
- Let $W \subseteq V$ be a subspace
- Define $W^{\perp} = \{ v \in V | \langle v, w \rangle = 0, \forall w \in W \}$
- Prove that
 - \circ W^{\perp} is a subspace
 - $\circ \quad \dim W + \dim W^{\perp} = \dim V$

9/28 Thursday, September 28, 2017

Distance

- Definition
 - Distance between two vectors *x*, *y* is defined as

• distance
$$(x, y) = ||x - y|| = \sqrt{(x - y, x - y)}$$

- Example 1
 - \circ Given
 - $V = \mathbb{R}^2$

•
$$(x, y) = x_1 y_1 + x_2 y_2$$

- Distance between two vectors is
 - distance (x, y)

• =
$$||x - y||$$

• = $\sqrt{(x - y, x - y)}$
• = $\sqrt{(x_1 - y_1)^2 - (x_2 - y_2)^2}$

- Example 2
 - \circ Given
 - $V = \{ \text{all continuous function } f: [0,1] \to \mathbb{R} \}$

•
$$(f,g) = \int_0^1 f(x)g(x)dx$$

- $\circ~$ Distance between two functions is
 - distance(f, g)

• =
$$||f - g||$$

• = $\sqrt{(f - g, f - g)}$
• = $\int_0^1 (f(x) - g(x))^2 dx$

• Also known as "root mean square distance"

Triangle Inequality (Version 1)

- Statement
 - $\circ \|a+b\| \le \|a\| + \|b\|$
- Proof
 - $\circ ||a+b|| \stackrel{\text{\tiny def}}{=} (a+b,a+b)$

- $\circ = (a, a) + (a, b) + (b, a) + (b, b)$
- $\circ = (a, a) + 2(a, b) + (b, b)$
- $\circ \ \leq \|a\|^2 + 2\|a\|\|b\| + \|b\|^2$
- $\circ = (||a|| + ||b||)^2$
- Therefore $||a + b|| \le ||a|| + ||b||$

Triangle Inequality (Version 2)

- Statement
 - distance $(x, y) \leq$ distance(x, z) + distance(z, y)
- Proof
 - Let a = x z, b = z y
 - then a + b = x y
 - $\circ ||x y|| \le ||x z|| + ||z y||$
 - distance $(x, y) \leq$ distance(x, z) + distance(z, y)

Orthogonal

- Definition
 - $\{v_1, ..., v_n\}$ are orthogonal if $(v_k, v_l) = 0$, $\forall k \neq l$
- Theorem
 - If $\{v_1, \dots, v_n\}$ are orthogonal
 - and $v_k \neq 0$ for all $k \in \{1, 2, \dots, n\}$
 - then $\{v_1, \dots, v_n\}$ is linearly independent
- Proof
 - Suppose
 - $c_1v_1 + \dots + c_nv_n = 0$
 - \circ $\,$ Then we have to show

•
$$c_1 = c_2 = \dots = c_n = 0$$

- Let $k \in \{1, 2, ..., n\}$, then
 - $(c_1v_1 + \dots + c_nv_n, v_k) = (0, v_k)$

•
$$c_1(v_1, v_k) + \dots + c_k(v_k, v_k) + \dots + c_n(v_n, v_k) = 0$$

- Because $(v_k, v_l) = 0$, $\forall k \neq l$, we have
 - $0 + \dots + 0 + c_k(v_k, v_k) + 0 + \dots + 0 = 0$
 - $c_k(v_k, v_k) = 0$
- Because $v_k \neq 0$

•
$$(v_k, v_k) \neq 0$$

0

•
$$c_k = \frac{c}{(v_k, v_k)} = 0$$

 \circ Therefore

•
$$c_1 = c_2 = \dots = c_n = 0$$

- Theorem
 - $\circ \quad \text{If } x = c_1 v_1 + \dots + c_n v_n$
 - \circ and $\{v_1, ..., v_n\}$ are non zero and orthogonal

• then
$$c_k = \frac{(x, v_k)}{(v_k, v_k)}$$

• Proof

$$\circ (x, v_k)$$

$$\circ = (c_1 v_1 + \dots + c_n v_n, v_k)$$

$$\circ = c_1(v_1, v_k) + \dots + c_k(v_k, v_k) + \dots + c_n(v_n, v_k)$$

$$\circ = 0 + \dots + 0 + c_k(v_k, v_k) + 0 + \dots + 0$$

$$\circ = c_k(v_k, v_k)$$

$$\circ \Rightarrow c_k = \frac{(x, v_k)}{(v_k, v_k)}$$

Gramm-Schmidt Process

- Introduction
 - If *V* has a basis $\{v_1, \dots, v_n\}$
 - then there is an orthogonal basis $\{w_1, ..., w_n\}$
 - The process to find the orthogonal basis is called
 - $\circ \ \ \text{Gramm-Schmidt Process}$
- Process

$$w_{1} = v_{1}$$

$$w_{2} = v_{2} - \frac{(v_{2}, w_{1})}{(w_{1}, w_{1})} w_{1}$$

$$w_{3} = v_{3} - \frac{(v_{3}, w_{1})}{(w_{1}, w_{1})} w_{1} - \frac{(v_{3}, w_{2})}{(w_{2}, w_{2})} w_{2}$$

$$\vdots$$

•
$$w_k = v_k - \sum_{i=0}^{k-1} \frac{(w_k, w_i)}{(w_i, w_i)} w_i$$

- Proof: $(w_3, w_2) = 0$
 - Assume we've already shown $(w_1, w_2) = (w_1, w_3) = 0$
 - (w_{3}, w_{2}) $= (v_{3}, w_{2}) \frac{(v_{3}, w_{1})}{(w_{1}, w_{1})} \cdot (w_{1}, w_{2}) \frac{(v_{3}, w_{1})}{(w_{1}, w_{1})} \cdot (w_{1}, w_{2})$ $= (v_{3}, w_{2}) (v_{3}, w_{2})$ = 0
- Example 1
 - Given
 - $V = \mathbb{R}^2$

•
$$(x, y) = x_1 y_1 + x_2 y_2$$

• Find the orthogonal basis for $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

•
$$w_1 = v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• $w_2 = v_2 - \frac{(v_2, w_1)}{(w_1, w_1)} w_1 = \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix}$
• $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix} \right\}$

• Example 2

 \circ Given

• $V = \{ \text{all continous functions } f: [0,1] \to \mathbb{R} \}$

•
$$(f,g) = \int_0^1 f(x)g(x)dx$$

• Find the orthogonal basis for $f_1(x) = 1, f_2(x) = x$

•
$$g_1(x) = f_1(x) = 1$$

• $g_2(x) = f_2(x) - \frac{(f_2, g_1)}{(g_1, g_1)}g_1(x) = x - \frac{1}{2}$
• $\left\{1, x - \frac{1}{2}\right\}$