
Study of discrete (as opposed to continuous) objects•

Calculus is continuous•

Integers○

Steps taken by a computer program○

Distinct paths to travel from point A to point B on a map along a road 
network

○

Ways to pick a wining set of numbers in a lottery○

Example of discrete objects•

What is Discrete Mathematics?

Number of valid passwords•

Number of valid websites•

Probability of winning a lottery•

Link between two computers in a network•

Identify spam e-mails•

Shortest path•

Prove there are infinitely many prime numbers•

Numbers of steps need to do a sorting•

Prove the correctness of algorithms•

Kinds of Problems Solved Using Discrete Mathematics

Mathematical Reasoning•

Combinatorial Analysis•

Discrete Structures•

Goals of a Course in Discrete Mathematics

0. Introductory Lecture
Wednesday, January 24, 2018 8:56 AM
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A proposition is a declarative sentence that is either true or false.○

Definition•

The Moon is made of green cheese.○

Paris is the capital of Europe.○

Toronto is the capital of Canada.○

1 + 0 = 1○

0 + 0 = 2○

Examples of propositions•

Sit down!○

What time is it?○

     ○

     ○

Examples that are not propositions•

Propositions

Propositional Variables:          •

The proposition that is always true is denoted by T •

The proposition that is always false is denoted by F.•

Constructing Propositions

Propositions constructed from logical connectives and other propositions○

Definition•

The negation of a proposition  is denoted by   ○

   

T F

F T

Truth table○

If  denotes “The earth is round.”▪

Then     denotes “It is not the case that the earth is round ” ▪

Or more simply “The earth is not round.”  ▪

Example○

Negation ¬•

The conjunction of propositions  and  is denoted by    

Conjunction  •

Compound Propositions

1.1 Propositional Logic
Wednesday, January 24, 2018 9:11 AM
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The conjunction of propositions  and  is denoted by    ○

     

T T T

T F F

F T F

F F F

Truth Table○

If  denotes “I am at home.” and q denotes “It is raining.”▪

Then      denotes “I am at home and it is raining.”▪

Example○

The disjunction of propositions  and  is denoted by    ○

     

T T T

T F T

F T T

F F F

Truth Table○

If  denotes “I am at home.” and  denotes “It is raining.”▪

Then    denotes “I am at home or it is raining.”▪

Example○

Disjunction  •

In the sentence “Students who have taken CS 0  or Math  0 may take 
this class ” we assume that students need to have taken one of the 
prerequisites, but may have taken both. 

▪

This is the meaning of disjunction. ▪

For p   q  to be true, either one or both of p and q must be true.▪

“Inclusive Or”○

When reading the sentence “Soup or salad comes with this entrée ” we 
do not expect to be able to get both soup and salad.

▪

This is the meaning of Exclusive Or (XOR). ▪

In    , one of p and q must be true, but not both.▪

The truth table for   is:▪

     

T T F

T F T

F T T

F F F

“Exclusive Or” ○

Inclusive Or vs Exclusive Or•
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If  and  are propositions, then    is a conditional statement or 
implication which is read as “if  , then  ”

○

     

T T T

T F F

F T T

F F T

Truth Table○

If  denotes “I am at home.” and  denotes “It is raining.” ▪

Then      denotes “If I am at home then it is raining.” ▪

Example○

In    ,    is the hypothesis (antecedent or premise) and  is the 
conclusion (or consequence).

○

Implication  •

If  and    are propositions, then we can form the biconditional proposition 
     read as “ if and only if  .” 

○

     

T T T

T F F

F T F

F F T

Truth Table○

If  denotes “I am at home.” and  denotes “It is raining.” then        
denotes “I am at home if and only if it is raining.”

○

Biconditional  •

                    

T T F F

T F F T

F T F T

F F T T

Example•

   is the converse of    ○

     is the contrapositive  of    ○

     is the inverse of    ○

From    we can form new conditional statements .•

"If it is raining, then I will not go to town."○

 : "It is raining"○

Example•

Converse, Contrapositive, and Inverse
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○

 : "I am going to town"○

It raining is a sufficient condition for my not going to town.▪

Sufficient Condition○

My not going to town is a necessary condition for it raining.▪

Necessary Condition○

If I do not go to town, then it is raining.▪

Converse○

If it is not raining, then I will go to town.▪

Inverse○

If I go to town, then it is not raining. ▪

Contrapositive○

                        

T T T T T T F

T F F T F T T

F T T F T F F

F F T T T T F

Truth Table•

Need a row for every possible combination of values for the atomic 
propositions.

▪

Rows○

Need a column for the compound proposition (usually at far right)▪

Need a column for the truth value of each expression that occurs in the 
compound proposition as it is built up.

▪

This includes the atomic propositions ▪

Columns○

Construction of a truth table:•

Operator Precedence

¬ 1

 2

 3

 4

 5

Precedence of Logical Operators•

              

T T T T F F

T F T T F F

Example:       •

Truth Table for Compound Propositions
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T F T T F F

F T T T F F

F F T F F T

T T F T T T

T F F T T T

F T F T T T

F F F F T T
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Identify atomic propositions and represent using propositional variables.○

Determine appropriate logical connectives○

Steps to convert an English sentence to a statement in propositional logic•

 : "I go to Harry’s."○

 : "I go to the country."○

 :  "I will go shopping."○

      ○

Example: “If I go to Harry’s or to the country  I will not go shopping.”•

 : You have completed your homework○

 : You are extremely hungry○

 : You can get an extra piece of pie○

     ○

Example: “You can get an extra piece  of pie if you have completed your homework or if 
you are extremely hungry”

•

Translating English Sentences

System and Software engineers take requirements in English and express them in a 
precise specification language based on logic.

•

 : “The automated reply can be sent”○

 : “The file system is full.” ○

     ○

Example: “The automated reply cannot be sent when the file system is full”•

System Specifications

An island has two kinds of inhabitants, knights, who always tell the truth, and knaves, who 
always lie. 

•

A says “B is a knight.”○

B says “The two of us are of opposite types.”○

You go to the island and meet A and B. •

Let  and  be the statements that A is a knight and B is a knight, respectively.○

So, then   represents the proposition that A is a knave and   that B is a knave.○

If A is a knight, then  is  true. Since knights tell the truth,  must also be true. Then 
              would have to be true, but it is not. So, A is not a knight and 
therefore    must be true.

○

What are the types of A and B?•

Logic Puzzles

1.2 Applications of Propositional Logic
Friday, January 26, 2018 9:10 AM
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If A is a knave, then B must not be a knight since knaves always lie. So, then both   
and   hold since both are knaves.

○

0 represents False○

1 represents True○

Electronic circuits; each input/output signal  can be viewed as a 0 or 1. •

The inverter  (NOT gate) takes an input bit and produces the negation of that bit.○

The OR gate takes two input bits and produces the value equivalent to the 
disjunction of the two bits.

○

The AND gate takes two input bits and produces the value equivalent to the 
conjunction of the two bits.

○

Complicated circuits are constructed from three basic circuits called gates.•

More complicated digital circuits can be constructed by combining these basic circuits  
to produce the desired output given the input signals by building a circuit for each 
piece of the output expression and then combining them.

•

Logic Circuits 
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A tautology is a proposition which is always true.○

Example:     ○

Tautology •

A contradiction is a proposition which is always false.○

Example:     ○

Contradiction •

A contingency is a proposition which is neither a tautology nor a contradiction○

Example:  ○

Contingency•

Tautologies, Contradictions, and Contingencies

Two compound propositions p and q are logically equivalent if       is a tautology.•

We write this as      or as    where p and q are compound propositions.•

Two compound propositions p and q are equivalent if and only if the columns in a 
truth table giving their truth values agree.

•

           

T T F T T

T F F F F

F T T T T

F F T T T

Example•

Logically Equivalent

            •

            •

Truth Table•

                    

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

De Morgan’s Laws

     

Identity Laws•

Key Logical Equivalences

1.3 Propositional Equivalences
Friday, January 26, 2018 9:29 AM
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     ○

     ○

     ○

     ○

Domination Laws•

     ○

     ○

Idempotent Laws•

       ○

Double Negation Law•

      ○

      ○

Negation Laws•

       ○

       ○

Commutative Laws•

               ○

               ○

Associative Laws•

                   ○

                   ○

Distributive Laws•

         ○

         ○

Absorption Laws•

        ○

         ○

        ○

           ○

           ○

                   ○

                   ○

                   ○

                   ○

Logical Equivalences Involving Conditional Statements•

Logical Equivalences Involving Biconditional Statements•
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               ○

         ○

                 ○

           ○

We can show that two expressions are logically equivalent by developing a series of 
logically equivalent statements.

•

              ○

To prove that    we produce a series of equivalences beginning with A and 
ending with B.

•

Keep in mind that whenever a proposition (represented by a propositional variable) 
occurs in the equivalences listed earlier, it may be replaced by an arbitrarily complex 
compound proposition.

•

Constructing New Logical Equivalences

A compound proposition is satisfiable if there is an assignment of truth values to its 
variables that make it true.

•

When no such assignments exist, the compound proposition is unsatisfiable.•

A compound proposition is unsatisfiable if and only if its negation is a tautology.•

Propositional Satisfiability

       set    ○

       set    ○

       set    ○

One solution:        ○

                    •

Not satisfiable. ○

Check each possible assignment of truth values to the propositional variables 
and none will make the proposition true.

○

                                       •

Questions on Propositional Satisfiability

   

 

   

           •

   

 

   

           •

Notation

A  Sudoku puzzle is represented by a 9×9 grid made up of nine 3×3 subgrids, known 
as blocks.

•

Some of the 8  cells of the puzzle are assigned one of the numbers         9.•

Sudoku
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The puzzle is solved by assigning numbers to each blank cell so that every row, 
column and block contains each of the nine possible numbers.

•

Example•

Let         denote the proposition that is true when the number n is in the cell 
in the  th row and the  th column.

○

There are 9×9×9 = 729 such propositions.○

In the sample puzzle         is true, but         is false for           9○

For each cell with a given value, assert         , when the cell in row  and 
column  has the given value.

○

           

 

   

 

   

 

   

▪

Assert that every row contains every number.○

           

 

   

 

   

 

   

▪

Assert that every column contains every number.○

                   

 

   

 

   

 

   

 

   

 

   

▪

Assert that each of the    blocks contain every number.○

                   ▪

Assert that no cell contains more than one number. Take the conjunction over 
all values of    ’  , and  , where each variable ranges from 1 to 9 and     of 

○

Encoding as a Satisfiability Problem•

To solve a  Sudoku puzzle, we need to find an assignment of truth values to the 
729 variables of the form          that makes the conjunction of the assertions 
true.

○

Solving Satisfiability Problems•
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true.

Those variables that are assigned to yield a solution to the puzzle.○

A truth table can always be used to determine the satisfiability of a compound 
proposition. 

○

But this is too complex even for modern computers for large problems. ○

There has been much work on developing efficient methods for solving 
satisfiability problems as many practical problems can be translated into 
satisfiability problems. 

○
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“All men are mortal.”○

“Socrates is a man.”○

If we have: •

Does it follow that “Socrates is mortal?”•

Can’t  be represented in propositional logic. •

Need a language that talks about objects, their properties, and their relations. •

Later we’ll see how to draw inferences. •

Propositional Logic Not Enough

Variables:      ○

Predicates:          ○

Quantifiers: exists and for all○

Predicate logic uses the following new features:•

They contain variables and a predicate, e.g.,     ○

Variables can be replaced by elements from their domain.○

Propositional functions are a generalization of propositions. •

Introducing Predicate Logic

Propositional functions become propositions (and have truth values) when their 
variables are each replaced by a value from the domain (or bound by a quantifier).

•

The statement     is said to be the value of the propositional function  at  . •

     is false.○

  0 is false.○

    is true. ○

For example, let     denote  “  0” and the domain be the integers. Then:•

Often the domain is denoted by  . So in this example  is the integers.•

Propositional Functions

Let “     ” be denoted by          and  be the integers.•

            ○

          ○

         Not a Proposition○

Find these truth values: •

Now let “ is the least number” be denoted by     , with    0         .•

Find these truth values:•

Examples of Propositional Functions

1.4 Predicates and Quantifiers
Monday, January 29, 2018 9:25 AM
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  0   ○

      ○

     undefined○

Find these truth values:•

What is   0 is  is the integers?   0   •

Connectives from propositional logic carry over to predicate logic. •

                 ○

                 ○

                ○

                 ○

If     denotes  “  0 ” find these truth values:•

         ○

         ○

Expressions with variables are not propositions and therefore do not have truth values. 
For example,

•

When used with quantifiers (to be introduced next), these expressions (propositional 
functions) become propositions.

•

Compound Expressions

“All men are Mortal.”○

“Some cats do not have fur.”○

We need quantifiers to express the meaning of English words including all and some:•

Universal Quantifier  “For all ”   symbol:  ○

Existential Quantifier  “There exists ”  symbol:  ○

The two most important quantifiers are:•

       asserts     is true for every  in the domain.○

       asserts     is true for some  in the domain.○

We write as in        and        .•

The quantifiers are said to bind the variable  in these expressions. •

Quantifiers

       is read as “For all  ,     ” or “For every  ,     ”•

If     denotes  “  0” and  is the integers, then        is false.•

If     denotes  “  0” and  is the positive integers, then        is true.•

If     denotes  “ is even” and  is the integers, then        is false.•

Universal Quantifier

       is read as “For some       ”   or as “There is an  such that      ”  or “For at 
least one       .” 

•

Existential Quantifier
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least one       .” 

If     denotes  “  0” and  is the integers, then        is true. It is also true if  is 
the positive integers.

•

If     denotes  “  0” and    is the positive integers, then        is false.•

If     denotes  “ is even” and  is the integers, then        is true.•

When the  domain of discourse is finite, we can think of quantification as looping 
through the elements of the domain.

•

To evaluate        loop through all x in the domain. •

If at every step     is true, then        is true. •

If at a step     is false, then        is false and the loop terminates. •

To evaluate        loop through all  in the domain. •

If  at some step,     is true, then        is true and the loop terminates. •

If the loop ends without finding an x for which     is true, then        is false.•

Even if the domains are infinite, we can still think of the quantifiers this fashion, but the 
loops will not terminate in some cases.

•

Thinking about Quantifiers

If the domain is finite, a universally quantified proposition is equivalent to a 
conjunction of propositions without quantifiers and an existentially quantified 
proposition is equivalent to a disjunction of propositions without quantifiers. 

•

                      ○

                      ○

If U consists of the integers 1,2, and 3:•

Even if the domains are infinite, you can still think of the quantifiers in this fashion, but 
the equivalent expressions without quantifiers will be infinitely long.

•

Thinking about Quantifiers as Conjunctions and Disjunctions

The quantifiers  and   have higher precedence than all the logical operators.•

For example,               means                 •

              means something different.•

Precedence of Quantifiers

If   every student in the class▪

Let       has taken a course in Java▪

       ▪

Solution 1○

If   every student▪

Let         is a student in the class▪

Solution 2○

Every student in this class has taken a course in Java.•

Translating from English to Logic
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Let       has taken a course in Java▪

Let               ▪

Let         is a student in the class○

Let       has taken a course in Java○

                ▪

                  ▪

Some but not all○

                            ▪

                              ▪

                              ▪

                               ▪

Solution○

Some but not all students in this class has taken a course in Java.•

for every predicate substituted into these statements and ○

for every domain of discourse used for the variables in the expressions. ○

Statements involving predicates and quantifiers are logically equivalent if and only if 
they have the same truth value 

•

The notation      indicates that  and  are logically equivalent. •

Example:                     •

Equivalences in Predicate Logic

“Every student in your class has taken a course in Java.”○

Here     is “ has taken a course in Java” and ○

the domain is students in your class. ○

Negating the original statement gives “It is not the case that every student in your 
class has taken Java.” 

○

This implies that “There is a student in your class who has not taken Java.”○

Symbolically         and         are equivalent○

Consider        •

“There is a student in this class who has taken a course in Java.”○

Where       is “ has taken a course in Java.”○

Negating the original statement gives “It is not the case that there is a student in 
this class who has taken Java.” 

○

This implies that “Every student in this class has not taken Java”○

Symbolically         and         are equivalent○

Consider        •

Negating Quantified Expressions

Equivalent Statements
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                             •

Let      0        ○

Let       is even○

Let       is odd○

             : every natural number is even or odd○

               : every natural number is even or every natural number is odd○

                             •

               •

Equivalent Statements

“All lions are fierce.”1.

“Some lions do not drink coffee.”2.

“Some fierce creatures do not drink coffee.” 3.

The first two are called premises and the third is called the conclusion. •

  all creatures○

      is a lion○

      is fierce○

      drinks coffee○

Define•

              ○

               ○

              ○

Translation•

Lewis Carroll Example

for all domains ○

every propositional function substituted for the predicates in the assertion.○

An assertion involving predicates and quantifiers is valid if it is true •

Example:                   •

for some domains ○

some propositional functions that can be substituted for  the predicates in the 
assertion. 

○

An assertion involving predicates is satisfiable if it is true •

Otherwise it is unsatisfiable.•

Example:               not valid but satisfiable •

Example:                unsatisfiable•

Some Predicate Calculus Definitions 
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Nested quantifiers are often necessary to express the meaning of sentences in English as 
well as important concepts in computer science and mathematics. 

•

“Every real number has an inverse” is   ○

          0 ○

where the domains of x and y are the real numbers.○

Example•

          0 can be viewed as        ○

where     is          where       is      0 ○

We can also think of nested propositional functions:•

Nested Quantifiers

Nested Loops•

At each step, loop through the values for y. •

If for some pair of  and  ,       is false, then            is false and both the 

outer and inner loop terminate.

•

           is true if the outer loop ends after stepping through each  .  •

To see if            is true, loop through the values of  :•

At each step, loop through the values for  .•

The inner loop ends when a pair x and y  is found such that       is true.•

If no  is found such that       is true•

the outer loop terminates as            has been shown to be false. •

             is true if the outer loop ends after stepping through each  . •

To see if            is true, loop through the values of  :•

If the domains of the variables are infinite, •

then this process cannot actually be carried out.•

Thinking of Nested Quantification

Assume that  is the real numbers. •

Then            and            have the same truth value.•

Let       be the statement “       .” •

Assume that  is the real numbers. •

Then            is true, but            is false.•

Let       be the statement “    0.” •

Order of Quantifiers

Questions on Order of Quantifiers 

1.5 Nested Quantifiers
Wednesday, January 31, 2018 9:28 AM
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Let  be the real numbers,○

Define       :      0○

            ○

            ○

            ○

            ○

Example 1•

Let  be the positive real numbers,○

Define       :       ○

            ○

            ○

            ○

            ○

Example 2

Questions on Order of Quantifiers 

where     is “ has a computer ” ▪

and       is “ and  are friends ” ▪

and the domain for both  and  consists of all students in your school. ▪

Translate the statement                          ○

Every student in your school has a computer or has a friend who has a 
computer. 

▪

Solution○

Example 1•

                                        ▪

Translate the statement○

There is a student none of whose friends are also friends with each other.▪

Solution○

Example 2•

Where     is " is a barber,"▪

And       is " shaves  "▪

And the domain for both  and  consists of all people in Jonesville▪

Translate the statement                           ○

Example 3•

Translating Nested Quantifiers into English

Translating Mathematical Statements into Predicate Logic 
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Every barber in Jonesville shaves those and only those who don't shave themselves○

Solution:                              ○

Example 1•

The sum of two positive integers is always positive○

Solution:         0    0      0○

Negation:          0     0        0  ○

Example 2•

Every natural number can be represented as the sum of four squares○

Solution:                           ○

Negation:                           ○

Example 3•

Translate the epsilon-delta definition for the limit of a function: lim         ○

Solution:      0        0                      ○

Negation:      0       0                         ○

Example 4•

Translating Mathematical Statements into Predicate Logic 
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“All men are mortal.”○

“Socrates is a man.”○

We have the two premises:•

“Socrates is mortal.”○

And the conclusion: •

How do we get the conclusion from the premises?•

The Socrates Example

We can express the premises (above the line) and the conclusion (below the line) in 
predicate logic as an argument:

•

We will see shortly that this is a valid argument•

The Argument

An argument in propositional logic is a sequence of propositions. •

All but the final proposition are called premises. •

The last statement is the conclusion. •

The argument is valid if the premises imply the conclusion. •

An argument form is  an argument that is valid no matter what propositions are 
substituted into its propositional variables.    

•

                is a tautology. ○

If the premises are              and the conclusion is  then•

Inference rules are all argument simple argument forms that will be used to 
construct more complex argument forms.

•

Arguments in Propositional Logic

Equation○

Corresponding Tautology: 

Modus Ponens•

Rules of Inference for Propositional Logic: 

1.6 Rules of Inference
Friday, February 2, 2018 9:08 AM
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           ▪

Corresponding Tautology: ○

Let  be “It is snowing.”▪

Let  be “I will study discrete math.▪

“If it is snowing   then I will study discrete math.”▪

“It is snowing.”▪

“Therefore   I will  study discrete math.”▪

Example:○

Equation○

             ▪

Corresponding Tautology: ○

Let p be “it is snowing.”▪

Let q be “I will study discrete math.”▪

“If it is snowing   then I will study discrete math.”▪

“I will not study discrete math.”▪

“Therefore   it is not snowing.”▪

Example:○

Modus Tollens•

Equation○

                   ▪

Corresponding Tautology: ○

Let p be “it snows.”▪

Let q be “I will study discrete math.”▪

Let r be “I will get an A.”▪

“If it snows   then I will study discrete math.”▪

“If I study discrete math  I will get an A.”▪

“Therefore   If it snows  I will get an A.”▪

Example:○

Hypothetical Syllogism•

Disjunctive Syllogism•
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Equation○

             ▪

Corresponding Tautology: ○

Let p be “I will study discrete math.”▪

Let q be “I will study English literature.”▪

“I will study discrete math or I will study English literature.”▪

“I will not study discrete math.”▪

“Therefore   I will study English literature.”▪

Example:○

Equation○

        ▪

Corresponding Tautology: ○

Let p be “I will study discrete math.”▪

Let q be “I will visit Las Vegas.”▪

“I will study discrete math.”▪

“Therefore  I will  study discrete math or I will visit Las Vegas.”▪

Example:○

Addition•

Equation○

       ▪

Corresponding Tautology: ○

Let p be “I will study discrete math.”▪

Let q be “I will study English literature.”▪

“I will study discrete math and English literature”▪

“Therefore  I will study discrete math.”▪

Example:○

Simplification•

Equation○

Conjunction•

   Page 24    



               ▪

Corresponding Tautology:○

Let p be “I will study discrete math.”▪

Let q be “I will study English literature.”▪

“I will study discrete math.”▪

“I will study  English literature.”▪

“Therefore  I will study discrete math and I will study English literature.”▪

Example:○

Equation○

                      ▪

Corresponding Tautology: ○

Let p be “I will study discrete math.”▪

Let r be “I will study English literature.”▪

Let q be “I will study databases.”▪

“I will not study discrete math or I will study English literature.”▪

“I will study  discrete math or I will study databases.”▪

“Therefore  I will study databases or I will study English literature.”▪

Example:○

Resolution•

A  valid argument is a sequence of statements.•

Each statement is either a premise or follows from previous statements by rules of 
inference.

•

The last statement is called conclusion.•

Using the Rules of Inference to Build Valid Arguments

From the single proposition        ○

Show that  is a conclusion.○

Example 1

Valid Arguments
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“It is not sunny this afternoon and it is colder than yesterday.”▪

“We will go swimming only if it is sunny.”▪

“If we do not go swimming  then we will take a canoe trip.”▪

“If we take a canoe trip  then we will be home by sunset.”▪

With these hypotheses:○

“We will be home by sunset.”▪

Using the inference rules, construct a valid argument for the conclusion:○

 : “It is sunny this afternoon.”▪

 : “We will go swimming.”▪

 : “We will be home by sunset.”▪

 : “It is colder than yesterday.”▪

 : “We will take a canoe trip.” ▪

Choose propositional variables:○

Hypotheses:                  ▪

Conclusion:  ▪

Translation into propositional logic:○

Argument○

Example 2

Our domain consists of all dogs and Fido is a dog.▪

“All dogs are cuddly.”▪

“Therefore   Fido is cuddly.”▪

Example:○

Universal Instantiation (UI)•

Used often implicitly in Mathematical Proofs. ○

Universal Generalization (UG)•

Existential Instantiation (EI)•

Handling Quantified Statements
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“There is someone who got an A in the course.”▪

“Let’s call her a and say that a got an A”▪

Example:○

Existential Instantiation (EI)•

“Michelle got an A in the class.”▪

“Therefore   someone got an A in the class.”▪

Example:○

Existential Generalization (EG)•

“John Smith has two legs”▪

Using the rules of inference, construct a valid argument to show that○

“Every man has two legs.”▪

“John Smith is a man.”▪

is a consequence of the premises○

Let     denote “ is a man” ▪

    “ has two legs” ▪

Let John Smith be a member of the domain. ▪

Notation and domain○

Argument○

Example 1•

“Someone who passed the first exam has not read the book.” ▪

Use the rules of inference to construct a valid argument showing that the 
conclusion

○

“A student in this class has not read the book.”

“Everyone in this class passed the first exam.”

follows from the premises

Let C x  denote “x is in this class.”▪

B x  denote  “x has  read the book.”▪

P x  denote “x passed the first exam.”▪

Notation○

First we translate the premises and conclusion into symbolic form.○

Example 2•

Using Rules of Inference
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Argument○

Premises and conclusion•

Argument•

Returning to  the Socrates Example

Show that from the statements•

"Every barber in Jonesville shaves those and only those who don't shave 
themselves." and "There is a barber in Jonesville"

•

                           ○

       ○

       ○

                       ○

                   ○

              ○

Thus, we have a contradiction

We can derive a contradiction•

The Barber Example
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Thus, we have a contradiction○

“All hummingbirds are richly colored.”○

“No large birds live on honey.”○

“Birds that do not live on honey are dull in color.”○

“Hummingbirds are small.”○

The first three are called premises and the third is called the conclusion•

      is a hummingbird○

      is richly colored○

      is large○

       lives on honey○

Notation•

              ○

                ○

                 ○

               ○

Here is one way to translate these statements to predicate logic•

              (1)

                (2)

                 (3)

                    (4)

                        (5)

                        (6)

By resolution of (4) and (6),            (7)

By resolution of (5) and (7),                       (8)

By (8),               (9)

Let  be an arbilirary element of the universe•

Lewis Carroll
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A proof is a valid argument that establishes the truth of a statement.•

In math, CS, and other disciplines, informal proofs which are generally shorter, •

More than one rule of inference are often used in a step. ○

Steps may be skipped.○

The rules of inference used are not explicitly stated. ○

Easier for to understand and to explain to people. ○

But it is also easier to introduce errors. ○

are generally used.

Proofs of Mathematical Statements

definitions○

other theorems○

axioms (statements which are given as true) ○

rules of inference○

A theorem is a statement that can be shown to be true using:•

A lemma is a ‘helping theorem’ or a result which is needed to prove a theorem.•

A corollary is a result which follows directly from a theorem.•

Less important theorems are sometimes called propositions. •

A conjecture is a statement that is being proposed to be true. •

Once a proof of a conjecture is found, it becomes a theorem, •

it may turn out to be false. 

Definitions

Many theorems assert that a property holds for all elements in a domain, •

such as the integers, the real numbers, or some of the discrete structures 

that we will study in this class. 

Often the universal quantifier (needed for a precise statement of a theorem) is 
omitted by standard mathematical convention. 

•

“If    , where  and  are positive real numbers, then      ”○

really means○

“For all positive real numbers  and  , if    , then      .”○

For example, the statement:•

Forms of Theorems 

Many theorems have the form:        

Proving Theorems

1.7 Introduction to Proofs
Monday, February 5, 2018 9:05 AM
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Many theorems have the form:              •

To prove them, we show that          •

where c is an arbitrary element of the domain, 

By universal generalization the truth of the original formula follows.•

So, we must prove something of the form:     •

If we know  is true, then      is true as well.   ○

“If it is raining  then    .○

Trivial Proof•

If we know  is false then    is true as well.○

“If I am both rich and poor then          .” ○

Vacuous Proof•

Even though these examples seem silly, both trivial and vacuous proofs •

are often used in mathematical induction, as we will see in Chapter 5

Assume that  is true. ○

Use rules of inference, axioms, and logical equivalences ○

to show that  must also be true.

Direct Proof•

Give a direct proof of the theorem “If  is an odd integer, then   is odd.”○

Assume that  is odd. Then       for an integer  . ○

                                    ,▪

where          , an integer.                                  ▪

Squaring both sides of the equation, we get:○

We have proved that if  is an odd integer, then   is an odd integer. ○

Example 1 of Direct Proof•

Prove that the sum of two rational numbers is rational.○

Assume  and  are two rational numbers.○

Then there must be integers        such that○

  
 

 
     

 

 
 and   0   0○

    
 

 
   

 

 
  

     

  
        where     0 and            are integers○

Hence,    is rational○

Example 2 of Direct Proof•

Assume   and show   is true also. ○

This is sometimes called an indirect proof method.○

If we give a direct proof of      then we have a proof of    .

Proof by Contraposition•

Proving Conditional Statements:    
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If we give a direct proof of      then we have a proof of    .○

Prove that for an integer  , if   is odd, then  is odd. ○

Use proof by contraposition.○

Assume n is even (i.e., not odd).○

Therefore, there exists an integer  such that     .○

Hence,              ,  and   is even(i.e., not odd).○

We have shown that if n is an even integer, then   is even.○

Therefore by contraposition, for an integer  , if     is odd, then  is odd. ○

Example of Proof by Contraposition•

To prove  , assume   and derive a contradiction such as     . ○

(an indirect form of proof). ○

Since we have shown that     is true,○

it follows that the contrapositive    also holds. ○

Proof by Contradiction: (AKA reductio ad absurdum). •

Use a proof by contradiction to give a proof that   
   

is irrational.                 ○

Towards a contradiction assume that   
   

is rational○

Let    be such that   
   

 
 

 
    0 and     have no common factors○

  
  

            so    is even and  is even○

Let     for some    , then       ○

Then              , so   is even, and  is also even○

So 2 divides  and  , which makes a contradiction  ○

Example of Proof by Contradiction•

To prove a theorem that is a biconditional statement, that is, •

a statement of the form    , we show that    and    are both true. 

Prove the theorem: “If  is an integer, then  is odd if and only if   is odd.”○

We have already shown (previous slides) that both    and    .○

Therefore we can conclude p   q.○

Example•

Sometimes iff is used as an abbreviation for “if an only if ” as in “If  is an 
integer, then  is odd iif   is odd.”

○

Note•

Theorems that are Biconditional Statements

If direct methods of proof do not work: •

We may need  a clever use of a proof by contraposition.•

Or a proof by contradiction.•

Looking Ahead
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Or a proof by contradiction.•

In the next section, we will see strategies that can be used •

when straightforward approaches do not work.

In Chapter 5, we will see mathematical induction and related techniques.•

In Chapter 6, we will see combinatorial proofs•
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              ○

To prove a conditional statement of the form:•

 

              ○

                      ○

Use the tautology•

Each of the implications     is a case. •

Let                 if    ,○

otherwise               . ○

               ▪

Show that for all real numbers       ○

(This means the operation @ is associative.)○

Let     and  be arbitrary real numbers.○

     ▪

     ▪

     ▪

     ▪

     ▪

     ▪

Then one of the following 6 cases must hold. ○

Example•

Proof by Cases

Show that if  and  are integers and both    and    are even, •

then both  and  are even.•

Use a proof by contraposition.•

Suppose  and  are not both even. •

Then, one or both are odd. •

Without loss of generality, assume that  is odd. •

Then       for some integer  . •

Then     for some integer  , so○

                      is odd.○

Case 1:  is even.•

Without Loss of Generality

1.8 Proof Methods and Strategy
Monday, February 5, 2018 9:34 AM
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Then       for some integer  , so○

                              is odd.○

Case 2:  is odd.•

We only cover the case where  is odd •

because the case where  is odd is similar. •

The use phrase without  loss of generality (WLOG) indicates this. •

Proof of theorems of the for        .•

Find an explicit value of  , for which     is true.○

Then        is  true by Existential Generalization (EG).○

Constructive existence proof: •

Show that there is a positive integer that can be written as ○

the sum of cubes of positive integers in two different ways:○

   9   0  9        ○

Example:•

In a nonconstructive existence proof, ○

we assume no  exists which makes     true ○

and derive a contradiction.○

Nonconstructive existence proof•

Show that there exist irrational numbers    such that   is rational.○

We know that   
   

is irrational. ○

Consider the number   
     

   

.○

we have two irrational numbers  and  with    rational▪

namely     
   

  and     
   

. ▪

If   
     

   

is rational○

then we can let     
     

   

and     
   

so that▪

       
     

   
 
  
   

   
     

   
   

   

   
    

  .▪

If   
     

   

is irrational○

Example•

Existence Proofs

Some theorems asset the existence of •

a unique element with a particular property,         .•

Existence○

The two parts of a uniqueness proof are •

Uniqueness Proofs
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We show that an element x with the property exists.▪

We show that if    , then  does not have the property.▪

Uniqueness○

Show that if  and  are real numbers and   0, then○

there is a unique real number  such that      0.○

The real number     
 

 
 is a solution of      0▪

because    
 

 
          0.▪

Existence○

Suppose that s is a real number such that      0.▪

Then          , where    
 

 
 . ▪

Subtracting  from both sides ▪

and dividing by  shows that      .  ▪

Uniqueness○

Example•

Later we will see many other proof methods:•

which is a useful method for proving statements of the form 
       , 

○

where the domain consists of all positive integers.○

Mathematical induction•

which can be used to prove such results about recursively defined 
sets.

○

Structural induction•

used to prove results about the size of infinite sets.○

Cantor diagonalization•

Combinatorial proofs use counting arguments. •

Additional Proof Methods
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the students in this class○

the chairs in this room○

A set is an unordered collection of objects.•

The objects in a set are called the elements, or members of the set.•

A set is said to contain its elements.•

The notation    denotes that a is an element of the set  .•

If a is not a member of  , write    •

Sets

           •

                     ○

Order not important •

                         ○

Each distinct object is either a member or not; listing more than once does 
not change the set.

•

               ○

Dots     may be used to describe a set without listing all of the members 
when the pattern is clear.

•

Describing a Set: Roster Method

             ○

Set of all vowels in the English alphabet:•

           9 ○

Set of all  odd positive integers less than 10:•

           99 ○

Set of all positive integers less than 100:•

              ○

Set of all integers less than 0:•

Example of Roster Method

 = natural numbers =  0        •

 = integers =             0         •

  = positive integers =          •

 = set of real numbers•

  = set of positive real numbers•

Some Important Sets

2.1 Sets
Wednesday, February 7, 2018 9:00 AM
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•

 =  set of complex numbers.•

 = set of rational numbers•

S =      is a positive integer less than  00 ○

O =      is an odd positive integer less than  0 ○

O =          is odd and    0 ○

Specify the property or properties that all members must satisfy:•

          ○

A predicate may be used: •

     Prime    ○

All prime numbers•

           
 
    for some positive integers     ○

Positive rational numbers:•

Set-Builder Notation

Sometimes implicit○

Sometimes explicitly stated.○

Contents depend on the context.○

The universal set  is the set containing everything currently under 
consideration. 

•

The empty set is the set with no elements.•

Symbolized ∅  but    also used.•

Venn Diagram•

Universal Set and Empty Set

Let  be the set of all sets which are not members of themselves.•

A paradox results from trying to answer the question •

“Is  a member of itself?”•

Henry is a barber who shaves all people who do not shave themselves.○

A paradox results from trying to answer the question○

“Does Henry shave himself?”○

Related Paradox:•

Russell’s Paradox

Some things to remember
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                 ○

         ○

Sets can be elements of sets.•

∅   ∅ ○

The empty set is different from a set containing the empty set.•

Some things to remember

Two sets are equal if and only if they have the same elements. •

Therefore if A and B are sets, then•

A and B are equal if and only if            . •

               ○

                       ○

We write A = B if A and B are equal sets.•

Set Equality

The set  is a subset of  , if and only if•

every element of  is also an element of  .  •

The notation    is used to indicate that A is a subset of the set B. •

   holds if and only if            is true. •

Because   ∅ is always false, ∅   , for every set  . ○

Because            , for every set  . ○

Special Subsets•

Subsets

show that if  belongs to  , then x also belongs to  .○

Showing that  is a Subset of  •

find an element    with    .○

(Such an x is a counterexample to the claim that    implies x   B. ○

Showing that A is not a Subset of B•

The set of all computer science majors at your school is a subset of all 
students at your school.

○

The set of integers with squares less than 100 is not a subset of the set 
of nonnegative integers.

○

Examples: •

Showing a Set is or is not a Subset of Another Set

           ○

Recall that two sets A and B are equal, denoted by    , iff•

                 

Using logical equivalences we have that    iff•

Another look at Equality of Sets
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                       ○

   and    ○

This is equivalent to•

If    , but    , then we say  is a proper subset of  , denoted by    . •

If    , then                       is true. •

Venn Diagram•

Proper Subsets

If there are exactly  distinct elements in  ○

where  is a nonnegative integer, we say that  is finite. ○

Otherwise it is infinite. ○

Finite and infinite•

The cardinality of a finite set  , denoted by    ,○

is the number of (distinct) elements of  . ○

Definition•

|ø| = 0○

Let  be the letters of the English alphabet. Then       ○

|{1,2,3}| = 3○

|{ø}| = 1○

The set of integers is infinite.○

Examples:•

Set Cardinality

The set of all subsets of a set  , denoted     , is called the power set of  .•

If        then                        ○

Example•

If a set has  elements, then the cardinality of the power set is   .•

(In Chapters 5 and 6, we will discuss different ways to show this.)•

Power Sets

Tuples
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has   as its first element ○

and   as its second element ○

and so on until an  as its last element.○

The ordered  -tuple             is the ordered collection that•

Two  -tuples are equal if and only if their corresponding elements are equal.•

2-tuples are called ordered pairs.•

The ordered pairs      and      are equal if and only if    and    .•

Note:                •

Tuples

The Cartesian Product of two sets  and  , denoted by    is○

the set of ordered pairs      where    and    .○

                   ○

Cartesian Product of two sets•

       ○

         ○

                                         ○

Example:•

The cartesian products of the sets           ○

denoted by           ○

is the set of ordered  -tuples             ○

where   belongs to   for          ○

                               for           ○

Cartesian Product of more sets•

What is A × B × C where A = {0,1}, B = {1,2} and C = {0,1,2}○

      {(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), 
(1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)}

○

Example•

Cartesian Product
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Let  and  be sets.○

The union of the sets  and  , denoted by    ,  is the set:○

           ○

Definition•

           ○

Example: What is                ?•

Venn Diagram•

Union

The intersection of sets A and B  denoted by A ∩ B   is○

           ○

Definition•

If the intersection is empty, then○

A and B are said to be disjoint.○

Note•

{3}○

Example: What is         ∩         ? •

∅○

Example: What is         ∩         ? •

Venn Diagram•

Intersection

2.2 Set Operations
Friday, February 9, 2018 8:50 AM
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If A is a set, then the complement of the  (with respect to  ), ○

denoted by Ā is the set     

           ○

(The complement of  is sometimes denoted by   .)○

Definition•

If U is the positive integers less than 100, ○

what is the complement of {x | x > 70} ○

      0 ○

Example•

Venn Diagram•

Complement

Let  and  be sets. ○

The difference of  and  , denoted by    , ○

is the set containing the elements of  that are not in B. 

The difference of  and  is also called ○

the complement of  with respect to  .

                 ∩   ○

Definition•

Difference
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Venn Diagram•

  ∅   ○

 ∩    ○

Identity laws•

     ○

 ∩ ∅  ∅○

Domination laws•

     ○

 ∩    ○

Idempotent laws•

 A        A ○

Complementation law•

       ○

 ∩    ∩  ○

Communtative laws•

               ○

 ∩   ∩      ∩   ∩  ○

Associative laws•

 ∩         ∩      ∩   ○

    ∩         ∩      ○

Distributive laws•

             ∩   ○

 ∩               ○

De Morgan's laws•

    ∩     ○

 ∩        ○

Absorption laws•

Set Identities
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      ○

 ∩    ∅○

Complement laws•

Prove that  ∩               •

 ∩               ○

       ∩         ○

We can prove this identity by showing that:•

Set-Builder Notation•

Proof of Second De Morgan Law

   

 

   

           ○

   

 

   

   ∩   ∩  ∩   ○

Let           be an indexed collection of sets.•

These are well defined, since union and intersection are associative.•

Generalized Unions and Intersections
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Let A and B be nonempty sets.○

A function  from  to  , denoted   :    is ○

an assignment of each element of A to exactly one element of B.  

We write       if b is the unique element of  ○

assigned by the function  to the element a of  . 

Functions are sometimes called mappings or transformations.○

Definition•

Example•

A function  :      can also be defined as a subset of    (a relation).○

This subset is restricted to be a relation where ○

no two elements of the relation have the same first element. 

Specifically, a function  from  to  contains ○

                       ▪

                                   ▪

one, and only one ordered pair      for every element    .  

Relation•

Given a function f: A   B: 

Terminology •

Functions

2.3 Functions
Friday, February 9, 2018 9:16 AM
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Given a function f: A   B: ○

A is called the domain of  .▪

B is called the codomain of  .▪

We say  maps A to B or  is a mapping from  A to B.○

then  is called the image of  under  .▪

 is called the preimage of  .▪

If        , ○

We denote it by     .▪

The range of  is the set of all images of points in  under  . ○

they have the same domain, the same codomain and ▪

map each element of the domain to the same element of the codomain. ▪

Two functions are equal when ○

Functions may be specified in different ways:•

Students and grades example.○

An explicit statement of the assignment.•

        ○

A formula. •

A Java program that when given an integer  , produces   ○

A computer program.•

Representing Functions

      •

The image of  is  •

The domain of  is  •

The codomain of  is  •

The preimage of  is  •

          •

The preimage of  is        •

              •

          •

Example

A function  is said to be one-to-one, or injective, •

if and only if          implies that    for all  and  in the domain of f. •

A function is said to be an injection if it is one-to-one.•

Injections
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A function  from  to  is called onto or surjective,•

if and only if for every element    there is an element    with       .•

A function  is called a surjection if it is onto.•

Surjections

A function  is a one-to-one correspondence, or a bijection,•

if it is both one-to-one and onto (surjective and injective).•

Bijections
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For       if    then          ○

To show that  is injective•

Find      s.t.    and          ○

To show that  is not injective•

      ▪

      ▪

      ▪

      ▪

Let  be the function from          to        defined by ○

Yes,  is onto. ▪

Since all elements of the codomain are images of elements in the domain.▪

Is  an onto function?○

If the codomain were changed to {1,2,3,4},  would not be onto. ○

Example 1•

Is the function          from the set of integers to the set of integers onto?  ○

No,  is not onto because there is no integer x with       , for example. ○

Example 2•

Let  be the function from the  to the even natural numbers defined by○

       . Is  an onto function? One to one?○

 is an onto function, and  is one to one○

Example 3•

Is the function        from  to  onto? One to one?○

Example 4•

Showing that f is one-to-one or onto
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 is an onto function, and  is one to one○

Is the function      
 

   
  fomr    0 to  onto? One to one?○

 is not injective, and  is not surjective.○

Example 5•

Let  be a bijection from A to B. •

Then the inverse of  , denoted    , is the function from  to  defined as•

        iff       •

No inverse exists unless f is a bijection. Why?•

Inverse Functions
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Example•

      ▪

      ▪

      ▪

Let  be the function from        to        such that○

Is  invertible and if so what is its inverse?○

The function  is invertible because it is a one-to-one correspondence. ○

         ▪

         ▪

         ▪

The inverse function    reverses the correspondence given by  , so ○

Example 1•

Let  :    be such that         . ○

Example 2•

Questions
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Is  invertible, and if so, what is its inverse? ○

The function  is invertible because it is a one-to-one correspondence.○

The inverse function    reverses the correspondence so            .○

Let  :   be such that        .○

Is  invertible, and if so, what is its inverse? ○

The function  is not invertible because it is not one-to-one.○

Example 3•

Let  :    ,  :    . •

The composition of  with  , denoted    is the function from  to  defined by•

              •

Example•

Composition

If        and          ○

Then                ○

And              ○

Example 1•

Example 2•

Composition Questions
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         ▪

         ▪

Let  and  be functions from the set of integers to the set of integers defined by  ○

                                     ▪

                                      ▪

What is the composition of f and g, and also the composition of g and f ?○

Example 2•

Let  be a function from the set  to the set  .•

The graph of the function  is the set of ordered pairs            and        .•

Example•

Graphs of Functions

The floor function           is the largest integer less than or equal to  .•

The ceiling function         is the smallest integer greater than or equal to  •

  .    ,   .    ○

   .     ,    .     ○

Example•

Some Important Functions
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 :     , denoted by          is •

                            ○

  0  0     ○

the product of the first  positive integers when  is a nonnegative integer.•

         ○

             ○

                      0○

   0        90  008       0 000○

Examples:•

Factorial Function

A partial function    from a set A to a set B is •

an assignment to each element  in a subset of A, of a unique element  in B. 

The sets A and B are called the domain and codomain of  , respectively. •

We day that  is undefined for elements in A that are not in the domain of definition 
of  .  

•

When the domain of definition of  equals A, we say that  is a total function. •

 :    where             is a partial function from  to  ○

where the domain of definition is the set of nonnegative integers.○

Note that  is undefined for negative integers. ○

Example•

Partial Function
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        8○

    9    8   ○

Sequences are ordered lists of elements. •

Sequences arise throughout mathematics, computer science, and in many 
other disciplines, ranging from botany to music.

•

We will introduce the  terminology to represent sequences and sums of the 
terms in the sequences.

•

Introduction

A sequence is a function from a subset of the integers to a set S.○

The notation   is used to denote the image of the integer  .○

We can think of   as the equivalent of     ○

where  is a function from  0      ..  to  . ○

We call   a term of the sequence.○

Definition•

Consider the sequence     where○

   
 

 
                    ○

  
 

 
   

 

 
    ○

Example•

Sequences

A string is a finite sequence of characters from a finite set (an alphabet).•

Sequences of characters or bits  are important in computer science.•

The empty string is represented by  .•

The string abcde has length 5.•

Strings

A geometric progression is a sequence of the form:                 ○

where the initial term  and the common ratio  are real numbers○

Definition•

Let a = 1 and r     . Then:○

                                       ○

Example 1•

Example 2•

Geometric Progression

2.4 Sequences and Summations
Monday, February 12, 2018 9:35 AM
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Let  = 2 and  = 5. Then:○

                            0  0   0    0   ○

Example 2•

Let  = 6 and      . Then:○

                             
 

 
   

 

9
   

 

  
      ○

Example 3•

A arithmetic progression is a sequence of the form○

                   ○

where the initial term  and the common difference  are real numbers○

Definition•

Let a      and d    : ○

                                      ○

Example 1•

Let  a     and d     : ○

                                     ○

Example 2•

Let a = 1 and d = 2: ○

                                9  ○

Example 3•

Arithmetic Progression

expresses   in terms of   ,            ○

for all integers n with     , where   is a nonnegative integer. ○

A recurrence relation for the sequence     is an equation that •

A sequence is called a solution of a recurrence relation if its terms satisfy the 
recurrence relation.

•

The initial conditions for a sequence specify the terms that precede the first 
term where the recurrence relation takes effect. 

•

the recurrence relation            for          ▪

and suppose that     . ▪

Let     be a sequence that satisfies ○

What are   ,   and   ? ○

             ○

       8○

   8      ○

Example•

Recurrence Relations
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Initial Conditions:    0,     ○

Recurrence Relation:             ○

Define the  Fibonacci sequence  f0  f   f     by:•

           0   ○

              ○

              ○

              ○

             8○

Find               •

Fibonacci Sequence

Finding a formula for the  -th term of the sequence generated by a 
recurrence relation is called solving the recurrence relation. 

•

Such a formula is called a closed formula.•

Various methods for solving recurrence relations will be covered in Chapter 
8 where recurrence relations will be studied in greater depth.

•

Here we illustrate by example the method of iteration in which we need to 
guess the formula. The guess can be proved correct by the method of 
induction (Chapter 5).

•

Let     be a sequence that satisfies the recurrence relation○

         for            and suppose that     ○

      ○

                ○

                  ○

 ○

                                ○

Method 1: Working upward, forward substitution•

Let     be a sequence that satisfies the recurrence relation○

         for            and suppose that     ○

         ○

                    ○

                      ○

  ○

                                 ○

Method 2: Working downward, backward substitution•

Solving Recurrence Relations

Sum of the terms             from the sequence     •

Summations
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○

Notation for             •

The variable  is called the index of summation. It runs through all the 
integers starting with its lower limit  and ending with its upper limit  . 

•

   

 

   

○

More generally for a set S•

                    

 

   

○

  
 

 
   

 

 
   

 

 
      

 

 
  

 

   

○

If           0  then    

 

   

             ○

Examples:•

Sums of terms of geometric progressions•

•

Geometric Series

Sum of the terms             from the sequence     •

   

 

   

○

Notation for             •

Product Notation 
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The cardinality of a set  is equal to the cardinality of a set  , denoted        ,•

if and only if there is a one-to-one correspondence (i.e., a bijection)  from  to  •

If there is a one-to-one function (i.e., an injection) from  to  , then •

the cardinality of A is less than or equal to the cardinality of B and we write        •

When        and  and  have different cardinality, •

we say that the cardinality of A is less than the cardinality of B and write        •

Cardinality

A set that is either finite or has the same cardinality as   is called countable.•

A set that is not countable is uncountable.•

The set of real numbers  is an uncountable set.•

When an infinite set is countable (countably infinite) its cardinality is   •

 where   is aleph  the  st letter of the Hebrew alphabet . •

We write         and say that S has cardinality “aleph null.”•

Countable and Uncountable

An infinite set is countable iff it is possible to list the elements of the set in a sequence. •

A 1-1 correspondence  from the set of positive integers to a set S can be expressed•

in terms of a sequence           where                          •

Let        ○

     
     
   8  

○

Then f is a bijection from  to  since f is both one-to-one and onto.○

To show that it is one-to-one, suppose that          .○

Then      , and so    .○

To see that it is onto, suppose that t is an even positive integer.○

Then     for some positive integer  and       . ○

Example 1: The set of positive even integers E is countable set.•

Can list in a sequence: 0                    ○

        ▪

           ▪

Or can define a bijection from  to  :○

Example 2: The set of integers  is countable.•

Example 3: The positive rational numbers are countable.•

Showing that a Set is Countable

2.5 Cardinality of Sets
Wednesday, February 14, 2018 9:31 AM
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A rational number can be expressed as 
 

 
 where      and   0.▪

 and  such that   0.▪

Note: ○

The positive rational numbers are countable since they can be arranged in a 
sequence

○

Example 3: The positive rational numbers are countable.•

                ○

                ○

                           ○

Example 4: Union of countable sets is countable•

   0       ○

   
 

 
    

 

 
   is a bijiection from    to   ○

Example 5: The set of all rationals is countable•

       ○

0:  ▪

1:    ▪

2:            ▪

3:                                ▪

 ▪

List all strings with length○

Example 6: The set of finite string  over a finite alphabet  is counitable infinite•

Just list all the strings○

Example 7: Show that the set of all Java program is countable•

The Grand Hotel has countably infinite number of rooms, each occupied by a guest.•

Hilbert’s Grand Hotel
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The Grand Hotel has countably infinite number of rooms, each occupied by a guest.•

We can always  accommodate a new guest at this hotel.•

How is this possible?•

Because the rooms of Grand Hotel are countable•

We can list them as Room 1, Room 2, Room  3, and so on.•

When a new guest arrives, we move the guest in Room  to Room    •

This frees up Room 1, which we assign to the new guest, and all the current guests still 
have rooms. 

•

The hotel can also accommodate a countable number of new guests, all the guests on a 
countable number of buses where each bus contains a countable number of guests

•

The method is called the Cantor diagnalization argument•

Suppose  is countable. Then the real numbers between 0 and 1 are also countable•

The real numbers between 0 and   can be listed in order r    r    r     .•

   0.           ○

   0.           ○

   0.           ○

Let the decimal representation of this listing be•

    
      
      

○

Form a new real number with the decimal expansion   0.        where•

 is not equal to any of the           •

Because it differs from   in its  -th position after the decimal point.•

Therefore there is a real number between 0 and 1 that is not on the list •

since every real number has a unique decimal expansion.•

Hence, all the real numbers between 0 and 1 cannot be listed•

so the set of real numbers between 0 and 1 is uncountable.•

Since a set with an uncountable subset is uncountable•

the set of real numbers is uncountable.•

The Real Numbers are Uncountable
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the set of real numbers is uncountable.•

We say that a function is computable if there is a computer program in some 
programming language that finds the values of this function.

•

If a function is not computable we say it is uncomputable. •

There are uncomputable functions.•

We have shown that the set of Java programs is countable. •

We can show that the set of functions  :   is uncountable•

Therefore there must be uncomputable functions•

Computability
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Matrices are useful discrete structures that can be used in many ways.•

describe certain types of functions known as linear transformations.○

Express which vertices of a graph are connected by edges (see Chapter 10).○

For example, they are used to:•

Here we cover the aspect of matrix arithmetic that will be needed later. •

A matrix is a rectangular array of numbers.○

A matrix with  rows and  columns is called an    matrix. ○

The plural of matrix is matrices.○

A matrix with the same number of rows as columns is called square. ○

Two matrices are equal if they have the same number of rows and the same 
number of columns and the corresponding entries in every position are equal. 

○

Definition•

 
  
0  
  

 ○

Example:    matrix•

   

          

          

    
          

 ▪

Let m and n be positive integers and let○

               .▪

The  th row of A is the    matrix○

 
 
 
 
   

   

 
    

 
 
 

▪

The  th column of A is the    matrix:○

The      th  element or entry of A is the element    ○

We can use A =      to denote the matrix  with its      th element equal to    ○

Notation•

Matrices

Let A = [   ] and B = [   ]  be    matrices.•

The sum of A and B, denoted by A + B, is the    matrix that has      +    as its 

     th element.

•

Matrix Arithmetic: Addition

2.6 Matrices
Monday, February 19, 2018 8:48 AM
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In other words, A + B = [     + bij].•

 
 0   
    
  0

   
    
   0
    

   
    
     
   

 ○

Example•

Note that matrices of different sizes cannot be added.•

Let A be an    matrix and B be a    matrix.•

The product of A and B, denoted by AB, is the    matrix that has its      th 
element equal to the sum of the products of the corresponding elements from the  th 
row of A and the  th column of B.

•

In other words,  if AB = [   ] then                           .•

 

 0  
   
  0
0   

  
  
  
 0

   

   
8 9
   
8  

 ○

Example•

Matrix Multiplication

Let    
  
  

     
  
  

 , then•

    
  
  

      
  
  

 •

Thus      •

Matrix Multiplication is not Commutative

     = 1 if i = j ○

     = 0 if    ○

The identity matrix of order n is the    matrix         , where•

    
   

   

   
 •

         when  is an    matrix•

     ○

            
       

○

Powers of square matrices can be defined. When A is an      matrix, we have:•

Identity Matrix and Powers of Matrices

Let A = [   ] be an    matrix. •

The transpose of  , denoted by   ,is •

the    matrix obtained by interchanging the rows and columns of A.•

If   = [   ], then         for             and            •

Transposes of Matrices
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If   = [   ], then         for             and            •

The transpose of the matrix  
   
   

 is the matrix  
  
  
  

 •

A square matrix A is called symmetric if      .•

Thus A = [   ] is symmetric if         for  and  with         and      .•

The matrix  
  0
 0 0
0  0

 is square•

Symmetric matrices do not change when their rows and columns are interchanged•

Symmetric Matrices

A matrix all of whose entries are either 0 or 1 is called a zero-one matrix. •

       
 if        
0 otherwise

○

       
 if      or     
0 otherwise

○

Algorithms operating on discrete structures represented by zero-one matrices are 
based on Boolean arithmetic defined by the following Boolean operations:

•

Zero-One Matrices

Definition: Let A = [   ]  and B = [   ] be an    zero-one matrices. •

The join of A and B is the zero-one matrix with      th entry         .•

The join of A and B is denoted by A   B. •

The meet of of A and B is the zero-one matrix with     )th entry        .•

The meet of A and B is denoted by A   B. •

   
 0  
0  0

 ▪

   
0  0
  0

 ▪

Find the join and meet of the zero-one matrices○

     
   
  0

 ▪

The joint of  and  is ○

     
0 0 0
0  0

 ▪

The meet of  and  is ○

Example•

Joint and Meet of Zero-One Matrices

Let A = [   ]  be an    zero-one matrix and B = [   ] be a    zero-one 

matrix.

○

Definition: •

Boolean Product of Zero-One Matrices
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matrix.

The Boolean product of A and B, denoted by    , is the    zero-one matrix 

with      th entry                                    .

○

   
 0
0  
 0

     
  0
0   

 ○

     
  0
0   
  0

 ○

Example: Find the Boolean product of A and B, where•

Let A be a square zero-one matrix and let r be a positive integer.•

The  th Boolean power of  A is the Boolean product of r factors of A, denoted by     . •

Hence,                      
       

 •

We define        •

The Boolean product is well defined because the Boolean product of matrices is 
associative

•

Let    
0 0  
 0 0
  0

 ○

Find     for all positive integers  ○

      
  0
0 0  
 0  

 ○

      
 0  
  0
   

 ○

      
   
 0  
   

 ○

      
   
   
   

 ○

Example•

Boolean Powers of Zero-One Matrices
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An algorithm is a finite set of precise instructions for performing a computation 
or for solving a problem.

○

Definition•

Perform the following steps:○

Set the temporary maximum equal to the first integer in the sequence.○

If it is larger than the temporary maximum, ▪

set the temporary maximum equal to this integer.▪

Compare the next integer in the sequence to the temporary maximum.○

Repeat the previous step if there are more integers. If not, stop.○

When the algorithm terminates, the temporary maximum is the largest integer in 
the sequence.

○

Example: Describe an algorithm for finding the maximum value in a finite sequence of 
integers.

•

Algorithms

Algorithms can be specified in different ways.•

Their steps can be described in English or in  pseudocode.•

Pseudocode is an intermediate step between an English language description of the 
steps and a coding of these steps using a programming language. 

•

The form of pseudocode we use is specified in Appendix 3.•

It uses some of the structures found in popular languages such as C++ and Java.•

Programmers can use the description of an algorithm in pseudocode to construct a 
program in a particular language. 

•

Pseudocode helps us analyze the time required to solve a problem using an algorithm, 
independent of the actual programming language used to implement algorithm. 

•

Specifying Algorithms

An algorithm has input values from a specified set.○

Input•

From the input values, the algorithm produces the output values from a specified 
set. 

○

The output values are the solution.○

Output•

An algorithm should produce the correct output values for each set of input 
values.

○

Correctness•

Finiteness•

Properties of Algorithms

3.1 Algorithms
Monday, February 19, 2018 9:31 AM
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An algorithm should produce the output after a finite number of steps for any 
input.

○

Finiteness•

It must be possible to perform each step of the algorithm correctly and in a finite 
amount of time.

○

Effectiveness•

The algorithm should work for all problems of the desired form.○

Generality•

The algorithm in pseudocode:•

Does this algorithm have all the properties listed on the previous slide?   •

Finding the Maximum Element in a Finite Sequence

Three classes of problems will be studied in this section.•

finding the position of a particular element in a  list.○

Searching Problems•

putting the elements of a list into increasing order.○

Sorting problems•

determining the optimal value of a particular quantity over all possible inputs.○

Optimization Problems•

Some Example Algorithm Problems

The general searching problem is to locate an element  in the list of distinct elements 
          , or determine that it is not in the list.

•

The solution to a searching problem is the location of the term in the list that equals  
(that is,  is the solution if      ) or 0 if x is not in the list.

•

For example, a library might want to check to see if a patron is on a list of those with 
overdue books before allowing him/her to checkout another book.

•

We will study two different searching algorithms; linear search and binary search.•

Searching Problems

The linear search algorithm locates an item in a list by examining elements in the 
sequence one at a time, starting at the beginning.

•

First compare x with a1. If they are equal, return the position 1.•

If not, try   . If     , return the position 2.•

Keep going, and if no match is found when the entire list is scanned,   return 0.•

Linear Search Algorithm
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Keep going, and if no match is found when the entire list is scanned,   return 0.•

Assume the input is a  list of items  in increasing order.•

If the middle element is lower, the search proceeds with the upper half of the list.○

If it is not lower, the search proceeds with the lower half of the list○

Repeat this process until we have a list of size 1.○

If the element we are looking for is equal to the element in the list, the position is 
returned.

○

Otherwise, 0 is returned to indicate that the element was not found. ○

The algorithm begins by comparing the element to be found with the middle element. •

In Section 3.3, we show that the binary search algorithm is much more efficient than 
linear search.

•

Here is a description of the binary search algorithm in pseudocode. •

Binary Search

To sort the elements of a list is to put them in increasing order (numerical order, 
alphabetic, and so on).

•

A nontrivial percentage of all computing resources are devoted to sorting 
different kinds of lists, especially applications involving large databases of 
information that need to be presented in a particular order (e.g., by customer, 
part number etc.).

○

An amazing number of fundamentally different algorithms have been invented 

Sorting is an important problem because:•

Sorting
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An amazing number of fundamentally different algorithms have been invented 
for sorting. Their relative advantages and disadvantages have been studied 
extensively.

○

Sorting algorithms are useful to illustrate the basic notions of computer science.○

A variety of sorting algorithms are studied in this book; binary, insertion, bubble, 
selection, merge, quick, and tournament.

•

In Section  .   we’ll study the amount of time required to sort a list using the sorting 
algorithms covered in this section.

•

Bubble sort makes multiple passes through a list.•

Every pair of elements that are found to be out of order are interchanged.•

Bubble Sort

Insertion sort begins with the 2nd element.•

It compares the 2nd element with the 1st and puts it before the first if it is not larger.•

Next the 3rd element is put into the correct position among the first 3 elements. •

In each subsequent pass, the       th element is put into its correct position among 
the first    elements.

•

Linear search is used to find the correct position.•

Insertion Sort
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Optimization problems minimize or maximize some parameter over all possible inputs.•

Finding a route between two cities with the smallest total mileage.○

Determining how to encode messages using the fewest possible bits.○

Finding the fiber links between network nodes using the least amount of fiber.○

Among the many optimization problems we will study are:•

Optimization problems can often be solved using a greedy algorithm, which makes the 
“best” choice at each step.

•

Making the “best choice” at each step does not necessarily produce an optimal solution 
to the overall problem, but in many instances, it does. 

•

After specifying what the “best choice” at each step is  we try to prove that this 
approach always produces an optimal solution, or find a counterexample to show that 
it does not.

•

The greedy approach to solving problems is an example of an algorithmic paradigm, 
which is a general approach for designing an algorithm.

•

We return to algorithmic paradigms in Section 3.3. •

Greedy Algorithms

quarters (25 cents)▪

dimes (10 cents)▪

nickels (5 cents)▪

pennies (1 cent)▪

Design a greedy algorithm for making change (in  U.S. money) of  cents with the 
following coins

○

using the least total number of coins.○

Example•

Idea•

Greedy Algorithms: Making Change
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At each step choose the coin with the largest possible value that does not exceed 
the amount of change left.

○

If n      cents  first choose a quarter leaving            cents. Then choose 
another quarter leaving             cents

○

Then choose   dime  leaving       0     cents.○

Choose 1 nickel, leaving 7  5 = 2 cents.○

Choose a penny, leaving one cent. Choose another penny leaving 0 cents.○

Idea•

G reedy change-making algorithm for  cents.○

The algorithm works with any coin denominations            .○

For the example of U.S. currency, we may have quarters, dimes, nickels and 
pennies,  with           0          .

○

Solution•

If  is a positive integer, then  cents in change using quarters, dimes, 
nickels, and pennies, using the fewest coins possible has at most 2 dimes, 1 
nickel, 4 pennies, and cannot have 2 dimes and a nickel.

▪

The total amount of change in dimes, nickels, and pennies must not exceed 
24 cents.

▪

Lemma 1○

If we had 3 dimes, we could replace them with a quarter and a nickel. ▪

If we had 2 nickels, we could replace them with  1 dime.▪

If we had 5 pennies, we could replace them with a nickel.▪

If we had 2 dimes and 1  nickel, we could replace them with a quarter.▪

The allowable combinations, have a maximum value of 24 cents; 2 dimes 
and 4 pennies. 

▪

Proof○

The greedy change-making algorithm for U.S. coins produces change using 
the fewest coins possible.

▪

Theorem○

Assume there is a positive integer n such that change can be made for  
cents using quarters, dimes, nickels, and pennies, with a fewer total number 
of coins than given by the algorithm.

▪

Then        where      is the number of quarters used in this optimal way ▪

Proof○

Proving Optimality•
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Then        where      is the number of quarters used in this optimal way 
                                                                   

▪

But this is not possible by Lemma 1, since the value of the coins other than 
quarters cannot be greater than 24 cents.

▪

Similarly, by Lemma 1, the two algorithms must have the same number of 
dimes, nickels, and quarters.

▪

Can we develop a procedure that takes as input a computer program along with its 
input and determines whether the program will eventually halt with that input.

•

Solution: Proof by contradiction.•

Assume that there is such a procedure and call it H(P,I). •

H outputs “halt” if it is the case that P will stop when run with input I. ○

Otherwise  H outputs “loops forever.”○

The procedure H(P,I) takes as input a program P and the input I to P. •

Since a program is a string of characters,  we can call H(P,P).•

If H P P  outputs “loops forever” then K P  halts.○

If H P P  outputs “halt” then K P  goes into an infinite loop printing “ha” on each 
iteration.

○

Construct a procedure K(P), which works as follows. •

If the output of H K K  is “loops forever” then K K  halts. A Contradiction.○

If the output of H K K  is “halts” then K K  loops forever. A Contradiction.○

Now we call K with K as input, i.e. K(K).•

Therefore, there cannot be a procedure that can decide whether or not an arbitrary 
program halts.

•

The halting problem is unsolvable. •

Halting Problem
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In both computer science and in mathematics, there are many times when we care about how fast a 
function grows.

•

We can compare the efficiency of two different algorithms for solving the same problem. ○

We can also determine whether it is practical to use a particular algorithm as the input grows. ○

We’ll study these questions in Section  . .○

In computer science, we want to understand how quickly an algorithm can solve a problem as the 
size of the input grows. 

•

number theory (covered in Chapter 4)  ○

combinatorics (covered in Chapters 6 and 8)○

Two of the areas of mathematics where questions about the growth of functions are studied are:•

The Growth of Functions

Let f and g be functions from the set of integers or the set of real numbers to the set of real 
numbers.

•

                   whenever     .○

We say that f(x) is O(g(x)) if there are constants C and k such that•

This is read as “    is big-O of g x ” or   “ asymptotically dominates  .”•

The constants C and  are called witnesses to the relationship     is        .•

Only one pair of witnesses is needed. •

Big-O Notation

If one pair of witnesses is found, then there are infinitely many pairs. •

Some Important Points about Big-O Notation

3.2 The Growth of Functions
Friday, February 23, 2018 8:55 AM
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If one pair of witnesses is found, then there are infinitely many pairs. •

We can always make the k or the C larger and still maintain the inequality                . •

If     is        and     is        then     is        •

You may see  “             ” instead of “     is        .”  •

But this is an abuse of the equals sign since the meaning is that •

there is an inequality relating the values of f and g, for sufficiently large values of x. 

It is ok to write             , because         represents the set of functions that are        .•

Usually, we will drop the absolute value sign since •

we will always deal with functions that take on positive values. 

Since when    ,     and     ○

0                       ○

Can take C = 4 and k = 1 as witnesses to show that     is      ○

Alternatively, when    , we have      and     .○

Hence,  0                      when    . ○

Can take C = 3 and k = 2 as witnesses instead.                                    ○

Example: Show that             is      .•

When    ,        . ○

Take C =1 and  = 7 as witnesses to establish that      is      .○

(Would C = 7 and k = 1 work?) Yes○

Example: Show that      is      •

Example: Show that   is  not O( )•

Using the Definition of Big-O Notation
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Suppose there are constants C and  for which      , whenever    .○

Then     must hold for all    . A contradiction!○

Example: Show that   is  not O( )•

Let         
       

            where          are real numbers with    0•

Then     is O(  ). •

             
         

             •

                                          0 •

           
      

 
          

    

    
     

    

  
    •

                                 •

Take                      and    .•

Then     is      . •

The leading term    
  of a polynomial dominates its growth.  •

Big-O Estimates for Polynomials

                  ○

       is      taking    and    ○

Example: Use big-O notation to estimate the sum of the first  positive integers.•

                   ○

  is      taking    and    ○

Example: Use big-O notation to estimate the factorial function                •

Given that          ○

then log      log                               .○

Hence, log   is    log   taking  = 1 and  = 1.○

Example: Use big-O notation to estimate log   •

Big-O Estimates for Some Important Functions

Display of Growth of Functions
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          is   max                  .  ○

If       is         and      is         then •

          is        . ○

If       and      are both        then •

         is              .  ○

If       is         and      is         then•

Combinations of Functions

Let  and g be functions from the set of integers/real numbers to the set of real numbers.•

We say that     is        if there are constants C and  such that               when    •

We say that “    is big-Omega of     .”•

Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound.•

Big-Omega tells us that a function grows at least as fast as another.•

    is         if and only if     is        .•

This follows from the definitions.•

   8         8  for all positive real numbers  

Example: Show      8        is        where        •

Big-Omega Notation
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     8         8  for all positive real numbers  ○

Is it also the case that        is   8         ? Yes○

Let  and g be functions from the set of integers/real numbers to the set of real numbers.•

The function     is        if      is        and     is        •

“ is big-Theta of     ”○

“    is of order     ”○

“    and     are of the same order.”   ○

We say that•

    is        if and only if•

there exists constants   ,   and  such that                     if    .

This follows from the definitions of big-O and big-Omega.•

When     is        it must  also be the case that     is        •

Note that     is        if and only if it is the case that     is        and     is        .•

Sometimes writers are careless and write as if big-O notation has the same meaning as big-Theta.•

Big-Theta Notation

Let               ∙∙∙     .○

We have already shown that     is      .○

To show that     is      , we need a positive constant C such that○

    > C  for sufficiently large  .

Summing only the terms greater than 
 

 
 we obtain the inequality○

                        ∙∙∙         
 

 
     

 

 
         

                                                
 

 
    

 

 
      

 

 
  

                                            =      
 

 
      

 

 
  

                                                 
 

 
   

 

 
  = 

  

 
  

Taking C = 
 

 
 ,      > C  for all positive integers  . ○

Hence,     is      , and we can conclude that      is      .○

Example 1: Show that the sum of the first  positive integers is      •

         8 log       for x > 1, ○

since 0  8 log    8  .○

Hence,     8 log  is O(  ).○

    is clearly  O(    8 log  )○

Hence,     8 log  is     )○

Example 2:  Show that          8 log  is     )•

Examples of Big-Theta Notation
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Given an algorithm, how efficient is this algorithm for solving a problem given input of a 
particular size?

•

How much time does this algorithm use to solve a problem?○

How much computer memory does this algorithm use to solve a problem?○

To answer this question, we ask:•

When we analyze the time the algorithm uses to solve the problem given input of a particular 
size, we are studying the time complexity of the algorithm.

•

When we analyze the computer memory the algorithm uses to solve the problem given input 
of a particular size, we are studying the space complexity of the algorithm.

•

In this course, we focus on time complexity.•

The space complexity of algorithms is studied in later courses.•

We will measure time complexity in terms of the number of operations an algorithm uses and 
we will use big-O and big-Theta notation to estimate the time complexity.

•

We can use this analysis to see whether it is practical to use this algorithm to solve problems 
with input of a particular size.

•

We can also compare the efficiency of different algorithms for solving the same problem.•

We ignore implementation details because it is extremely complicated to consider them.•

The Complexity of Algorithms

To analyze the time complexity of algorithms, we determine the number of operations, such 
as comparisons and arithmetic operations (addition, multiplication, etc.).

•

We can estimate the time a computer may actually use to solve a problem using the amount 
of time required to do basic operations. 

•

We ignore minor details  such as the “house keeping” aspects of the algorithm.•

We will focus on the worst-case time complexity of an algorithm. •

This provides an upper bound on the number of operations an algorithm uses to solve a 
problem with input of a particular size.

•

It is usually much more difficult to determine the average case time complexity of an 
algorithm.

•

This is the average number of operations an algorithm uses to solve a problem over all inputs 
of a particular size.

•

Time Complexity

Example: Describe the time complexity of the algorithm for finding  the maximum element in 
a finite sequence.

•

Complexity Analysis of Algorithms

3.3 Complexity of Algorithms
Monday, February 26, 2018 9:03 AM
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Count the number of comparisons.○

The max <   comparison is made      times.○

Each time  is incremented, a test is made to see if    .○

One last comparison determines that    .               ○

Exactly              comparisons are made.○

Hence  the time complexity of the algorithm is     ).○

Example: Determine the time complexity of the linear search algorithm.•

Count the number of comparisons.○

At each step two comparisons are made;    and     .○

To end the loop, one comparison    is made.○

After the loop, one more      comparison is made. ○

If     ,     comparisons are used.○

If  is not on the list,     comparisons are made and then an additional comparison 
is used to exit the loop.

○

So, in the worst case     comparisons are made. ○

Hence  the complexity is   n .○

Assume the element is in the list and that the possible positions are equally likely. ○

By the argument on the previous slide, if     , the number of comparisons is     ○

              

 
                       

              

 
                       

  
      

          

 
                 ○

Hence,  the average-case complexity of linear search is    ).○

Example: Describe the average case performance of the linear search algorithm.•

Example: Describe the time complexity of binary search in terms of the number of •
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Example: Describe the time complexity of binary search in terms of the number of 
comparisons used.

•

Assume (for simplicity) n =   elements. Note that   log .  ○

Two comparisons are made at each stage;      , and     .○

At the first iteration the size of the list is   and after the first iteration it is     .○

Then     and so on until the size of the list is     . ○

At the last step, a comparison tells us that the size of the list is the size is     and the 
element is compared with the single remaining element.  

○

Hence, at most       log   comparisons are made. ○

Therefore  the time complexity is    log  ), better than linear search. ○

Example: What is the worst-case complexity of bubble sort in terms of the number of 
comparisons made?

•

A sequence of    passes is made through the list.○

On each pass    comparisons are made.○

                  
      

 
         

 

 
     

 

 
   ○

The worst-case complexity of bubble sort is      )○

Example: What is the worst-case complexity of insertion sort in terms of the number of 
comparisons made?

•
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The total number of comparisons are○

        
      

 
          ○

Therefore the complexity is     )○

Example: How many additions of integers and multiplications of integers are used by the 
matrix multiplication algorithm to multiply two    matrices.

•

There are   entries in the product. ○

Finding each entry requires n multiplications and    additions.○

Hence,   multiplications and        additions are used.○

Hence, the complexity of matrix multiplication is O(  ). ○

Understanding the Complexity of Algorithms
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There exists a polynomial time algorithm to solve this problem.○

These problems are said to belong to the Class P.○

Tractable Problem•

There does not exist a polynomial time algorithm to solve this problem○

Intractable Problem•

No algorithm exists to solve this problem, e.g., halting problem.○

Unsolvable Problem•

Solution can be checked in polynomial time.○

But no polynomial time algorithm has been found for finding a solution to problems in 
this class. 

○

Class NP•

If you find a polynomial time algorithm for one member of the class, ○

it can be used to solve all the problems in the class.  ○

NP Complete Class•

Complexity of Problems

The P versus NP problem asks whether the class  P = NP? •

Are there problems whose solutions can be checked in polynomial time, but can not be solved 
in polynomial time?

•

Note that just because no one has found a polynomial time algorithm is different from 
showing that the problem can not be solved by a polynomial time algorithm.

•

If a polynomial time algorithm for any of the problems in the NP complete class were found, 
then that algorithm could be used to obtain a polynomial time algorithm for every problem in 
the NP complete class.

•

P Versus NP Problem
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Satisfiability (in Section 1.3) is an NP complete problem. •

It is generally believed that P NP since no one has been able to find a polynomial time 
algorithm for any of the problems in the NP complete class. 

•

The problem of P versus NP remains one of the most famous unsolved problems in 
mathematics (including theoretical computer science).

•

The Clay Mathematics Institute has offered a prize of $1,000,000 for a solution.•
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If a and b are integers with a   0  ○

then a divides b if there exists an integer c such that  b = ac.○

When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.○

The notation a | b denotes that a divides b.○

If a | b, then b/a is an integer.○

If a does not divide b  we write a ∤ b.○

Definition•

Determine whether 3 | 7 and whether 3 | 12.○

3 | 7 is false ○

3 | 12 is true○

Example•

Division

If a | b and a | c, then a | (b + c);○

If a | b, then a | bc for all integers c;○

If a | b and b | c, then a | c.○

Theorem  : Let a  b  and c be integers  where a  0. •

Suppose a | b and a | c, then it follows that ○

there are integers s and t with b = as and c = at. ○

Hence,  b + c = as + at = a(s + t). ○

Hence,  a | (b + c)○

Proof (i)•

If a  b  and c be integers  where a  0  such that a   b and a   c  ○

then a | mb + nc whenever m and n are integers. ○

Corollary•

Properties of Divisibility

When an integer is divided by a positive integer, there is a quotient and a remainder.•

This is traditionally called the “Division Algorithm ” but is really a theorem.•

If a is an integer and d a positive integer, then ○

there are unique integers q and r  with 0   r   d  such that○

a = dq + r ○

d is called the divisor.

Division Algorithm•

Division Algorithm

4.1 Divisibility and Modular Arithmetic
Wednesday, February 28, 2018 8:59 AM
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d is called the divisor.○

a is called the dividend.○

q is called the quotient.      ○

r is called the remainder.○

 0     9   ○

Thus the quotient is 9, and the remainder is 2○

101 div 11 = 9○

101 mod 11 = 2○

Example: What are the quotient and reminder when 101 is divided by 11?•

            ○

Example: What are the quotient and reminder when -11 is divided by 3?•

If a and b are integers and m is a positive integer, ○

then a is congruent to b modulo m if m divides a  b.○

The notation a     b  mod m   says  that a is congruent to b modulo m.  ○

We say that a     b  mod m  is a congruence and that m is its modulus.○

Two integers are congruent mod m  if and only if ○

they have the same remainder when divided by m.

If a is not congruent to b modulo m  we write a ≢  b  mod m ○

Definition•

        mod    because   divides            . ○

Determine whether 17 is congruent to 5 modulo 6•

   ≢     mod    since            0  is not divisible by  .○

Determine whether 24 and 14 are congruent modulo 6.•

Congruence Relation

a     b  mod m  is a relation on the set of integers.○

In a mod m = b,  the notation mod denotes a function.○

The use of “mod” in a     b  mod m  and a mod m   b are different.•

The relationship between these notations is made clear in this theorem.•

Let a and b be integers, and let m be a positive integer.○

Then a   b  mod m   if and only if ○

a mod m = b mod m.○

Theorem 3•

The Relationship between (mod  ) and mod  Notations

Let m be a positive integer.○

Theorem 4•

More on Congruence
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The integers a and b are congruent modulo m if and only if ○

there is an integer k such that a = b + km.○

If a     b  mod m   then  by the definition of congruence   m   a  b. ○

Hence, there is an integer k such that a  b = km and equivalently a = b + km.○

Conversely, if there is an integer k such that a = b + km, then km = a  b. ○

Hence, m | a  b and a     b  mod m .○

Proof: •

Let m be a positive integer.○

a   c     b   d  mod m ▪

ac     bd  mod m  ▪

If  a     b  mod m  and  c     d  mod m   then○

Theorem 5•

Because a     b  mod m   and c     d  mod m ○

by Theorem 4 there are integers s and t with b = a + sm and d = c + tm.○

b + d = (a  + sm) + (c + tm) = (a + c) + m(s + t) and▪

b d = (a  + sm) (c + tm) = ac + m(at + cs + stm).▪

Therefore,  ○

Hence  a   c     b   d  mod m  and ac     bd  mod m . ○

Proof: •

Because          mod    and            mod      it follows from Theorem   that○

 8                         mod     ○

       ∙          ∙        mod   ○

Example•

Congruence of Sums and Products

If  a     b  mod m  holds then c∙a    c∙b  mod m   where c is any integer  ○

holds by Theorem 5 with d = c.○

Multiplying both sides of a valid congruence by an integer preserves validity. •

If  a     b  mod m  holds then c   a    c   b  mod m   where c is any integer  ○

holds by Theorem 5  with d = c.○

Adding an integer to both sides of a valid congruence preserves validity.•

The congruence     8  mod    holds.○

But dividing both sides by 2 does not produce a valid congruence since ○

         and 8        but  ≢   mod   . ○

Dividing a congruence by an integer does not always produce a valid congruence.•

Algebraic Manipulation of Congruence

Computing the mod m Function of Products and Sums 
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We use the  following corollary to Theorem 5  to compute •

the remainder of the product or sum of two integers 

when divided by m from the remainders when each is divided by m.

(a + b) (mod m) =   ((a mod m) + (b mod m)) mod m○

ab mod m = ((a mod m) (b mod m)) mod m. ○

Corollary: Let m be a positive integer and let a and b  be integers. Then•

Computing the mod m Function of Products and Sums 

Let     be the set of nonnegative integers less than m:  0     .  m   ○

The operation +m  is defined as a   b = (a + b) mod m.○

This is addition modulo m.○

The operation ∙m  is defined as a   b    a ∙ b  mod m.○

This is multiplication modulo m.○

Definitions•

7    9 = (7 + 9)  mod 11 = 16 mod 11 = 5○

7    9      ∙ 9   mod         mod      8○

Example: Find 7    9    and 7    9.•

If a and b belong to   , then  a   b and a   b belong to   .▪

Closure○

If a, b, and c belong to   , then ▪

(a   b)   c  = a   (b   c) ▪

(a   b)     c  = a   (b   c).▪

Associativity○

If a and b belong to   , then▪

a   b  = b   a▪

a   b  = b   a.▪

Commutativity○

The elements 0 and 1 are identity elements for addition and multiplication 
modulo m, respectively.

▪

If a belongs to   , then a   0  =  a  and a   1  = a.▪

Identity elements○

If a  0 belongs to    ▪

then m   a  is the additive inverse of a modulo m ▪

and 0 is its own additive inverse.  ▪

a    m  a     0▪

Additive inverses○

The operations   and    satisfy many of the same properties as ordinary addition and 
multiplication.

•

Arithmetic Modulo m
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a    m  a     0▪

0   0  = 0▪

If a, b, and c belong to   , then▪

a   (b   c) =  (a   b)   (a   c)▪

(a   b)     c  = (a   c)   (b   c).▪

Distributivity○

Multiplicative inverses have not been included since they do not always exist.•

For example, there is no multiplicative inverse of 2 modulo 6.•

    with   is a commutative group○

    with     and   is a commutative ring○

Using the terminology of  abstract algebra•
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In the modern world, we use decimal, or base 10, notation to represent integers.•

For example when we write 9    we  mean 9∙ 0      ∙ 0      ∙ 00 . •

We  can represent numbers using any base b, where b is a positive integer greater than 1.•

The bases b = 2 (binary), b = 8 (octal), and b= 16 (hexadecimal) are important for computing 
and communications

•

The ancient Mayans used base 20 and the ancient Babylonians used base 60.•

Representations of Integers

We can use positive integer  greater than 1 as a base, because of this theorem:•

Let b be a positive integer greater than 1.○

Then if n is a positive integer, it can be expressed uniquely in the form:○

     
       

            ○

where k is a nonnegative integer,           are nonnegative integers less than  ○

and    0. The      0     are called the base- digits of the representation.○

Theorem 1•

The representation of  given in Theorem 1 is called the base  expansion of  •

and is denoted by               
.•

We usually omit the subscript 10 for base 10 expansions.•

Base b Representations

Most computers represent integers and do arithmetic with binary expansions of integers.•

In these expansions, the only digits used are 0 and 1.•

   0 0           ∙    0∙     ∙      0∙    + 1      ∙     ∙       ∙  + 1 = 351 ○

What is the decimal expansion of  the integer that has    0 0        as its binary expansion?•

   0        ∙       ∙      0∙       ∙    + 1 = 27○

What is the decimal expansion of  the integer that has  (11011)2  as its binary expansion?•

Binary Expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.•

 ∙8     0∙8      ∙8   + 6  =3598○

What is the decimal expansion of the number with octal expansion   0    ?•

 ∙8      ∙8   + 1  = 64 + 8 + 1 = 73○

What is the decimal expansion of the number with octal expansion       ?•

Octal Expansions

Hexadecimal Expansions

4.2 Integer Representations and Algorithms
Friday, March 2, 2018 9:13 AM

   Page 90    



The hexadecimal expansion needs 16 digits, but our decimal system provides only 10.•

So letters are used for the additional symbols.•

The hexadecimal system uses the digits {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.•

The letters A through F represent the decimal numbers 10 through 15.•

 ∙        0∙         ∙       0∙     + 11  =175627○

What is the decimal expansion of the number with hexadecimal expansion   AE0B   ?•

  ∙     + 5 = 224 + 5 = 229○

What is the decimal expansion of the number with hexadecimal expansion  E    ?

To construct the base b expansion of an integer n:•

         0      ○

Divide n by b to obtain a quotient and remainder.•

          0      ○

The remainder,   , is the rightmost digit in the base b expansion of n. Next, divide   by b.•

The remainder,   , is the second digit from the right in the base b expansion of n.•

Continue by successively dividing the quotients by b•

obtaining the additional base b digits as the remainder.•

The process terminates when the quotient is 0.•

Algorithm•

q represents the quotient obtained by successive divisions by b, starting with q = n.○

The digits in the base b expansion are the remainders of the division given by q mod b.○

The algorithm terminates when q = 0 is reached.○

Successively dividing by 8 gives:○

        8 ∙         ○

       8 ∙  9     ○

 9    8 ∙      0○

     8 ∙     0○

Find the octal expansion of          •

Base Conversion

   Page 91    



     8 ∙ 0    ○

The remainders are the digits from right to left  yielding    00    .○

Each octal digit corresponds to a block of 3 binary digits.•

Each hexadecimal digit corresponds to a block of 4 binary digits. •

So, conversion between binary, octal, and hexadecimal is easy.•

Comparison of Hexadecimal, Octal, and Binary Representations

Find the octal and hexadecimal expansions of        0  0     00  .•

To convert to octal, we group the digits into blocks of three•

 0       0 0      00  , adding initial 0s as needed.•

The blocks from left to right correspond to the digits 3,7,2,7, and 4.•

Hence, the solution is         .•

To convert to hexadecimal, we group the digits into blocks of four•

 00      0  0     00  , adding initial 0s as needed.•

The blocks from left to right correspond to the digits 3,E,B, and  C.•

Hence, the solution is   EBC   .•

Conversion Between Binary, Octal, and Hexadecimal Expansions

Algorithms for performing operations with integers using their binary expansions are 
important as computer chips work with binary numbers. Each digit is called a bit.

•

The number of additions of bits used by the algorithm to add two  -bit integers is     .•

Binary Addition of Integers
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A positive integer p greater than 1 is called prime if the only positive factors are 1 and p.○

A positive integer that is greater than 1 and is not prime is called composite.○

Definition•

The integer 7 is prime because its only positive factors are 1  and 7○

But 9 is composite because it is divisible by 3. ○

Example•

Primes

Every positive integer greater than 1 can be written uniquely as ○

a prime or as the product of two or more primes ○

where the prime factors are written in order of nondecreasing size. ○

Theorem•

 00               ○

       ○

999                ○

 0                          ○

Examples•

The Fundamental Theorem of Arithmetic

The Sieve of Erastosthenes can be used to find all primes not exceeding a specified positive integer.•

For example, begin with the list of integers between 1 and 100.•

Delete all  the integers, other than 2, divisible by 2.•

Delete all the integers, other than 3, divisible by 3.•

Next, delete all the integers, other than 5, divisible by 5.•

Next, delete all the integers, other than 7, divisible by 7.•

Since all the remaining integers are not divisible by any of the previous integers, other than 1•

The primes are: {2,3,5,7,11,15,1719,23,29,31,37,41,43,47,53, 59,61,67,71,73,79,83,89, 97}•

The Sieve of Erastosthenes

4.3 Primes and Greatest Common Divisors
Monday, March 5, 2018 8:53 AM
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If an integer  is a composite integer, then it has a prime divisor less than or equal to      .•

To see this, note that if     , then          or        .•

Trial division, a very inefficient method of determining if a number    is prime, •

is to try every integer        and see if  is divisible by  . •

There are infinitely many primes. (Euclid)○

Theorem•

Assume finitely many primes:            ○

Let              ○

Either  is prime or by the fundamental theorem of arithmetic it is a product of primes. ○

But none of the primes   divides  since if        , then○

  divides            .○

Hence, there is a prime not on the list           .○

It is either  , or if  is composite, it is a prime factor of  .

Proof•

Infinitude of Primes
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It is either  , or if  is composite, it is a prime factor of  .○

This contradicts the assumption that            are all the primes. ○

Consequently, there are infinitely many primes.○

Prime numbers of the form     , where  is prime, are called Mersene primes.•

                                      and                are Mersene primes.•

           0    is not a Mersene prime since  0       ∙89.•

There is an efficient test for determining if         is prime.•

The largest known prime numbers are Mersene primes.•

As of mid-2011, 47 Mersene primes were known, the largest is                 which has nearly    
million decimal digits.

•

Mersene Primes

Mathematicians have been interested in the distribution of prime numbers among the positive 
integers.

•

In the nineteenth century, the prime number theorem was proved which gives an asymptotic 
estimate for the number of primes not exceeding x. 

•

The ratio of the number of primes not exceeding x ○

and  
 

   
     approaches 1 as x grows without bound.○

The theorem tells us that the number of primes not exceeding x, can be approximated by 
 

   
   .○

The odds that a randomly selected positive integer less than  is prime are approximately 

 
 

   
        

 

   
   .

○

Prime Number Theorem•

Distribution of Primes

Euclid’s proof that there are infinitely many primes can be easily adapted to show that there are 
infinitely many primes in the following                

•

every arithmetic progression     ,           ○

where  and  have no common factor greater than 1 contains infinitely many primes.○

In the 19th century G. Lejuenne Dirchlet showed that •

5,11, 17, 23, 29 is an arithmetic progression of five primes.○

199, 409, 619, 829, 1039,1249,1459,1669,1879,2089 is an arithmetic progression of ten 
primes.

○

Are there long arithmetic progressions made up entirely of primes?•

In the 1930s, Paul Erdős conjectured that for every positive integer  greater than 1•

there is an arithmetic progression of length  made up entirely of primes.•

This was proven in 2006, by Ben Green and Terrence Tau. •

Primes and Arithmetic Progressions 

The problem of generating large primes is of both theoretical and practical interest.•

We will see that finding large primes with hundreds of digits is important in cryptography.•

Generating Primes
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We will see that finding large primes with hundreds of digits is important in cryptography.•

So far, no useful closed formula that always produces primes  has been found.•

There is no simple  function     such that     is prime for all positive integers  . •

But                 is prime for all integers         0.•

Because of this, we might conjecture that     is prime for all positive integers  .•

But          is not prime. •

More generally, there is no polynomial with integer coefficients such that     is prime for all 
positive integers  .

•

Fortunately, we can generate large integers which are almost certainly primes. See Chapter 7.•

Even though primes have been studied extensively for centuries, many conjectures about them are 
unresolved, including:

•

Every even integer  ,   > 2, is the sum of two primes.○

It has been verified  by computer for all positive even integers up to   .  ∙ 0 8.○

The conjecture is believed to be true by most mathematicians.○

Goldbach’s Conjecture•

But it has been shown that there are infinitely many primes of the form     ○

where  is a positive integer or the product of at most two primes.○

There are infinitely many primes of the form     , where n is a positive integer.•

The twin prime conjecture is that there are infinitely many pairs of twin primes.○

Twin primes are pairs of primes that differ by 2.○

Examples are 3 and 5, 5 and 7, 11 and 13, etc.○

The current world’s record for twin primes  as of mid  0    consists of numbers ○

         8               , which have 100,355 decimal digits.○

The Twin Prime Conjecture•

Conjectures about Primes

Let  and  be integers, not both zero.○

The largest integer  such that      and also      is calledthe greatest common divisor○

The greatest common divisor of a and b is denoted by gcd     .○

Definition•

gcd(24, 36) = 12○

What is the greatest common divisor of 24 and 36? •

gcd(17,22) = 1○

What is the greatest common divisor of 17 and 22?•

The integers  and  are relatively prime if their greatest common divisor is 1. ○

Example: 17 and 22○

Definition•

Greatest Common Divisor
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The integers           are pairwise relatively prime○

if gcd(     )= 1 whenever         .○

Definition•

Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) = 1○

10, 17, and 21 are pairwise relatively prime. ○

Determine whether the integers 10, 17 and 21 are pairwise relatively prime.•

Because gcd(10,24) = 2, 10, 19, and 24 are not pairwise relatively prime.○

Determine whether the integers 10, 19, and 24 are pairwise relatively prime.•

    
    

     
       

    
     

  ○

where each exponent is a nonnegative integer○

and where all primes occurring in either prime factorization are included in both.○

Suppose  the prime factorizations of  and  are:•

gcd        
            

             
          

○

Then:•

This formula is valid since the integer on the right (of the equals sign) divides both a and b.•

No larger integer can divide both a and b. •

  0       ∙  ∙ ○

 00        ∙   ○

gcd(120,500) =                                          0○

Example•

Finding the gcd of two positive integers using their prime factorizations is not efficient•

because there is no efficient algorithm for finding the prime factorization of a positive integer.•

Finding the Greatest Common Divisor Using Prime Factorizations

The least common multiple of the positive integers  and  is ○

the smallest  positive integer that is divisible by both  and  . It is denoted by lcm(   ).○

Definition•

lcm        
            

             
          

○

The least common multiple can also be computed from the prime factorizations.  •

This number is divided by both a and b and no smaller number is divided by  and  .•

lcm(           ) =                                       ○

Example•

The greatest common divisor and the least common multiple of two integers are related by:•

Let  and  be positive integers.○

Then    gcd     lcm     

Theorem 5•

Least Common Multiple
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Then    gcd      lcm     ○

The Euclidian algorithm is an efficient method for computing the greatest common divisor of two 
integers.

•

It is based on the idea that gcd(   ) is equal to gcd(   )•

when    and  is the remainder when  is divided by  .•

 8    9  ∙       ○

9       ∙      ○

        ∙     0○

gcd(287, 91) = gcd(91, 14) =  gcd(14, 7)  = 7○

Find  gcd(91, 287):•

The Euclidean algorithm expressed in pseudocode is•

In Section  .   we’ll see that the time complexity of the algorithm is O log b   where    . ○

Euclidean Algorithm

Suppose that   divides both  and  .○

Then  also divides       ○

Hence, any common divisor of  and  must also be any  common divisor of  and  .○

Suppose that d divides both  and  .○

Then  also divides       .○

Hence, any common divisor of  and  must also be a common divisor of  and  .○

Therefore, gcd(   ) = gcd(   ).○

Lemma 1: Let       , where       and  are integers. Then gcd(   ) = gcd(   ).•

Suppose that  and  are positive integers with    . ○

Let   =  and   =  . ○

           0       ▪

           0       ▪

  ▪

                 0         ▪

Successive applications of the division algorithm yields:○

Proof•

Correctness of Euclidean Algorithm 
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                 0         ▪

         ▪

Eventually, a remainder of zero occurs in the sequence of terms:               0. ○

The sequence can’t contain more than  terms.○

By Lemma 1 , gcd(   ) = gcd(         ∙ ∙ ∙   gcd        ) = gcd(  , 0) =   .○

Hence the greatest common divisor is the last nonzero remainder in the sequence of divisions○

If a and b are positive integers, then there exist integers s and t such that  gcd(   ) =   +   . ○

Bézout’s Theorem•

If  and  are positive integers, then ○

integers s and t such that  gcd(   ) =   +   are called Bézout coefficients of a and b.○

The equation  gcd(   ) =   +     is called Bézout’s identity. ○

By Bézout’s Theorem  the gcd of integers  and  can be expressed in the form○

  +    where  and  are integers.○

This is a linear combination with integer coefficients of  and  .○

Definition•

gcd             ∙     ∙  ○

Example•

gcds as Linear Combinations

Express gcd(252,198) = 18 as a linear combination of 252 and 198.•

       ∙ 98     ○

 98     ∙       ○

       ∙      8○

       ∙ 8 ○

First use the Euclidean algorithm to show gcd(252,198) = 18•

 8           ∙   ○

      98      ∙   ○

Now working backwards •

 8           ∙  98      ∙        ∙        ∙ 98 ○

Substituting the 2nd equation into the 1st yields:•

 8     ∙          ∙ 98       ∙ 98     ∙         ∙ 98 ○

Substituting               ∙ 98  from     yields:•

This method illustrated above is a two pass method.•

It first uses the Euclidian algorithm to find the gcd and then•

works backwards to express the gcd as a linear combination of the original two integers.•

A one pass method, called the extended Euclidean algorithm, is developed in the exercises.•

Finding gcds as Linear Combinations

Consequences of Bézout’s Theorem
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Assume gcd(   ) = 1 and       ○

       ▪

Since gcd(          by Bézout’s Theorem  there are integers s and t such that    ○

Multiplying both sides of the equation by  , yields          .○

          (part 2)▪

and  divides        since        and        (part 1)▪

From Theorem 1 of Section 4.1:○

We conclude      , since           .○

Lemma 2: If    , and  are positive integers such that gcd(   ) = 1 and       , then      .•

Lemma 3: If p is prime and   |          , then     for some  .•

If          and  does not divide   then gcd        , so        ○

If        and  does not divide   then gcd        , so        ○

 ○

Either this process stops because some     for some    or     ○

Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.•

Consequences of Bézout’s Theorem

This part of the fundamental theorem of arithmetic.○

Every positive integer has a prime factorization into primes, will be proved in Section 5.2.○

A prime factorization of a positive integer where the primes are in nondecreasing order is unique.•

         and          ▪

Suppose that the positive integer n can be written as a product of primes in two distinct ways              ○

            and             ▪

Remove all common primes from the factorizations to get○

By Lemma 3, it follows that    divides     , for some k○

contradicting the assumption that    and    are distinct primes.○

Hence, there can be at most one factorization of n into primes in nondecreasing order.○

Proof: (by contradiction)•

Uniqueness of Prime Factorization

Dividing both sides of a valid congruence by an integer does not always produce a valid congruence •

But dividing by an integer relatively prime to the modulus does produce a valid congruence: •

Let m be a positive integer and let a, b, and c be integers.○

If        mod   and gcd(   ) = 1, then      mod   .○

Theorem 7•

Since        mod   ,                   by Lemma 2  and gcd(   ) = 1

Proof•

Dividing Congruences by an Integer
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Since        mod   ,                     by Lemma 2  and gcd(   ) = 1○

It follows that          .  Hence,    (mod  ). ○
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A congruence of the form       mod    ○

where  is a positive integer,  and  are integers, and  is a variable○

is called a linear congruence.○

The solutions to a linear congruence       mod   are○

all integers  that satisfy the congruence.○

Definition•

An integer  such that       mod   is said to be an inverse of  modulo  .○

Definition•

5 is an inverse of 3 modulo 7 since         (mod 7) ○

Example•

One method of solving linear congruences makes use of  an inverse ā, if it exists.•

Although we can not divide both sides of the congruence by  •

we can multiply by ā to solve for  . •

Linear Congruences

The following theorem guarantees that •

an inverse of  modulo  exists whenever  and  are relatively prime.•

Two integers  and  are relatively prime when gcd(   ) = 1.•

If  and  are relatively prime integers and  > 1, then an inverse of  modulo  exists. ○

Furthermore, this inverse is unique modulo  . ○

So, there is a unique positive integer ā less than  that is an inverse of a modulo m ○

And every other inverse of a modulo  is congruent to ā modulo  ○

Theorem 1•

Since gcd(   ) = 1○

By Theorem 6 of Section 4.3, there are integers  and  such that     +    = 1. ○

Hence,    +         mod m .○

Since      0  mod  ), it follows that         mod  )○

Consequently,  is an inverse of  modulo  .○

The uniqueness of the inverse is Exercise 7.○

Proof•

Inverse of a modulo m

The Euclidean algorithm and Bézout coefficients gives us •

a systematic approaches to finding inverses. •

Finding Inverses

4.4 Solving Congruences
Wednesday, March 7, 2018 9:24 AM
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a systematic approaches to finding inverses. •

Because gcd(3,7) = 1, by Theorem 1, an inverse of 3 modulo 7 exists. ○

Using the Euclidian algorithm:       ∙     .○

From this equation  we get    ∙     ∙     ○

and see that     and   are Bézout coefficients of   and  .○

Hence      is an inverse of   modulo  . ○

Also every integer congruent to    modulo   is an inverse of   modulo  ○

i.e.      9      etc.○

Find an inverse of 3 modulo 7. •

    0     ∙ 0      ▪

 0     ∙       ▪

      ∙       ▪

      ∙      ▪

      ∙     ▪

     ∙     ▪

     ∙ ▪

First use the Euclidian algorithm to show that  gcd(101,42620) = 1. ○

          ∙  ▪

          ∙         ∙         ∙      8 ∙  ▪

       ∙      8 ∙         ∙       8 ∙      9 ∙   ▪

    8  ∙     9 ∙         ∙         ∙      9 ∙   ▪

       ∙   0     ∙      9 ∙         ∙  0       ∙   ▪

       ∙  0       ∙      0      ∙  0          ∙     0     0  ∙  0 ▪

Working Backwards○

Bézout coefficients :      and   0   ○

Therefore 1601 is an inverse of 101 modulo 42620○

Find an inverse of 101 modulo 42620.•

We can solve the congruence      (mod  ) by multiplying both sides by ā.•

We found that    is an inverse of   modulo    two slides back .○

We multiply both sides of the congruence by    giving ○

    ∙        ∙   mod   .○

Because         mod     and  8      mod   ○

It follows that if  is a solution, then     8       mod   ○

We need to determine if every  with         mod    is a solution.○

Assume that         mod   .○

What are the solutions of the  congruence 3      mod   . •

Using Inverses to Solve Congruences
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By Theorem 5 of Section 4.1, it follows that 3     ∙      8      mod    ○

which shows that all such  satisfy the congruence. ○

The solutions are the integers  such that         mod   ○

Namely         0   and        8         ○

There are certain things whose number is unknown.○

When divided by 3, the remainder is 2○

When divided by 5, the remainder is 3○

When divided by 7, the remainder is 2.○

What will be the number of things?○

In the first century, the Chinese mathematician Sun-Tsu asked:•

      mod   ○

      mod   ○

      mod   ○

This puzzle can be translated into the  solution of the system of congruences:•

Let           be pairwise relatively prime positive integers greater than one ○

Let           be arbitrary integers.○

        mod    ▪

        mod    ▪

 ▪

        mod    ▪

Then the system○

has a unique solution modulo          . ○

That is, there is a solution  with 0     ○

and all other solutions are congruent modulo m to this solution.○

Theorem 2: (The Chinese Remainder Theorem)•

We’ll  show that a solution exists by describing a way to construct the solution.○

Showing that the solution is unique modulo  is Exercise 30.○

Proof•

To construct a solution first let    
 

  
     for          and             ○

        mod    ▪

Since gcd(     ) = 1, there is an integer   , an inverse of   modulo   , such that○

                      ▪

Form the sum○

Note that because     0  mod   )   whenever    ○

Algorithm•

The Chinese Remainder Theorem
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all terms except the  th term in this sum are congruent to 0 modulo   .○

Because          mod   ), we see that              (mod   ), for           .○

        mod    ▪

        mod    ▪

 ▪

        mod    ▪

Hence,  is a simultaneous solution to the n congruences.○

      mod   ▪

      mod   ▪

      mod   ▪

Consider the 3 congruences from Sun-Tsu’s problem: ○

     ∙   ∙       0 ▪

   
 

 
     ▪

   
 

 
     ▪

   
 

 
     ▪

Let○

    2 is an inverse of        modulo   since    ∙       ∙        mod   ▪

    1 is an inverse of        modulo   since          mod   ▪

    1 is an inverse of        modulo   since         mod   ▪

We see that○

                      ▪

    ∙    ∙       ∙    ∙        ∙    ∙                mod  0  ▪

Hence, ○

We have shown that 23 is the smallest positive integer that is a simultaneous solution.○

Example•

We can also solve systems of linear congruences with pairwise relatively prime moduli○

by rewriting a  congruences as  an equality using Theorem 4 in Section 4.1○

substituting the value for the variable into another congruence, ○

and continuing the process until we have worked through all the congruences.○

This method is known as back substitution.○

Back Substitution•

      mod   ▪

      mod   ▪

      mod   .▪

Use the method of back substitution to find all integers x such that○

Example•
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By Theorem 4, the first congruence can be rewritten as  = 5 +1, where  is an integer. ○

Substituting into the second congruence yields  5         mod   . ○

Solving this tells us that        mod   . ○

Using Theorem 4 again gives  = 6 + 5 where  is an integer. ○

Substituting this back into  = 5t +1,  gives  = 5(6 + 5) +1 = 30 + 26.○

Inserting this into the third equation gives 30           mod   .○

Solving this congruence tells us that       mod   .○

By Theorem 4, u = 7 + 6, where  is an integer.○

Substituting this expression for u into  =  30 + 26○

tells us that  = 30(7 + 6) + 26 = 210 + 206.○

Translating this back into a congruence we find the solution x    0   mod   0 ○

If p is prime and a is an integer not divisible by p, then          mod  )○

Furthermore, for every integer a we have       (mod  )○

Theorem  :  Fermat’s Little Theorem •

This is useful in computing the remainders modulo  of large powers of integers.•

By Fermat’s little theorem  we know that         mod    ○

and so       
 
     mod      for every positive integer  ○

Therefore,     =               
  

           9      mod    .○

Hence,     mod 11 = 5.○

Find     mod 11.•

Fermat’s Little Theorem

         mod  ).○

By Fermat’s little theorem n     is prime  where•

But if this congruence holds,  may not be prime.•

Composite integers n such that          mod  ) are called pseudoprimes to the base 2.•

         ∙   ○

         mod       see in Exercise    ○

We can replace 2 by any integer     .○

Example: The integer 341 is a pseudoprime to the base 2.•

Let  be a positive integer.○

If  is a composite integer, and          mod  )○

then  is called a pseudoprime to the base  ○

Definition•

If  does not satisfy the congruence, it is composite.

Given a positive integer  , such that          mod  ):•

Pseudoprimes
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If  does not satisfy the congruence, it is composite.○

If  does satisfy the congruence, it is either prime or a pseudoprime to the base 2.○

Doing similar tests with additional bases  , provides more evidence as to whether  is prime.•

Among the positive integers not exceeding a positive real number  , compared to primes•

there are relatively few pseudoprimes to the base  .•

For example, among the positive integers less than  0  there are 455,052,512 primes•

but only 14,884 pseudoprimes to the base 2•

A primitive root modulo a prime  is an integer  in   such that○

every nonzero element of   is a power of  ○

Definition•

Since every element of    is a power of 2, 2 is a primitive root of 11. ○

    ▪

    ▪

   8▪

    ▪

    0▪

   9▪

    ▪

    ▪

    ▪

     ▪

Powers of 2 modulo 11○

Example•

Since not all elements of    are powers of 3, 3 is not a primitive root of 11. ○

    ▪

   9▪

    ▪

    ▪

    ▪

and the pattern repeats for higher powers.▪

Powers of  3 modulo 11○

Example•

There is a primitive root modulo  for every prime number  ○

Important Fact•

Primitive Roots

Suppose  is prime and  is a primitive root modulo  .•

Discrete Logarithms
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Suppose  is prime and  is a primitive root modulo  .•

If  is an integer between 1 and      that is an element of   ,•

there is a unique exponent  such that   =  in   , that is,   mod  =  .•

Suppose p is prime○

 is a primitive root modulo  ○

and  is an integer between 1 and      inclusive.○

If   mod  =  and            ○

We say that   is the discrete logarithm of  modulo  to the base  and we write log    ○

Definition•

We write log   8○

Since the discrete logarithm of 3 modulo 11 to the base 2 is 8 as 28 = 3 modulo 11. ○

Example 1•

We write log    ○

since the discrete logarithm of 5 modulo 11 to the base 2 is 4 as 24 = 5 modulo 11.○

Example 2•

There is no known polynomial time algorithm for computing the discrete logarithm•

The problem plays a role in cryptography as will be discussed in Section 4.6.•
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We can reach the first rung of the ladder.○

If we can reach a particular rung of the ladder○

then we can reach the next rung.○

Suppose we have an infinite ladder:•

From (1), we can reach the first rung.•

Then by applying (2), we can reach the second rung.•

Applying (2) again, the third rung. And so on. •

We can apply (2) any number of times to reach any particular rung, no matter how high up.•

Climbing an Infinite Ladder

5.1 Mathematical Induction
Monday, March 12, 2018 8:52 AM
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Basis Step: Show that     is true.○

Inductive Step: Show that            is true for all positive integers  ○

To prove that     is true for all positive integers  , we complete these steps:•

assuming the inductive hypothesis that     holds for an arbitrary integer  ○

show that must       be true.○

To complete the inductive step•

By (1), we can reach rung 1.▪

Basis Step○

Assume the inductive hypothesis that we can reach rung  ▪

Inductive Step○

Climbing an Infinite Ladder Example:•

Principle of Mathematical Induction
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Assume the inductive hypothesis that we can reach rung  ▪

Then by (2), we can reach rung    .▪

Hence,            is true for all positive integers  ○

We can reach every rung on the ladder.○

                              ○

where the domain is the set of positive integers.○

Mathematical induction can be expressed  as the rule of inference•

In mathematical induction  we don’t assume that     is true for all positive integers!•

We show that if we assume that     is true, then       must also  be true. •

Proofs by mathematical induction do not always start at the integer 1.•

In such a case, the basis step begins at a starting point  where  is an integer.•

We will see examples of this soon.•

Important Points About Using Mathematical  Induction

Show that:  

 

   

 
      

 
        ○

Example•

     is true since 
      

 
          ▪

Basis Step○

Assume true for     ▪

The inductive hypothesis is   

 

   

 
      

 
        ▪

Under this assumption▪

              
      

 
               

          

 
             ▪

Inductive Step○

Solution•

Proving a Summation Formula by Mathematical Induction

Mathematical induction is valid because of the well ordering property, which states that •

every nonempty subset of the set of positive integers has a least element •

Suppose that P(1) holds and            is true for all positive integers  . •

Assume there is at least one positive integer  for which     is false.•

Then the set  of positive integers for which     is false is nonempty. •

By the well-ordering property,  has a least element, say  .•

We know that  cannot be 1 since     holds. •

Since  is positive and greater than 1,    must be a positive integer.•

Validity of Mathematical Induction
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Since  is positive and greater than 1,    must be a positive integer.•

Since      , it is not in  , so       must be true. •

But then, since the conditional              for every positive integer  holds,•

    must also be true. This contradicts     being false. •

Hence,     must be true for every positive integer  .•

Conjecture and prove correct a formula for the sum of the first n positive odd integers ○

Then prove your conjecture○

Example•

1= 1▪

1 + 3 = 4▪

1 + 3 + 5 = 9▪

1 + 3 + 5 + 7 = 16▪

1 + 3 + 5 + 7 + 9 = 25.▪

We have○

                        
▪

We can conjecture that the sum of the first  positive odd integers is   , ○

We prove the conjecture is proved correct with mathematical induction.○

P(1) is true since   = 1.▪

Basis Step○

Inductive Hypothesis:                  
▪

So, assuming     , it follows that:▪

                     ▪

                        ▪

          ▪

       ▪

Inductive Step:            for every positive integer  .○

Hence, we have shown that       follows from     .○

Therefore the sum of the first  positive odd integers is   ○

Solution•

Conjecturing and Proving Correct a Summation Formula

Use mathematical induction to prove that        for all positive integers  .○

Example•

Let     be the proposition that     . ○

    is true since 1 <   = 2.▪

Basis Step○

Solution•

Proving Inequalities
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    is true since 1 <   = 2.▪

Assume     holds, i.e.,     , for an arbitrary positive integer  .▪

Must show that P(k + 1) holds.▪

Since by the inductive hypothesis,     , it follows that:▪

                        
▪

Therefore       holds for all positive integers  .▪

Inductive Step○

Use mathematical induction to prove that      , for every integer    ○

Example•

Let     be the proposition that      ○

    is true since 24  = 16  < 4! = 24▪

Basis Step○

Assume P(k) holds, i.e.,        for an arbitrary integer     .▪

To show that       holds▪

                             ▪

Therefore,        holds, for every integer     ▪

Inductive Step○

Solution•

Use mathematical induction to prove that     is divisible by 3○

for every positive integer  .○

Example•

Let     be the proposition that     is divisible by 3. ○

    is true since          0  which is divisible by  ▪

Basis Step○

Assume     holds, i.e.,     is divisible by 3, for an arbitrary positive integer  ▪

To show that P(k + 1) follows▪

                                               ▪

By the inductive hypothesis, the first term       is divisible by 3▪

and the second term is divisible by 3 since it is an integer multiplied by 3.▪

So by part (i) of Theorem 1 in Section 4.1,             is divisible by 3 ▪

Inductive Step○

Therefore,     is divisible by 3, for every integer positive integer  .○

Solution•

Proving Divisibility Results

Use mathematical induction to show that if  is a finite set with  elements

Example•

Number of Subsets of a Finite Set
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Use mathematical induction to show that if  is a finite set with  elements○

where  is a nonnegative integer, then  has   subsets.○

(Chapter 6 uses combinatorial methods to prove this result.)○

Let     be the proposition that a set with n elements has   subsets.○

  0 is true, because the empty set has only itself as a subset and    = 1.▪

Basis Step○

Assume     is true for an arbitrary nonnegative integer  .▪

Inductive Hypothesis▪

For an arbitrary nonnegative integer  , every set with  elements has   subsets▪

Let  be a set with    elements▪

Then        , where    and        .  Hence        .▪

For each subset  of  , there are exactly two subsets of T, i.e.,  and      . ▪

By the inductive hypothesis S  has   subsets.▪

Since there are two subsets of T  for each subset of S,▪

the number of subsets of T is          
▪

Inductive Step○

Solution•

     every set of  lines in the plane, no two of which are parallel, meet in a point•

Here is a “proof” that     is true for all positive integers    .  •

The statement P(2) is true ○

because any two lines in the plane that are not parallel meet in a common point.○

Basis Step•

Inductive hypothesis•

An Incorrect “Proof” by Mathematical Induction
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    is true for the positive integer     ○

every set of k lines in the plane, no two of which are parallel, meet in a common point.○

We must show that if     holds, then       holds○

If every set of k lines in the plane  no two of which are parallel  k      meet in a point○

Then every set of    lines in the plane, no two of which are parallel, meet in a point. ○

Consider a set of  + 1 distinct lines in the plane, no two parallel.○

By the inductive hypothesis, the first  of these lines must meet in a common point   . ○

By the inductive hypothesis, the last  of these lines meet in a common point   . ○

If   and   are different points, all lines containing both of them must be the same line 
since two points determine a line.

○

This contradicts the assumption that the lines are distinct.○

Hence,      lies on all  + 1 distinct lines, and therefore       holds.○

Assuming that       distinct lines meet in a common point○

Then every  + 1 lines meet in a common point.○

Inductive Step•

           only holds for    ○

It is not the case that     implies     ○

The first two lines must meet in a common point   and the second two must meet in a 
common point   

○

They do not have to be the same point since only the second line is common to both 
sets of lines.

○

There must be an error in this proof  since the conclusion is absurd. But where is the error?•
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To prove that     is true for all positive integers  •

where     is a propositional function, complete two steps:•

Verify that the proposition     is true.○

Basis Step•

                          ▪

Show the conditional statement ○

holds for all positive integers k. ○

Inductive Step•

the second principle of mathematical induction○

complete induction○

Strong Induction is sometimes called•

Strong Induction

Prove that every natural number    can be written as      •

where  and  are natural numbers•

Prove this result using strong induction•

8         ○

Basis Step•

Inductive hypothesis: The statement is true for any  for     8○

In particular it is true for      (assuming       8)○

So            and so              ○

Inductive Step•

Add those cases into the basis step○

9        0○

 0    0     ○

What happens if     9 or      0?•

Proof using Strong Induction

We can always use strong induction instead of mathematical induction. •

But there is no reason to use it if it is simpler to use mathematical induction•

In fact, the principles of mathematical induction, strong induction, and the 
well-ordering property are all equivalent. 

•

Sometimes it is clear how to proceed using one of the three methods, but not 
the other two. 

•

Which Form of Induction Should Be Used?

5.2 Strong Induction and Well-Ordering
Wednesday, March 14, 2018 9:03 AM
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Show that if n is an integer greater than 1•

Then  can be written as the product of primes.•

Let     be the proposition that  can be written as a product of primes.•

P(2) is true since 2 itself is prime.○

Basis Step•

The inductive hypothesis is     is true for    with      ○

To show that       must be true under this assumption○

Two cases need to be considered:○

If      is prime, then       is true.○

Otherwise,    is composite○

And it can be written as the product of two positive integers○

 and  with          ○

By inductive hypothesis  and  can be written as product of primes○

Therefore k + 1 can also be written as the product of those primes.○

Inductive Step•

Hence, every integer greater than 1 can be written as product of primes•

Proof of the Fundamental Theorem of Arithmetic

Every nonempty set of nonnegative integers has a least element.○

Well-ordering property•

The well-ordering property is one of the axioms of the positive integers•

The well-ordering property can be used directly in proofs.•

The well-ordering property can be generalized. •

 is well ordered under  .○

The set of finite strings over an alphabet using lexicographic ordering 
is well ordered.

○

Definition: A set is well ordered if every subset has a least element.•

Well-Ordering Property

If  is an integer and  is a positive integer, then○

there are unique integers  and  with 0     , such that ○

      ○

Use the well-ordering property to prove the division algorithm•

Let  be the set of nonnegative integers of the form         .•

The set is nonempty since    can be made as large as needed•

By the well-ordering property, S has a least element        •

The integer  is nonnegative.•

It also must be the case that    •

Proof of The Division Algorithm

   Page 117    



It also must be the case that    •

                      0○

If it were not, then there would be a smaller nonnegative element in S•

Therefore, there are integers  and  with 0     •
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A recursive or inductive definition  of a function consists of two steps.○

Specify the value of the function at zero.▪

Basis Step○

Give a rule for finding the at an integer from its values at smaller integers▪

Recursive Step○

A function     is the same as a sequence        where        ○

This was done using recurrence relations in Section 2.4○

Definition•

  0   ▪

              ▪

Suppose f is defined by○

        0          9▪

               9      ▪

                      ▪

                    9 ▪

Find                    ○

Example 1•

Give a recursive definition of the factorial function n!○

f(0) = 1○

f n         n     ∙ f n ○

Example 2•

Give a recursive definition of    

 

   

○

   

 

   

   ▪

The first part of the definition is○

   

   

   

     

 

   

      ▪

The second part is ○

Example•

Recursively Defined Functions

Fibonacci Numbers

5.3 Recursive Definitions and Structural Induction
Wednesday, March 14, 2018 9:31 AM
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   0○

    ○

            ○

The Fibonacci numbers are defined as follows:•

           0   ○

              ○

              ○

              ○

Find            •

Let     be the statement           .○

Use strong induction to show that     is true whenever    .○

    holds since α         ▪

     holds since α     
    

   

 
               ▪

Basis step○

Assume that     holds▪

i.e.,    >     for all integers  with         , where     .▪

Show that       holds, i.e.,           . ▪

Since    α      because α is a solution of        0),▪

                                               
▪

         □

       □

By the inductive hypothesis  because k      we have▪

                           □

Therefore, it follows that▪

Hence,       is true.  ▪

Inductive step○

Show that whenever                 where   
    

   

 
      •

Let a and b be positive integers with    .○

Then the number of divisions used by the Euclidian algorithm to find gcd(a,b)○

is less than or equal to five times the number of decimal digits in  . ○

Lamé’s Theorem•

When we use the Euclidian algorithm to find gcd(a,b) with    ,○

 divisions are used to obtain (with          )○

Proof•

Lamé’s Theorem 
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           0       ▪

           0       ▪

 ▪

                 0         ▪

         ▪

       ▪

               ▪

                     ▪

 ▪

                     ▪

                       ▪

Since each quotient             is at least 1 and     ○

If  divisions are used to find gcd(   ) with      then b        ○

By Example 4,      α   , for  > 2, where   
    

   

 
    .○

Therefore,  >     .○

Because log   ≈ 0. 08   
 

 
 , log   >      log   > 

   

 
   ○

Hence,       log      ○

Suppose that  has  decimal digits. Then  < 10 and log     .○

It follows that       and since k is an integer,     .○

Therefore, O(log  ) divisions are used to find gcd(   ) whenever  >  .○

The number of divisions needed is less than or equal to    log      ○

Since the number of decimal digits in  is less than or equal to log     ○

The basis step specifies an initial collection of elements.○

The recursive step gives the rules for forming new elements in the set from 
those already known to be in the set.

○

Recursive definitions of sets have two parts:•

the set contains nothing other than those elements specified in the basis step ○

and generated by applications of the rules in the recursive step. ○

Sometimes the recursive definition has an exclusion rule, which specifies that•

We always assume that the exclusion rule holds, even if it is not explicitly mentioned. •

Basis step:   ∊ S.○

Recursive step: If  ∊ S and  ∊ S  then    is in S.○

Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.○

Example:  Subset of Integers S•

Basis step: 0 ∊  .

Example: The natural numbers  .•

Recursively Defined Sets and Structures
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Basis step: 0 ∊  .○

Recursive step: If  is in  , then  + 1 is in  .  ○

Initially 0 is in  , then 0 + 1 = 1, then 1 + 1 = 2, etc.○

Basis step: λ ∊ Σ*  λ is the empty string ○

Recursive step: If  is in Σ* and  is in Σ     Σ .○

Definition: The set  Σ* of strings over the alphabet Σ:•

If Σ    0   ○

The strings in in Σ* are the set of all bit strings  λ  0     00 0   0      etc.○

Example•

If Σ    a b   show that aab is in Σ*.○

Since λ ∊ Σ* and a ∊ Σ  a ∊ Σ*.○

Since a ∊ Σ* and a ∊ Σ  aa ∊ Σ*.○

Since aa ∊ Σ* and b ∊ Σ  aab ∊ Σ*.○

Example•

Strings

Two strings can be combined via the operation of concatenation.•

Let Σ be a set of symbols and Σ* be the set of strings formed from the symbols in Σ.•

If   Σ , then      ▪

Basis step○

If    Σ and    Σ and   Σ then                  ▪

Recursive step○

We can define the concatenation of two strings  denoted by ∙  recursively as follows:•

Often       is written as     .•

If   = abra  and   = cadabra, the concatenation     = abracadabra.•

String Concatenation

Give a recursive definition of     , the length of the string  .•

     0○

     =     + 1 if  ∊ Σ* and   Σ○

The length of a string can be recursively defined by:•

Length of a String

a set of vertices containing a distinguished vertex called the root○

edges connecting these vertices○

The set of rooted trees, where a rooted tree consists of •

can be defined recursively by these steps•

Basis step•

Rooted Trees
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A single vertex  is a rooted tree.○

Basis step•

Suppose that        are disjoint rooted trees with roots        respectively.○

start with a root  , which is not in any of the rooted trees        ▪

add an edge from  to each of the vertices        ▪

Then the graph formed by○

is also a rooted tree.○

Recursive step•

There is a full binary tree consisting of only a single vertex  .▪

Basis step○

If   and   are disjoint full binary trees▪

a root  □

edges connecting the root to each of the roots of   and   □

There is a full binary tree, denoted by      , consisting of▪

Recursive step○

The set of full binary trees can be defined recursively by these steps.•

The height of a full binary tree T consisting of only a root  is      0▪

Basis step○

If   and   are full binary trees▪

Then the full binary tree         has height▪

       max              ▪

Recursive step○

The height     of a full binary tree  is defined recursively as follows:•

      for full binary tree T consisting of only a root  ▪

Basis step○

If   and   are full binary trees▪

Recursive step○

The number of vertices     of a full binary tree T is defined recursively as follows•

Full Binary Trees
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Then the full binary tree        has the number of vertices▪

                  ▪

To prove a property of the elements of a recursively defined set, we use structural 
induction

•

Show that The result holds for all elements specified in the basis step○

Basis step•

Suppose the statement is true for each of the elements used to construct new 
elements in the recursive step of the definition

○

Show that the result holds for these new elements. ○

Recursive step•

The validity of structural induction can be shown to follow from the principle of 
mathematical induction. 

•

Structural Induction

If  is a full binary tree, then               •

Proof: Use structural induction•

The result holds for a full binary tree consisting only of a root○

    = 1 and     = 0○

Hence,                  = 1○

Basis step•

Assume                 and                 for full binary trees 

     

○

                  ○

                            ○

   max                     ○

                        ○

          ○

          ○

Recursive step•

Structural Induction and Binary Trees
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An algorithm is called recursive if it solves a problem by reducing it to an instance of 
the same problem with smaller input.

•

For the algorithm to terminate, the instance of the problem must eventually be 
reduced to some initial case for which the solution is known.

•

Recursive Algorithms

Give a recursive algorithm for computing   , where  is a nonnegative integer. •

Use the recursive definition of the factorial function.•

Recursive Factorial Algorithm

 is a nonzero real number○

 is a nonnegative integer○

Give a recursive algorithm for computing   , where •

Use the recursive definition of   •

Recursive Exponentiation Algorithm

Give a recursive algorithm for computing the greatest common divisor of two 
nonnegative integers  and  with    

•

the reduction gcd(   ) = gcd( mod    ) ○

the condition gcd(0  ) =  when  > 0.○

Use •

Recursive GCD Algorithm

5.4 Recursive Algorithms
Monday, March 19, 2018 9:05 AM
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Construct a recursive version of a binary search algorithm.•

          is an increasing sequence of integers.○

Initially  is 1 and  is  ○

We are searching for  ○

Assume•

Recursive Binary Search Algorithm

Both mathematical and str0ng induction are useful techniques to show that recursive 
algorithms always produce the correct output.

•

Prove that the algorithm for computing the powers of real numbers is correct.•

Use mathematical induction on the exponent  .•

    for every nonzero real number  , and power(  0) = 1○

Basis step•

The inductive hypothesis is that power(   ) =   , for all    0.○

Assuming the inductive hypothesis, the algorithm correctly computes     ○

power(     ) =    power (   ) =     =     ○

Inductive step•

Proving Recursive Algorithms Correct

Merge Sort works by iteratively splitting a list (with an even number of elements) 
into two sublists of equal length until each sublist has one element.

•

Merge Sort
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into two sublists of equal length until each sublist has one element.

Each sublist is represented by a balanced binary tree.•

At each step a pair of sublists is successively merged into a list with the elements in 
increasing order. The process ends when all the sublists have been merged.

•

The succession of merged lists is represented by a binary tree.•

Use merge sort to put the list 8,2,4,6,9,7,10, 1, 5, 3 into increasing order.○

Example•

Construct a recursive merge sort algorithm•

Begin with the list of  elements L•

Recursive Merge Sort
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Subroutine merge, which merges two sorted lists•

Complexity of Merge: Two sorted lists with m elements and  elements can be 
merged into a sorted list using no more than  +      comparisons

•

The number of comparisons needed to merge a list with n elements is O(  log  ).•

For simplicity, assume that  is a power of 2, say   .•

At the end of the splitting process, we have a binary tree with  levels, and   lists 
with one element at level  .

•

The merging process begins at level  with the pairs of   lists with one element 
combined into     lists of two elements.

•

Each merger takes two one comparison.•

The procedure continues, at each level ( =              )   lists with     

elements are merged into     lists, with       elements at level    .
•

We know (by the complexity of the merge subroutine) that each merger takes at most 
                    comparisons.

•

Summing over the number of comparisons at each level, shows that •

                   

 

   

      

 

   

              log     

 

   

•

because  = log  and     •

The fastest comparison-based sorting algorithms have    log   time complexity•

So, merge sort achieves the best possible big-O estimate of time complexity•

Complexity of Merge Sort
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A procedure can be broken down into a sequence of two tasks.○

There are   ways to do the first task and   ways to do the second task.○

Then there are      ways to do the procedure.○

The Product Rule•

How many bit strings of length seven are there?○

Since each of the seven bits is either a 0 or a 1, the answer is   = 128.○

Example 1•

How many different license plates can be made if ○

each plate contains a sequence of 3 uppercase English letters followed by 3 digits?○

There are    ∙    ∙    ∙  0 ∙  0 ∙  0          000 different possible license plates.○

Example 2•

How many functions are there from a set with  elements to a set with  elements?○

A function represents a choice of one of the  elements of the codomain for each of the  
elements in the domain

○

The product rule tells us that there are      =   such functions.○

Example 3: Counting Functions•

How many 1-to-1 functions are there from a set with  elements to one with  
elements?

○

Suppose the elements in the domain are           .○

There are  ways to choose the value of   and    ways to choose   , etc.○

The product rule tells us that there are                    functions.○

Example 4: Counting One-to-One Functions•

Show that the number of different subsets of a finite set S is     ○

When the elements of S are listed in an arbitrary order○

There is a one-to-one correspondence between subsets of S and bit strings of length |S|.○

When the  th element is in the subset, the bit string has a 1 in the  th position and a 0 
otherwise.

○

By the product rule, there are     such bit strings, and therefore     subsets. ○

Example 5: Counting Subsets of a Finite Set•

Let           be finite sets○

The number of elements in the Cartesian product of these sets is the product of the 
number of elements of each set.

○

The task of choosing an element in the Cartesian product           is done by

Example 6: Product Rule in Terms of Sets      •

Basic Counting Principles: The Product Rule

6.1 The Basics of Counting
Wednesday, March 21, 2018 8:52 AM
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The task of choosing an element in the Cartesian product           is done by○

choosing an element in   , an element in        and an element in   . ○

By the product rule, it follows that:                            ○

A gene is a segment of a DNA molecule that encodes a particular protein and the entirety 
of genetic information of an organism is called its genome.

○

DNA molecules consist of two strands of blocks known as nucleotides.○

Each nucleotide is composed of bases: adenine(A), cytosine(C), guanine(G), thymine(T). ○

The DNA of bacteria has between  0 and  0 links (one of the four bases).○

Mammals have between  0 and  0  links.○

So, by the product rule there are at least     
different  sequences of bases in the DNA of 

bacteria and     
different sequences of bases in the DNA of mammals.

○

The human genome includes approximately 23,000 genes, each with 1,000 or more links.○

Example 7: DNA and Genomes•

If a task can be done either in one of   ways or in one of    , ○

where none of the set of   ways is the same as any of the   ways, ○

then there are      ways  to do the task.○

The Sum Rule•

The mathematics department must choose either a student or a faculty member as a 
representative for a university committee.

○

How many choices are there for this representative if there are 37 members of the 
mathematics faculty and 83 mathematics majors and no one is both a faculty member 
and a student.

○

There are 37 + 83 = 120 possible ways to pick a representative.○

Example•

The sum rule can be phrased in terms of sets.○

 A   B    A     B  as long as A and B are disjoint sets.○

                              when   ∩    ∅ for all    ▪

Or more generally,○

The Sum Rule in terms of sets•

Basic Counting Principles:  The Sum Rule

Suppose statement labels in a programming language can be either a single letter or a 
letter followed by a digit.

○

Find the number of possible labels.○

Use the product rule:         ∙  0    8 ○

Example 1•

Each user on a computer system has a password○

Example 2: Counting Passwords•

Combining the Sum and Product Rule
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which is 6 to 8 characters long, where each character is an uppercase letter or a digit.○

Each password must contain at least one digit.○

How many possible passwords are there?○

Let  be the total number of passwords○

Let   ,   , and   be the passwords of length 6, 7, and 8. ○

By the sum rule           . ○

To find each of   ,   , and   , we find the number of passwords of the specified length 
composed of letters and digits and subtract the number composed only of letters.

○

  =                   8         08 9          8   8     0▪

  =             8         09    8 0   8 0         0         9 0▪

  =              8    09 90         08 8   0                8  8   880▪

We find that:○

Consequently,           = 2,684,483,063,360.○

If a task can be done either in one of   ways or in one of   ways○

Then the total number of ways to do the task is   +   minus the number of ways to do 
the task that are common to the two different ways.

○

Also known as, the principle of inclusion-exclusion:○

                ∩   ○

The Subtraction Rule•

How many bit strings of length eight either start with a 1 bit or end with the two bits 00?○

Use the subtraction rule.○

Number of bit strings of length eight that start with a 1 bit:    = 128○

Number of bit strings of length eight that end with bits 00:     = 64○

Number of bit strings of length eight that start with a 1 bit and end with bits 00:   = 32○

Hence  the number is   8               0.○

Example: Counting Bit Strings•

Basic Counting Principles: Subtraction Rule

There are    ways to do a task if ○

it can be done using a procedure that can be carried out in  ways○

and for every way  , exactly  of the  ways correspond to way  . ○

Division Rule•

If the finite set  is the union of  pairwise disjoint subsets each with  elements○

then          .○

In terms of sets•

If  is a function from A to B, where both are finite sets, and for every value    B there 
are exactly d values    A such that     , then        .

○

In terms of functions•

Basic Counting Principles: Division Rule
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are exactly d values    A such that       , then          .
○

How many ways are there to seat four people around a circular table, where two seatings 
are considered the same when each person has the same left and right neighbor?

○

Number the seats around the table from 1 to 4 proceeding clockwise.○

There are four ways to select the person for seat 1, 3 for seat 2, 2, for seat 3, and one way 
for seat 4.

○

Thus there are 4! = 24 ways to order the four people.○

But since two seatings are the same when each person has the same left and right 
neighbor, for every choice for seat 1, we get the same seating. 

○

Therefore, by the division rule, there are 24/4 = 6 different seating arrangements. ○

Example•

We can solve many counting problems through the use of tree diagrams, where a branch 
represents a possible choice and the leaves represent possible outcomes. 

○

Tree Diagrams•

Suppose that “I Love Discrete Math” T-shirts come in five different sizes: S, M, L, XL, XXL.○

Each size comes in four colors (white, red, green, and black), except XL, which comes 
only in red, green, and black, and XXL, which comes only in green and black.

○

What is the minimum number of shirts that the campus book store needs to stock to 
have one of each size and color available?

○

Draw the tree diagram. The store must stock 17 T-shirts.○

Example•

Tree Diagrams
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If a flock of 20 pigeons roosts in a set of  19 pigeonholes○

Then, one of the pigeonholes must have more than 1 pigeon.○

Introduction•

If  is a positive integer and  + 1 objects are placed into  boxes○

Then at least one box contains two or more objects. ○

Pigeonhole Principle•

We use a proof  by contraposition.○

Suppose none of the  boxes has more than one object○

Then the total number of objects would be at most  .○

This contradicts the statement that we have  + 1 objects.○

Proof•

A function f from a set with  + 1 elements to a set with  elements is not one-to-one.○

Corollary 1•

Use the pigeonhole principle.○

Create a box for each element  in the codomain of  .○

Put in the box for  all of the elements  from the domain such that       .  ○

Because there are  + 1 elements and only  boxes, at least one box has two or more 
elements. 

○

Hence,  can’t be one-to-one.○

Proof•

Among any group of 367 people, there must be at least two with the same birthday○

Because there are only 366 possible birthdays.○

Example•

Show that for every integer  there is a multiple of  that has only 0s and 1s in its 
decimal expansion. 

○

Example•

The Pigeonhole Principle

6.2 The Pigeonhole Principle
Monday, April 2, 2018 8:51 AM
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decimal expansion. 
○

Let  be a positive integer.○

Consider the      integers                       where the last has  + 1 1s).○

There are  possible remainders when an integer is divided by  .○

By the pigeonhole principle, when each of the  + 1 integers is divided by  , at least 
two must have the same remainder.

○

Subtract the smaller from the larger and the result is a multiple of  that has only 0s 
and 1s in its decimal expansion. 

○

If  objects are placed into k boxes○

Then there is at least one box containing at least  
 

 
   objects.○

The Generalized Pigeonhole Principle•

We use a proof by contraposition.○

Suppose that none of the boxes contains more than  
 

 
     objects.○

Then the total number of objects is at most○

   
 

 
           

 

 
           ○

where the inequality  
 

 
     

 

 
     has been used.○

This is a contradiction because there are a total of n objects.○

Proof•

Among  00 people there are at least   00       9 who were born in the same month.○

Example•

How many cards must be selected from a standard deck of 52 cards to guarantee that 
at least three cards of the same suit are chosen? 

○

We assume four boxes; one for each suit.○

Using the generalized pigeonhole principle, at least one box contains at least  
 

 
   cards.○

At least three cards of one suit are selected if  
 

 
     .○

The smallest integer  such that  
 

 
      is       ∙         9.○

Example•

How many must be selected to guarantee that at least three hearts are selected?○

A deck contains 13 hearts and 39 cards which are not hearts.○

If we select 41 cards, we may have 39 cards which are not hearts along with 2 hearts.○

However, when we select 42 cards, we must have at least three hearts.○

(Note that the generalized pigeonhole principle is not used here.)○

Example•

The Generalized Pigeonhole Principle
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A permutation of a set of distinct objects is an ordered arrangement of these objects.○

An ordered arrangement of  elements of a set is called an  -permutation.○

Definition•

Let  = {1,2,3}. ○

The ordered arrangement 3,1,2 is a permutation of S.○

The ordered arrangement 3,2 is a 2-permutation of S.○

The number of r-permutations of a set with n elements is denoted by       .○

The 2-permutations of  = {1,2,3} are 1,2; 1,3; 2,1; 2,3; 3,1; and 3,2○

Hence,  (3,2) = 6.○

Example•

Permutations

If n is a positive integer and r is an integer with         , then there are○

                          ○

 -permutations of a set with  distinct elements.○

Theorem 1•

Use the product rule.○

The first element can be chosen in n ways.○

The second in      ways○

And so on until there are          ways to choose the last element.○

Note that     0 = 1, since there is only one way to order zero elements.○

Proof•

If  and  are integers with         , then○

       
  

      
       ○

Corollary 1•

How many ways are there to select a first-prize winner, a second prize winner, and a 
third-prize winner from 100 different people who have entered a contest?

○

P  00       00 ∙ 99 ∙ 98   9 0  00○

Example•

Suppose that a saleswoman has to visit eight different cities.○

She must begin her trip in a specified city○

But she can visit the other seven cities in any order she wishes.

Example

A Formula for the Number of Permutations

6.3 Permutations and Combinations
Monday, April 2, 2018 8:51 AM
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But she can visit the other seven cities in any order she wishes.○

How many possible orders can the saleswoman use when visiting these cities?○

The first city is chosen, and the rest are ordered arbitrarily.○

Hence the orders are:        ∙   ∙   ∙   ∙   ∙   ∙      0 0○

If she wants to find the tour with the shortest path that visits all the cities,○

she must consider 5040 paths!○

How many permutations of the letters ABCDEFGH contain the string ABC ?○

We solve this problem by counting the permutations of six objects, ABC, D, E, F, G, H.○

       ∙   ∙   ∙   ∙   ∙       0○

Example

An  -combination of elements of a set is an unordered selection of  elements from 
the set.

○

Thus, an  -combination is simply a subset of the set with  elements.○

The number of  -combinations of a set with  distinct elements is denoted by       . ○

The notation  
 
 
 is also used and is called a binomial coefficient.○

(We will see the notation again in the binomial theorem in Section 6.4.)○

Definition•

Let  be the set {a, b, c, d}.○

Then {a, c, d} is a 3-combination from  .○

It is the same as {d, c, a} since the order listed does not matter.○

C(4,2) = 6 because the 2-combinations of {a, b, c, d} are the six subsets○

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}.○

Example:•

The number of  -combinations of a set with  elements, where      0  equals○

       
  

        
         ○

Theorem 2•

By the product rule                     . Therefore,○

       
      

      
       

         

         
           

  

        
         ○

Proof•

How many poker hands of five cards can be dealt from a standard deck of 52 cards? ○

Also, how many ways are there to select 47 cards from a deck of 52 cards?○

Since the order in which the cards are dealt does not matter○

the number of five card hands is:○

      
   

     
 

       0   9   8

         
        0   9        98 9 0

Example•

Combinations
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       0   9   8

         
                         0   9        98 9 0○

The different ways to select 47 cards from 52 is○

         
   

     
                 98 9 0○

Let  and  be nonnegative integers with    . Then       =         .○

Corollary 2•

From Theorem 2, it follows that○

         
  

                
                    

  

        
                ○

Hence,                ○

Proof•

A combinatorial proof of an identity is a proof that uses one of the following methods.○

A double counting proof uses counting arguments to prove that▪

both sides of an identity count the same objects, but in different ways.▪

Double Counting Proof○

A bijective proof shows that there is a bijection ▪

between the sets of objects counted by the two sides of the identity.▪

Bijective Proof○

Definition•

Here are two combinatorial proofs that                ○

Suppose that S is a set with n elements.▪

The function that maps a subset A of S to   is a bijection between▪

the subsets of S with  elements and the subsets with    elements.▪

Since there is a bijection between the two sets▪

They must have the same number of elements.    ▪

Bijective Proof○

By definition the number of subsets of S with r elements is C(n, r).▪

Each subset  of S can also be described by ▪

specifying which elements are not in A, i.e., those which are in   .▪

Since the complement of a subset of S with  elements has    elements▪

There are also         subsets of S with  elements.▪

Double Counting Proof○

Example•

Combinatorial Proofs

Combine

How many words can you formed by rearranging the letters in the word:•

More Examples
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  ▪

Combine○

Pick where t's go▪

Arrange remaining 9 letters▪

 
  
 

  9  
   

  
   ▪

Permutation○

Pick where r's go▪

Pick where e's go▪

Pick where a's go▪

Arrange remaining 2 letters▪

 
9
 
   

 
 
   

 
 
     

9 

      
      ▪

Rearrange○

Pick which ace▪

Pick the rest▪

   
    

  
 ▪

Exactly one ace○

1 Ace + 2 Aces + 3 Aces + 4 Aces▪

   
    

  
   

 
 
   

    
  

   
 
 
   

    
 0

   
 
 
   

    
9

 ▪

At least one ace○

      
       

  
 □

Case 1: We pick one diamond and a diamond ace▪

   
  
 

   
       

 0
 □

Case 2: We pick two diamonds and a different ace▪

So the total number of hands is       
       

  
     

  
 

   
       

 0
 ▪

Exactly one ace and two diamonds○

In a game of cards a hand consists of 13 cards. How many possible hands are there with•
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A binomial expression is the sum of two terms, such as    .•

(More generally, these terms can be products of constants and variables.)•

We can use counting principles to find the coefficients of      
 

where     . •

To illustrate this idea, we first look at the process of expanding      
 

.•

               expands into a sum of terms that are the product of a term from 

each of the three sums.

•

Terms of the form       .       arise.•

To obtain   , an  must be chosen from each of the sums.○

There is only one way to do this. So, the coefficient of   is 1. ○

To obtain    , an  must be chosen from two of the sums and a  from the other.○

There are  
 
 
 ways to do this and so the coefficient of    is 3. ○

To obtain    , an  must be chosen from of the sums and a  from the other two.○

There are  
 
 
   ways to do this and so the coefficient of     is 3. ○

To obtain   , a  must be chosen from each of the sums.○

There is only one way to do this. So, the coefficient of   is 1. ○

The question is what are the coefficients?•

We have used a counting argument to show that      
 
                •

Powers of Binomial Expressions

Let  and  be variables, and  a nonnegative integer. Then:○

     
 

   
 
        

 

   

  
 
0
     

 
 
          

 
   

        
 
 
   ○

Binomial Theorem•

We use combinatorial reasoning.○

The terms in the expansion of      
 

are of the form       for   0        ○

To form the term     , it is necessary to choose       s from the  sums.○

Therefore,  the coefficient of       is   
 

    which equals  
 
  .○

Proof•

Binomial Theorem 

What is the coefficient of        in the expansion of      
  

?

Using the Binomial Theorem

6.4 Binomial Coefficients and Identities
Wednesday, April 4, 2018 9:20 AM
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What is the coefficient of        in the expansion of        
  

?•

We view the expression as           
  

.•

          
  

   
  
 
              

 
  

   

○

By the binomial theorem•

Consequently, the coefficient of       in the expansion is obtained when  = 13.•

With   0   
 
 
 

 

   

   ○

Corollary 1•

With  = 1 and  = 1, from the binomial theorem we see that:○

            
 
 
       

 

   

   
 
 
 

 

   

○

Proof (using binomial theorem)•

Consider the subsets of a set with  elements.○

There are  
 
0
 subsets with zero elements,  

 
 
  with one element,   

 
 
 with two 

elements     and  
 
 
 with  elements

○

Therefore the total is   
 
 
 

 

   

○

Since, we know that a set with n elements has   subsets, we conclude:○

  
 
 
 

 

   

   ○

Proof (combinatorial)•

A Useful Identity

If  and  are integers with       0  then○

 
   

 
   

 
   

   
 
 
 ○

Pascal’s Identity•

Let  be a set where             and        ○

There are  
   

 
 subsets of  containing  elements.○

contains a with    other elements, or ▪

contains  elements of  and not  .▪

Each of these subsets either:○

There are 

Proof•

Pascal’s Identity 
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 subsets of  elements that contain  ▪

since there are  
 

   
 subsets of      elements of  ▪

 
 
 
 subsets of  elements of  that do not contain  ▪

because there are  
 
 
 subsets of  elements of S.▪

There are ○

 
   

 
   

 
   

   
 
 
 ▪

   Hence ○

The  th row in the triangle consists of the binomial coefficients  
 
 
 ,   0      •

By Pascal’s identity  adding two adjacent binomial coefficients results is •

the binomial coefficient in the next row between these two coefficients. •

Pascal’s Triangle
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The number of  -permutations of a set of  objects with repetition allowed is○

         ○

Theorem 1•

There are  ways to select an element of the set○

for each of the  positions in the  -permutation when repetition is allowed○

Hence, by the product rule there are    -permutations with repetition.○

Proof•

How many strings of length  can be formed from the uppercase letters of the 
English alphabet?

○

The number of such strings is    ○

which is the number of  -permutations of a set with 26 elements○

Example•

How many function are there  :    where      , and      ?   ○

Example 2•

Permutations with Repetition

How many ways are there to select five bills from a box containing at least five of 
each of the following denominations: $1, $2, $5,  $10, $20, $50, and $100? 

○

Place the selected bills in the appropriate position of a cash box illustrated below:○

Some possible ways of placing the five bills:○

Example•

Combinations with Repetition

6.5 Generalized Permutations and Combinations
Friday, April 6, 2018 9:09 AM
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The number of ways to select five bills corresponds to○

the number of ways to arrange six bars and five stars in a row. ○

This is the number of unordered selections of 5 objects from a set of 11.○

        
   

    
        ▪

Hence there are○

ways to choose five bills with seven types of bills○

The number of  -combinations from a set with  elements when repetition of 
elements is allowed is

○

                       ○

Theorem 2•

Each  -combination of a set with  elements with repetition allowed ○

can be represented by a list of   1 bars and  stars.

The bars mark the  cells containing a star for each time the  th element of the set 
occurs in the combination.

○

The number of such lists is           ○

because each list is a choice of the  positions to place the stars○

from the total of       positions to place the stars and the bars.○

This is also equal to             ○

which is the number of ways to place the   1 bars○

Proof•

How many solutions does the equation                          have○

Each solution corresponds to a way to select 11 items from a set with 3 elements○

  elements of type one,   of type two, and   of type three. ○

By Theorem 2 it follows that the number of solution is  ○

Example 1•
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        8○

Suppose that a cookie shop has four different kinds of cookies.○

How many different ways can six cookies be chosen? ○

The number of ways to choose six cookies is ○

the number of 6-combinations of a set with four elements.○

By Theorem 2 the number of ways to choose six cookies from the four kinds is ○

  9      9    
9  8   

     
        8 ○

Example 2•

Permutations and Combinations with and without Repetition
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We first study Pierre-Simon Laplace’s classical theory of probability○

which he introduced in the 18th century, when he analyzed games of chance.○

Introduction•

A procedure that yields one of a given set of possible outcomes.○

Experiment •

The sample space of the experiment is the set of possible outcomes.○

Sample space•

An event is a subset of the sample space.○

Event•

If S is a finite sample space of equally likely outcomes and E is an event○

Then the probability of   is      
   

   
   ○

For every event E, we have 0        ○

This follows directly from the definition because○

0       
   

   
    

   

   
      since 0          ○

Probability •

Probability of an Event

An urn contains four blue balls and five red balls.○

What is the probability that a ball chosen from the urn is blue?○

The probability that the ball is chosen is 4/9 ○

since there are nine possible outcomes, and four of these produce a blue ball.○

Example 1•

What is the probability that when two dice are rolled, the sum of the numbers 
on the two dice is 7?

○

By the product rule there are 62 = 36 possible outcomes.○

Six of these sum to 7.○

Hence, the probability of obtaining a 7 is 6/36 = 1/6. ○

Example 2•

In a lottery, a player wins a large prize when they pick four digits that match, in 
correct order, four digits selected by a random mechanical process.

○

What is the probability that a player wins the  prize? ○

Example 3•

Applying Laplace’s Definition

7.1 An Introduction to Discrete Probability
Monday, April 9, 2018 5:30 PM
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By the product rule there are 104 = 10,000 ways to pick four digits. ○

Since there is only 1 way to pick the correct digits,○

the probability of winning the large prize is 1/10,000 = 0.0001.○

A smaller prize is won if only three digits are matched.○

What is the probability that a player wins the small prize?○

If exactly three digits are matched, one of the four digits must be incorrect and 
the other three digits must be correct.

○

For the digit that is incorrect, there are 9 possible choices.○

Hence, by the sum rule, there a total of 36 possible ways to choose four digits 
that match exactly three of the winning four digits.

○

36/10,000 = 9/2500 = 0.0036▪

The probability of winning the small price is○

Example 4•

There are many lotteries that award prizes to people who correctly choose a 
set of six numbers out of the first n positive integers, where n is usually 
between 30 and 60.

○

What is the probability that a person picks the correct six numbers out of 40?○

C(40,6) = 40!/(34!6!) = 3,838,380.▪

The number of ways to choose six numbers out of 40 is ○

     8 8  80 ≈ 0.000000  .▪

Hence, the probability of picking a winning combination is○

Example 5•

What is the probability that the numbers 11, 4, 17, 39, and 23 are drawn in that 
order from a bin with  0 balls labeled with the numbers          0 if 

○

Sampling without replacement:▪

The probability is 1/254,251,200 since there are ▪

 0 ∙ 9 ∙   ∙   ∙               00 ways to choose the five balls.▪

The ball selected is not returned to the bin.○

Sampling with replacement:▪

The probability is 1/ 0 = 1/312,500,000 since  0 = 312,500,000.▪

The ball selected is returned to the bin before the next ball is selected.○

Example 6•

Let  be an event in sample space  .○

The probability of the complementary event of E:   =     is given by○

            ○

Theorem 1•

Using the fact that      

Proof•

The Probability of Complements and Unions of Events
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Using the fact that             ○

      
       

   
           

   

   
          ○

A sequence of 10 bits is chosen randomly.○

What is the probability that at least one of these bits is 0?○

Let  be the event that at least one of the 10 bits is 0.○

Then   is the event that all of the bits are 1s.○

The size of the sample space S is 210. Hence,○

               
    

   
      

 

   
      

 

 0  
      

 0  

 0  
     ○

Example•

Let   and   be events in the  sample space  . Then○

                         ∩    ○

Theorem 2•

Given the inclusion-exclusion formula from Section 2.2○

         
       

   
        ▪

 
             ∩    

   
                   ▪

 
    

   
    

    

   
    

   ∩    

   
        ▪

                 ∩    ▪

 A   B     A     B     A ∩ B    it follows that○

Proof•

What is the probability that a positive integer selected at random from the set 
of positive integers not exceeding 100 is divisible by either 2 or 5?

○

Let   be the event that  the integer is divisible by 2○

Let   be the event that it is divisible 5.○

Then the event that the integer is divisible by 2 or 5 is      ○

And   ∩   is the  event that it is divisible by 2 and 5. ○

It follows that: ○

                         ∩     
 0

 00
    

 0

 00
    

 0

 00
    

 

 
  ○

Example•

You are asked to select one of the three doors to open.•

There is a large prize behind one of the doors and if you select that door, you win the 
prize.

•

After you select a door, the game show host opens one of the other doors (which he •

Monty Hall Puzzle
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After you select a door, the game show host opens one of the other doors (which he 
knows is not the winning door).

•

The prize is not behind the door and he gives you the opportunity to switch your 
selection.

•

Should you switch? •

You should switch.•

The probability that your initial pick is correct is 1/3.•

This is the same whether or not you switch doors.•

But since the game show host always opens a door that does not have the prize, •

If you switch the probability of winning will be 2/3•

Because you win if your initial pick was not the correct door•

And the probability your initial pick was wrong is 2/3.•

   Page 148    



A binary relation  from a set  to a set  is a subset      .○

Definition•

Let    0     and        ○

  0     0                is a relation from  to  . ○

We can represent this relation graphically or using a table:○

Example•

Relations are more general than functions○

A function is a relation where exactly one element of  is related to each 
element of  

○

Note•

Binary Relations

A binary relation  on a set  is a subset of    or a relation from  to  .○

Definition•

Suppose that          ○

Then                      is a relation on  ○

Example 1•

Let            ○

The ordered pairs in the relation            divides   are○

                                                 ○

Example 2•

Because a relation on  is the same thing as a subset of    ○

We count the subsets of    .

Question: How many relations are there on a set  ? •

Binary Relation on a Set

9.1 Relations and Their Properties
Wednesday, April 11, 2018 8:59 AM
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We count the subsets of    .○

Since    has   elements when A has  elements○

And a set with  elements has    subsets○

There are      subsets of     .○

Therefore,  there are      relations on a set  .○

              ▪

              ▪

              or      ▪

              ▪

                ▪

                ▪

Consider these relations on the set of integers:○

These relations are on an infinite set and each of these relations is an 
infinite set

▪

  can be viewed as a function▪

Our definition of a function  :    is a subset of    ▪

Therefore every function is a relation▪

Note○

                                and       ?▪

Which of these relations contain each of the pairs○

(1,1) is in   ,   ,   , and   ▪

(1,2) is in   and   ▪

(2,1) is in   ,   , and   ▪

        is in   ,   , and   ▪

(2,2) is in   ,   , and   ▪

Solution○

Example 3•

 is reflexive if and only if        for every element    ○

Written symbolically,  is reflexive if and only if ○

               ○

Definition•

If A   ∅  then the empty relation is reflexive vacuously.○

That is the empty relation on an empty set is reflexive! ○

Note•

         ▪

The following relations  on the integers are reflexive:○

Example•

Reflexive Relations
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              ▪

              or      ▪

              ▪

                 note that    ≯   ▪

                 note that            ▪

                (note that      )▪

The following relations are not reflexive:○

 is antireflexive if and only if        for every element    ○

Written symbolically,  is antireflexive if and only if ○

               ○

Definition•

Antireflexive is different from not reflexive○

Note•

              ▪

                ▪

The following relations on the integers are antireflexive○

                is neither reflexive nor antireflexive○

Example•

Antireflexive Relations

 is symmetric if and only if        whenever               ○

Written symbolically,  is symmetric if and only if○

                     ○

Definition•

              or      ▪

              ▪

                ▪

The following relations  on the integers are symmetric:○

               note that        but       ▪

               note that        but   ≯   ▪

                 note that            but           ▪

The following are not symmetric:○

Example•

Symmetric Relations

  is antisymmetric if and only if    whenever                     ○

Written symbolically,  is antisymmetric if and only if 

Definition•

Antisymmetric Relations
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Written symbolically,  is antisymmetric if and only if ○

                         ○

For any integer, if    and    , then    ○

Note•

              ▪

              ▪

              ▪

                ▪

The following relations  on the integers are antisymmetric:○

              or      (note that                 )▪

                 (note that               )▪

The following relations are not antisymmetric:○

Example•

 is transitive if and only if        whenever              ,         ○

Written symbolically, R is transitive if and only if ○

                               ○

Definition•

For every integer,     and    , then    ○

Note•

              ▪

              ▪

              or      ▪

              ▪

The following relations  on the integers are transitive:○

                (note that               , but         ),▪

                (note that                but         ).▪

The following are not transitive:○

Example•

Transitive Relations

Given two relations   and   •

We can combine them using basic set operations to form new relations•

Let          and            ○

The relations   = {(1,1),(2,2),(3,3)} and   = {(1,1),(1,2),(1,3),(1,4)} can be 
combined using basic set operations to form new relations:

○

      ={(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)} ○

Example•

Combining Relations
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  ∩   ={(1,1)} ○

      ={(2,2),(3,3)} ○

      ={(1,2),(1,3),(1,4)} ○

Let  be a relation from  to  ○

                   ▪

The inverse of  is the relation○

Definition•

 is symmetric if and only if      ○

Proposition•

Inverse

  is a relation from a set  to a set  .▪

  is a relation from  to a set  ▪

Suppose ○

if      is a member of   ▪

and        is a member of   ▪

then      is a member of      ▪

Then the composition of   with   is a relation from  to  where○

Definition•

Example•

                   ○

Composition

Let  be a binary relation on  ○

Then the powers   of the relation  can be defined inductively by:○

Basis Step:     ○

Inductive Step:           ○

Definition•

Powers of a Relation
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The powers of a transitive relation are subsets of the relation•

This is established by the following theorem:•

The relation R on a set A is transitive iff     for          ○

(see the text for a proof via mathematical induction)○

Theorem 1•
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A relation between finite sets can be represented using a zero-one matrix. •

The elements of the two sets can be listed in any arbitrary order○

When    , we use the same ordering. ○

Suppose  is a relation from               to               •

  = [   ], where○

     
 if          

0 if          
○

The relation R is represented by the matrix•

a 1 as its      entry when   is related to   ○

a 0 if   is not related to   . ○

The matrix representing R has•

Representing Relations Using Matrices

Suppose that  = {1,2,3} and  = {1,2}○

Let  be the relation from  to  containing      if    .○

What is the matrix representing  (with increasing numerical order)○

Example 1•

Because                      , the matrix is○

    
0 0
 0
  

 ○

Solution•

Let             and                   .○

Which ordered pairs are in the relation R represented by the matrix○

    
0  0 0 0
 0   0
 0  0  

 ○

Example 2•

Because  consists of those ordered pairs        with    = 1○

                                                            ○

Solution•

Examples of Representing Relations Using Matrices

If  is a reflexive relation, all the elements on the main diagonal of   are equal to 1•

Matrices of Relations on Sets

9.3 Representing Relations
Friday, April 13, 2018 9:31 AM
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If  is a reflexive relation, all the elements on the main diagonal of   are equal to 1•

 is a symmetric relation, if and only if    = 1 whenever    = 1•

 is an antisymmetric relation, if and only if    = 0  or    = 0 when    •

    
  0
   
0   

 ○

Example 3: Suppose that the relation  on a set is represented by the matrix•

Is R reflexive, symmetric, and/or antisymmetric?•

Because all the diagonal elements are equal to 1,  is reflexive•

Because   is symmetric,  is symmetric•

 not antisymmetric because both     and     are 1•

Example of a Relation on a Set

A directed graph, or digraph, consists of a set V of vertices (or nodes) together 
with a set E of ordered pairs of elements of V called edges (or arcs).

○

The vertex a is called the initial vertex of the edge      ○

The vertex  is called the terminal vertex of this edge.○

An edge of the form      is called a loop.  ○

Definition

A drawing of the directed graph with vertices  ,  ,  , and  ○

and edges                                    , and      is shown here.○

Example 1

What are the ordered pairs in the relation represented by this directed graph?○

Example 2

Representing Relations Using Digraphs

   Page 156    



▪

The ordered pairs in the relation are○

(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)○

Reflexivity: A loop must be present at all vertices in the graph.•

Symmetry: If      is an edge, then so is      .•

Antisymmetry: If      with    is an edge, then      is not an edge. •

Transitivity: If      and      are edges, then so is      •

Determining which Properties a Relation has from its Digraph

Reflexive? No, not every vertex has a loop○

Symmetric? Yes  (trivially), there is no edge from  one vertex to another○

Antisymmetric? Yes  (trivially), there is no edge from one vertex to another○

Transitive? Yes, (trivially) since there is no edge from one vertex to another○

Example 1•

Example 2•

Determining which Properties a Relation has from its Digraph
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Reflexive? No, there are no loops○

Symmetric? No, there is an edge from  to  , but not from  to  ○

Antisymmetric? No, there is an edge from  to  and  to   ○

Transitive? No, there are edges from  to  and from  to  , but  there is no edge 
from  to  

○

Reflexive? No, there are no loops○

Symmetric?  No, for example, there is no edge from  to  ○

Antisymmetric? Yes, whenever there is an edge from one vertex  to another, 
there is not one going back  

○

Transitive? No, there is no edge from  to  ○

Example 3•

Reflexive? No, there are no loops○

Symmetric? No, for example, there is no edge from d to a ○

Antisymmetric? Yes, whenever there is an edge from one vertex to another, 
there is not one going back  

○

Transitive? Yes (trivially), there  are no two edges where the first edge ends at 
the vertex where the second edge begins

○

Example 4•
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The closure of a relation  on  with respect to property  ○

is the least relation on  that contains  and has property  ○

Definition•

Least relation   on  s.t.○

    ○

  has property  ○

If  is a relation that safisfies the condition above, then     ○

Note•

The reflexive closure of  is just               ○

The symmetric closure of  is      ○

The transitive closure of  is          ○

Example•

Closures

A path from  to  is a directed graph  is a sequence of edges○

                               where   0○

We denote the path by           say that the path has length  ○

Definition•

Let  be a relation on a set  ○

There is a path of length  from  to  if and only if      is an element of   ○

Theorem•

Path in Directed Graphs

   Page 159    



Let  be a relation on  ○

The connectivity relation   cibsusts if all elements      s.t.○

There is a path from  to  in  ○

In other words,   is the union of          ○

        

 

   

○

Definition•

Let  be the relation between   state such that      is in  if  and  share a 
border. What is   ?

○

All pairs of states except Alaska and Hawaii○

Example 1 •

Let  be the relation between integers s.t.      is in  if      ○

What is   ,   ,   ○

                ○

                ○

              ○

Example 2•

The connectivity relation   is exactly the transitive closure of  ○

We need to show that  is a subset of   ,   is transitive and least with that 
property.

○

The first two are easy○

Let  be a transitive relation containing  ○

By induction we show that  contains   for every  

Transitive closure•

The Connectivity Relation
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By induction we show that  contains   for every  ○

Let  be a relation on  and let  be the number of elements in  .○

The connectivity relation   is the union of          ○

Theorem•

Let      be the element of   ○

Let                be the shortest path witnessing this.○

If    , then two of the vertices among        must be the same, say      ○

But then we can find a shorter path                      ○

Proof•

         
   

     
   

○

Corollary•

Compute    for the relation                            ○

    

0  0 0
0 0  0
0 0 0  
0  0 0

 ○

  
   

  

0  0 0
0 0  0
0 0 0  
0  0 0

   

0  0 0
0 0  0
0 0 0  
0  0 0

   

0 0  0
0 0 0  
0  0 0
0 0  0

 ○

Similarly, compute   
   

   
   

○

Then          
   

   
   

   
   

○

Example•

Computing The Connectivity Relation
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A relation on a set  is called an equivalence relation if ○

it is reflexive, symmetric, and transitive○

Definition 1•

Two elements    that are related by an equivalence relation are called equivalent○

The notation  ∼  is often used to denote that  and  are equivalent elements with 
respect to a particular equivalence relation.

○

Definition 2•

Equivalence Relations

Suppose that  is the relation on the set of strings of English letters such that ○

   if and only if     =     , where     is the length of the string  . ○

Is  an equivalence relation? ○

Example•

Show that all of the properties of an equivalence relation hold○

Because          , it follows that     for all strings  . ▪

Reflexivity○

Suppose that    .  Since                    also holds and    . ▪

Symmetry○

Suppose that     and    ▪

Since          ,and                    also holds and    . ▪

Transitivity○

Solution•

Strings

Let   be an integer with   > 1○

Show that the relation ○

              mod    ○

is an equivalence relation on the set of integers.○

Example•

Recall that      mod   if and only if  divides    ○

     mod   since     0 is divisible by  since 0   0 ∙  .▪

Reflexivity○

Symmetry

Solution•

Congruence Modulo m

9.5 Equivalence Relations
Friday, April 20, 2018 9:06 AM
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Suppose that      mod   ▪

Then    is divisible by  , and so       , where k is an integer▪

It follows that          , so      mod   . ▪

Symmetry○

Suppose that      mod   and      mod   .▪

Then  divides both    and    .▪

Hence, there are integers  and  with         and       ▪

We obtain by adding the equations: ▪

                            ▪

Therefore,      mod   ▪

Transitivity○

Show that the “divides” relation on the set of positive integers is not an equivalence 
relation.

○

Example•

The properties of reflexivity, and transitivity do hold, but there relation is not transitive. ○

Hence  “divides” is not an equivalence relation.○

 ∣  for all  . ▪

Reflexivity○

For example    ∣    but   ∤  ▪

Hence, the relation is not symmetric. ▪

Not Symmetric○

Suppose that  divides  and  divides  .▪

Then there are positive integers  and  such that     and     .▪

Hence,        , so  divides  .▪

Therefore, the relation is transitive. ▪

Transitivity○

Solution•

Divides

Let  be an equivalence relation on a set  . •

The set of all elements that are related to an element a of  is called the equivalence class of  •

The equivalence class of  with respect to  is denoted by     .  •

When only one relation is under consideration, we can write    , without the subscript  •

Note that                 •

If        , then  is called a representative of this equivalence class.•

Any element of a class can be used as a representative of the class. •

The equivalence classes of the relation congruence modulo   are called the congruence 
classes modulo  .

•

Equivalence Classes
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classes modulo  .

The congruence class of an integer a modulo   is denoted by     •

So                              •

 0         8       0      8     ○

                          9     ○

                           0     ○

                                 ○

For example, •

Let  be an equivalence relation on a set  .○

   i)

       ii)

   ∩     ∅iii)

These statements for elements  and  of  are equivalent: ○

Theorem  1•

We show that (i) implies (ii).○

Assume that    .○

Now suppose that      ].Then    . Because     and  is symmetric,    .○

Because  is transitive and     and    , it follows that    . ○

Hence,      ]. Therefore, [      ].  ○

A similar argument (omitted here) shows that [      ].○

Since [      ] and [      ],  we have shown that [ ] = [ ].○

Proof•

Equivalence Classes and Partitions

A partition of a set  is a collection of disjoint nonempty subsets of  that have  as their 
union.

•

   ∅ for    ,○

  ∩    ∅ when    ,○

   

 

   

  ○

In other words, the collection of subsets   , where    , forms a partition of  if and only if•

Partition of a Set

Let  be an equivalence relation on a set  . •

The union of all the equivalence classes of  is all of  •

  

 

   

  

Since an element a of  is in its own equivalence class     .  In other words, •

An Equivalence Relation Partitions a Set
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  ○

From Theorem 1, it follows that these equivalence classes are either equal or disjoint•

So     ∩      ∅ when          .•

Therefore, the equivalence classes form a partition of  •

Because they split A into disjoint subsets. •

Let  be an equivalence relation on a set  .○

Then the equivalence classes of R form a partition of  .○

Conversely, given a partition         of the set  ○

There is an equivalence relation  that has the sets   ,    , as its equivalence classes. ○

Theorem 2•

We have already shown the first part of the theorem.○

For the second part, assume that         is a partition of S.○

Let  be the relation on  consisting of the pairs      ○

where  and  belong to the same subset   in the partition.○

We must show that  satisfies the properties of an equivalence relation.○

For every    ,        , because  is in the same subset as itself. ▪

Reflexivity○

If        , then  and  are in the same subset of the partition, so        ▪

Symmetry○

If        and        , then  and  are in the same subset of the partition, as 
are  and  .

▪

Since the subsets are disjoint and  belongs to both, the two subsets of the 
partition must be identical.

▪

Therefore,        since  and  belong to the same subset of the partition. ▪

Transitivity○

Proof•

Equivalence Relation and Partition
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A relation  on a set S is called a partial ordering, or partial order, if it is reflexive, 
antisymmetric, and transitive.

○

A set together with a partial ordering  is called a partially ordered set, or poset, and is 
denoted by      .

○

Members of  are called elements of the poset.○

Definition 1•

Show that the “greater than or equal” relation     is a partial ordering on the set of integers.○

Reflexivity:     for every integer  .○

Antisymmetry: If    and    , then    .○

Transitivity: If    and    , then    .○

Example 1•

Show that the divisibility relation  ∣  is a partial ordering on the set of integers.○

 ∣  for all integers  . (see Example 9 in Section 9.1) ▪

Reflexivity○

If  and  are positive integers with  |  and  |  , then  =  ▪

(see Example 12 in Section 9.1)▪

Antisymmetry○

Suppose that a divides  and  divides  .▪

Then there are positive integers  and  such that  =    and  =   ▪

Hence,        , so  divides  .▪

Therefore, the relation is transitive. ▪

Transitivity○

    ∣ is a poset.○

Example 2•

Show that the inclusion relation     is a partial ordering on the power set of a set S.○

Reflexivity:      whenever  is a subset of  . ○

Antisymmetry: If  and  are positive integers with    and    , then    .○

Transitivity: If    and    , then    .○

Example 3•

Partial Orderings

The elements  and  of a poset      are comparable if either     or     .○

     so that neither     nor     , then  and  are called incomparable.

Definition 2•

Comparability

9.6 Partial Orderings
Monday, April 23, 2018 9:11 AM
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     so that neither     nor     , then  and  are called incomparable.○

If      is a poset and every two elements of  are comparable○

Then  is called a totally ordered or linearly ordered set○

And   is called a total order or a linear order.○

A totally ordered set is also called a chain. ○

Definition 3•

  is a total ordering▪

every nonempty subset of S has a least element. ▪

 S    is a well-ordered set if it is a poset such that○

Definition 4•

A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be 
present because of the reflexive and transitive properties.

•

A partial ordering is shown in (a) of the figure above.•

The loops due to the reflexive property are deleted in (b).•

The edges that must be present due to the transitive property are deleted in (c).•

The Hasse diagram for the partial ordering (a), is depicted in ©•

Hasse Diagrams

Given two posets        and        ○

The lexicographic ordering on      is defined by specifying that○

       is less than        , that is,        ≺        , ○

either if   ≺   or if      and   ≺   .○

This definition can be easily extended to a lexicographic ordering on strings (see text).○

Definition•

Consider strings of lowercase English letters○

A lexicographic ordering can be defined using the ordering of the letters in the alphabet○

This is the same ordering as that used in dictionaries.○

discreet ≺ discrete  because these strings differ in the seventh position and  ≺  . ○

discreet ≺ discreetness  because the first eight letters agree  but the second string is longer. 

Example•

Lexicographic Order
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discreet ≺ discreetness  because the first eight letters agree  but the second string is longer. ○

If      is a well ordered poset and  is a property s.t.○

If     is true for all    , then     is true○

Then  is true for all elements in the poset○

Theorem•

     0▪

      
        if   0 and   0

        if   0
▪

Suppose that     is defined for          ○

Show that        
      

 
     is defined for all          ○

Example•

Use induction○

     0  
0   

 
    ▪

Basis Step○

Assume that           
        

 
       whenever▪

       is less than      in the lexicographic ordering of    ▪

                  
      

 
             

      

 
        □

If   0, by the inductive hypothesis, we can conclude ▪

                
      

 
             

      

 
        □

If   0, by the inductive hypothesis, we can conclude▪

Inductive Step○

Solution•

Well Ordered Induction

If      is a ordered poset then an element  is○

Minimal if there is no element  s.t.    , and  is not equal to  ○

Maximal if there is no element  s.t.    , and  is not equal to  ○

Greatest if for every element    ,    ○

Least if for every element    ,    ○

Definition•

Minimal: No element is strictly smaller○

Least: Every other element is bigger○

Maximal: No element is strictly bigger○

Intuition•

Maximal and Minimal Elements
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Greatest: Every other element is smaller○

Let         0     0    ordered by divisibility relation○

Which element of         0     0    are maximal and which are minimal?○

Is there a least or greatest element?○

Maximal: 12, 20, 25○

Minimal: 2,5○

No least or greatest element.○

Example 1•

Given an example of a poset with no minimal element and two maximal elements?○

      0            where   0         , and    0         ○

Example 2•

If      is a partial ordering and       is a total ordering then we say that ○

The two are compatible if  is a subset of   ○

Definition•

Let  be a finite set○

Every partial order  on  has a compatible total order   ○

Theorem•

Every nonempty finite partial order has a minimal element○

This can be proved by induction on the size of  ○

  to be a minimal element of  ▪

  to be the minimal element of       ▪

  to be the minimal element of                 ▪

  to be the least available element of  ▪

We should build a total ordering of  be selecting○

We set                 ○

Proof•

Topological Sorting
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a nonempty set  of vertices (or nodes) ▪

and a set  of edges.▪

A graph  =      consists of ○

Each edge has either one or two vertices associated with it, called its endpoints. ○

An edge is said to connect its endpoints.○

Definition•

This is a graph with four vertices and five edges.○

Example•

The graphs we study here are unrelated to graphs of functions studied in Chapter 2. ○

We have a lot of freedom when we draw a picture of a graph.○

All that matters is the connections made by the edges, not the particular geometry 
depicted.

○

For example, the lengths of edges, whether edges cross, how vertices are depicted, and so 
on, do not matter

○

A graph with an infinite vertex set  is called an infinite graph.○

A graph with a finite vertex set is called a finite graph.○

We (following the text) restrict our attention to finite graphs.○

Remarks•

Graphs

each edge connects two different vertices and▪

In a simple graph,○

Definition•

Graph Terminology

10.1 Graphs and Graph Models
Friday, April 27, 2018 9:05 AM
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no two edges connect the same pair of vertices.▪

Multigraphs may have multiple edges connecting the same two vertices.○

we say that      is an edge of multiplicity  . ▪

When  different edges connect the vertices  and  ○

An edge that connects a vertex to itself is called a loop.○

A pseudograph may include loops, as well as multiple edges connecting the same pair of 
vertices.

○

This pseudograph has both multiple edges and a loop.○

Example•

a nonempty set  of vertices (or nodes)▪

and a set  of directed edges (or arcs).▪

An directed graph  (or digraph)  =      consists of ○

Each edge is associated with an ordered pair of vertices.○

The directed edge associated with the ordered pair      is said to start at  and end at  . ○

Definition:•

Graphs where the end points of an edge are not ordered are said to be undirected graphs.○

Remark: •

Directed Graphs

A simple directed graph has no loops and no multiple edges.○

Definition•

This is a directed graph with three vertices and four edges.○

Example•

Graph Terminology (continued)
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A directed multigraph may have multiple directed edges. ○

When there are  directed edges from the vertex  to the vertex  ,○

We say that      is an edge of multiplicity m.○

Definition•

In this directed multigraph the multiplicity of      is 1 and the multiplicity of      is 2.○

Example•

When we build a graph model, we use the appropriate type of graph to capture the important 
features of the application. 

•

We illustrate this process using graph models of different types of computer networks.•

In all these graph models, the vertices represent data centers and the edges represent 
communication links.

•

To model a computer network where we are only concerned whether two data centers are 
connected by a communications link, we use a simple graph.

•

This is the appropriate type of graph when we only care whether two data centers are directly 
linked (and not how many links there may be) and all communications links work in both 
directions.

•

Graph Models: Computer Networks
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To model  a computer network where we care about the number of links between data centers, 
we use a multigraph. 

•

To model a computer network with diagnostic links at data centers, we use a pseudograph, as 
loops are needed. 

•

To model a network with multiple one-way links, we use a directed multigraph.•

Note that we could use a directed graph without multiple edges if we only care whether there is 
at least one link from a data center to another data center.

•

Are the edges of the graph undirected or directed  (or both)?○

If the edges are undirected, are multiple edges present that connect the same pair of 
vertices?

○

If the edges are directed, are multiple directed edges present?○

Are loops present?○

To understand the structure of a graph and to build a graph model, we ask these questions:•

Graph Terminology: Summary
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Social networks○

Communications networks○

Information networks○

Software design○

Transportation networks○

Biological networks○

We will illustrate how graph theory can be used in models of:•

It’s a challenge to find a subject to which graph theory has not yet been applied. •

Can you find an area without applications of graph theory?•

Other Applications of Graphs

We represent actors by vertices and we connect two vertices if the actors they represent 
have appeared in the same movie.

○

We will study the Hollywood Graph in Section 10.4 when we discuss Kevin Bacon 
numbers.

○

The Hollywood graph models the collaboration of actors in films.•

We represent researchers in a particular academic discipline using vertices.○

We connect the vertices representing two researchers in this discipline if they are 
coauthors of a paper.

○

We will study the academic collaboration graph for mathematicians when we discuss 
Erdős numbers in Section 10.4.

○

An academic collaboration graph models the collaboration of researchers who have jointly 
written a paper in a particular subject.

•

Examples of  Collaboration Graphs

Graph models are extensively used in the study of  transportation networks.•

airports are represented by vertices○

each flight is represented by  a directed edge from the vertex representing the departure 
airport to the vertex representing the destination airport

○

Airline networks can be modeled using directed multigraphs where•

vertices represent intersections and edges represent roads.

Road networks can be modeled using graphs where•

Transportation Graphs
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vertices represent intersections and edges represent roads.○

undirected edges represent two-way roads and directed edges represent one-way roads.○

Graph models are used extensively in many areas of the biological science.•

We will describe two such models, one to ecology and the other to molecular biology.•

Niche overlap graphs model competition between species in an ecosystem•

Vertices represent species and an edge connects two vertices when they represent species who 
compete for food resources.

•

Example: This is the niche overlap graph for a forest ecosystem with nine species.•

We can model the interaction of proteins in a cell using a protein interaction network.•

In a protein interaction graph, vertices represent proteins  and vertices are connected by an 
edge if the proteins they represent interact.

•

Protein interaction graphs can be huge and can contain more than 100,000 vertices, each 
representing a different protein, and more than 1,000,000 edges, each representing an 
interaction between proteins

•

Protein interaction graphs are often split into smaller graphs, called modules,  which represent 
the interactions between proteins involved in a particular function.

•

Example: This is a module of the protein interaction graph of proteins that degrade RNA in a 
human cell.

•

Biological Applications
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there is an edge e between  and  ▪

Two vertices    in  an undirected graph  are called adjacent (or neighbors) in  if○

Such an edge  is called incident with the vertices  and  and  is said to connect  and  ○

Definition 1•

The set of all a vertices  of  =      , denoted by     , is called the neighborhood of  .○

If  is a subset of  , we denote by     the set of all vertices in  that are adjacent to at 
least one vertex in  .

○

So           

 

   

○

Definition 2•

the number of edges incident with it▪

except that a loop at a vertex contributes two to the degree of that vertex.▪

The degree of a vertex in a undirected graph is○

The degree of the vertex  is denoted by deg   .○

Definition 3•

Basic Terminology

What are the  degrees  and neighborhoods of the vertices in the graphs  and  ?•

deg      deg    deg    deg      deg      deg      deg    0.○

                                                  ○

                                 ∅.○

For graph  •

deg      deg    deg      deg      deg     .○

                                                                .○

For graph  •

Degrees and Neighborhoods of Vertices

Theorem 1 (Handshaking Theorem)•

Degrees of Vertices

10.2 Graph Terminology and Special Types of Graphs
Friday, April 27, 2018 9:27 AM
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If         is an undirected graph with  edges, then○

    deg 

 

   

○

Theorem 1 (Handshaking Theorem)•

Each edge contributes twice to the degree count of all vertices.○

Both the left-hand and right-hand sides of this equation equal twice the number of edges.○

vertices represent the people at a party and▪

an edge connects two people who have shaken hands.▪

Think about the graph where○

Proof•

How many edges are there in a graph with 10 vertices of degree six?○

Example•

Because the sum of the degrees of the vertices is    0   0○

The handshaking theorem tells us that 2 = 60.○

So the number of edges  = 30.○

Solution•

If a graph has 5 vertices, can each vertex have degree 3?○

Example•

This is not possible by the handshaking theorem○

Because the sum of the degrees of the vertices       is odd.○

Solution•

An undirected graph has an even number of vertices of odd degree.○

Theorem 2•

Let        be an undirected graph with  edges○

Let   be the vertices of even degree and   be the vertices of odd degree in  ○

 deg  

 

    

 must be even since deg   is even for each     ▪

   is even and□

the sum of the degrees of the vertices of even degrees is also even□

 deg  

 

    

 must be even because▪

Then     deg 

 

   

  deg 

 

    

  deg 

 

    

 where○

Because this is the sum of the degrees of all vertices of odd degree in the graph○

There must be an even number of such vertices○

Proof•

Directed Graphs
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 , a nonempty set of vertices (or nodes), and ▪

 , a set of directed edges or arcs.▪

An directed graph  =      consists of○

Each edge is an ordered pair of vertices.○

The directed  edge      is said to start at  and end at  .○

Definition•

 is the initial vertex of this edge and is adjacent to  and▪

 is the terminal (or end) vertex of this edge and is adjacent from  .▪

Let      be an edge in  , then○

The initial and terminal vertices of a loop are the same.○

Definition•

The in-degree of a vertex  , denoted deg    , is the number of edges which terminate at ○

The out-degree of  , denoted deg    , is the number of edges with  as their initial vertex. ○

a loop at a vertex contributes 1 to both the in-degree and the out-degree▪

Note○

Definition:•

deg     = 2, deg    = 2, deg    = 3, deg    = 2, deg    = 3, deg    = 0.▪

deg    = 4, deg    = 1, deg    = 2, deg    = 2, deg    = 3, deg    = 0.▪

In the graph G we have○

Example•

Let        be a graph with directed edges○

Then      deg     deg    

 

   

○

Theorem 3•

The first sum counts the number of outgoing edges over all vertices ○

The second sum counts the number of incoming edges over all vertices○

It follows that both sums equal the number of edges in the graph.○

Proof•

Directed Graphs

Special Types of Simple Graphs: Complete Graphs
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A complete graph on n vertices, denoted by   , is•

the simple graph that contains exactly one edge between each pair of distinct vertices. •

Special Types of Simple Graphs: Complete Graphs

 vertices           , and ○

edges                                    ○

A cycle   for       consists of •

adding an additional vertex to a cycle   for        and○

connecting this new vertex to each of the  vertices in   by new edges.○

A wheel   is obtained by •

Special Types of Simple Graphs: Cycles and Wheels

a graph with   vertices representing all bit strings of length  , where○

there is an edge between two vertices that differ in exactly one bit position.○

An  -dimensional hypercube, or  -cube,   , is •

Special Types of Simple Graphs:  -Cubes
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 can be partitioned into two disjoint subsets   and   such that▪

every edge connects a vertex in   and a vertex in   ▪

A simple graph  is bipartite if ○

In other words, there are no edges which connect two vertices in   or in   .○

Definition•

A graph where it is possible to color the vertices red or blue so that○

No two adjacent vertices are the same color. ○

It is not hard to show that an equivalent definition of a bipartite graph is•

Bipartite Graphs

Bipartite graphs are used to model applications that involve matching the elements of one set to 
elements in another, for example:

•

Job assignments - vertices represent the jobs and the employees, edges link employees with 
those jobs they have been trained to do.

•

A common goal is to match jobs to employees so that the most jobs are done.•

Bipartite Graphs and Matchings

Show that   is bipartite.○

Example•

Solution•

Examples of Bipartite Graphs
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We can partition the vertex set into              and              so that○

every edge of   connects a vertex in   and   ○

Show that   is not bipartite.○

Example•

If we divide the vertex set of   into two nonempty sets○

One of the two must contain two vertices○

But in   every vertex is connected to every other vertex○

Therefore, the two vertices in the same partition are connected. ○

Hence,   is not bipartite.○

Solution•

has its vertex set partitioned into two subsets   of size  and   of size  such that▪

there is an edge from every vertex in   to every vertex in   .▪

A complete bipartite graph     is a graph that○

Definition•

We display four complete bipartite graphs here.○

Example•

Complete Bipartite Graphs

New Graphs from Old 
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A subgraph of a graph  =      is a graph      ,  where    and    .○

A subgraph  of  is a proper subgraph of  if    .○

Definition•

Here we show   and one of its subgraphs.○

Example•

Let        be a simple graph.○

The subgraph induced by a subset  of the vertex set  is the graph      , where○

the edge set  contains an edge in  if and only if both endpoints are in  . ○

Definition•

Here we show      and the subgraph induced by            .○

Example•

The union of two simple graphs           and           is○

the simple graph with vertex set      and edge set   ∩   ○

The union of   and   is denoted by      .○

Definition•

Example•

New Graphs from Old 
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An adjacency list can be used to represent a graph with no multiple edges by○

specifying the vertices that are adjacent to each vertex of the graph.○

Definition•

Example 1•

Example 2•

Representing Graphs: Adjacency Lists

Suppose that        is a simple graph where      .○

Arbitrarily list the vertices of  as           .○

the    zero-one matrix with▪

1 as its      th entry when   and   are adjacent, and▪

0 as its      th entry when they are not adjacent.▪

The adjacency matrix    of  , with respect to the listing of vertices, is ○

    
 if       is an edge of  

0 otherwise

In other words, if the graphs adjacency matrix is         , then○

Definition•

Representation of Graphs: Adjacency Matrices

10.3 Representing Graphs and Graph Isomorphism
May 2, 2018 9:05 AM
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 if         is an edge of  

0 otherwise
▪

The ordering of vertices is        .○

Example 1•

The ordering of vertices is        .○

Example 2•

The adjacency matrix of a simple graph is symmetric, i.e.,        ○

Also, since there are no loops, each diagonal entry      for                 , is 0.○

Note•

It is much more efficient to represent the graph using an adjacency list▪

When a graph is sparse (it has few edges relatively to the total number of possible edges)○

An adjacency matrix is preferable▪

But for a dense graph, which includes a high percentage of possible edges○

Adjacency list vs adjacency matrix•

Adjacency matrices can also be used to represent graphs with loops and multiple edges. •

A loop at the vertex   is represented by a 1 at the     )th position of the matrix. •

the      th entry equals the number of edges connecting the pair of vertices. ○

When multiple edges connect the same pair of vertices   and   , (or if multiple loops are present 

at the same vertex)

•

We give the adjacency matrix of the pseudograph shown here using the ordering of 
vertices        .  

○

Example•

Adjacency Matrices: Graphs with Loops and Multiple Edges
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Adjacency matrices can also be used to represent directed graphs.•

there is an edge from   to   , where           is a  list of the vertices.○

The matrix for a directed graph         has a 1 in its      th position if•

     
 if         is an edge of  

0 otherwise
○

In other words, if the graphs adjacency matrix is         , then•

there may not be an edge from   to   , when there is an edge from   to   . ○

The adjacency matrix for a directed graph does not have to be symmetric, because•

To represent directed multigraphs, the value of    is the number of edges connecting   to   . •

Adjacency Matrices: Directed graphs

vertices           and▪

edges           .▪

Let        be an undirected graph with○

        where      
 when edge    is incident with   

0 otherwise
▪

The incidence matrix with respect to the ordering of  and  is the    matrix○

Definition•

Simple Graph and Incidence Matrix○

○

The rows going from top to bottom represent   through   ○

The columns going from left to right represent   through   .○

Example•

Example•

Representation of Graphs: Incidence Matrices
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The rows going from top to bottom represent   through   ○

The columns going from left to right represent   through   .○

there is a one-to-one and onto function  from   to   with the property that▪

 and b are adjacent in        and     are adjacent in   , for all  and  in   .▪

The simple graphs   =        and   =        are isomorphic if ○

Such a function  is called an isomorphism.○

Two simple graphs that are not isomorphic are called nonisomorphic.○

Definition•

Show that the graphs        and        are isomorphic.○

Example•

     =   ▪

        ▪

     =   ▪

     =   ▪

The function  defined below is a one-to-one correspondence between  and  ○

Note that adjacent vertices in  are   and   ,   and   ,   and   , and   and   .○

     =         =   ▪

                 ▪

                 ▪

     =         =     ▪

Each of the pairs below consists of two adjacent vertices in  ○

Solution•

It is difficult to determine whether two simple graphs are isomorphic using brute force ○

because there are   possible one-to-one correspondences between the vertex sets of two 
simple graphs with  vertices. 

○

The best algorithms for determining whether two graphs are isomorphic have exponential 
worst case complexity in terms of the number of vertices of the graphs.

○

Sometimes it is not hard to show that two graphs are not isomorphic.○

We can do so by finding a property, preserved by isomorphism, that only one of the two 
graphs has.

○

Note•

Isomorphism of Graphs
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Such a property is called graph invariant. ○

There are many different useful graph invariants that can be used to distinguish 
nonisomorphic graphs, such as the number of vertices, number of edges, and degree 
sequence (list of the degrees of the vertices in nonincreasing order).

○

We will encounter others in later sections of this chapter.○

Determine whether these two graphs are isomorphic○

Example•

Both graphs have eight vertices and ten edges.○

They also both have four vertices of degree two and four of degree three. ○

However,  and  are not isomorphic.○

Note that since       = 2 in  , a must correspond to       or  in  ,○

because these are the vertices of degree 2.○

But each of these vertices is adjacent to another vertex of degree two in  ○

which is not true for  in  .○

Alternatively, note that the subgraphs of  and  made up of vertices of ○

degree three and the edges connecting them must be isomorphic. ○

But the subgraphs, as shown at the right, are not isomorphic.  ○

Solution•

Determine whether these two graphs are isomorphic.○

Example•

Both graphs have six vertices and seven edges.○

They also both have four vertices of degree two and two of degree three. ○

The subgraphs of  and  consisting of all the vertices of degree two and the edges 
connecting them are isomorphic

○

So, it is reasonable to try to find an isomorphism  . ○

Solution•
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We define an injection  from the vertices of  to the vertices of  that preserves the 
degree of vertices. 

○

We will determine whether it is an isomorphism.○

                                                       ▪

The function  defined below is a one to one correspondence between   and  ○

Showing that this correspondence preserves edges is straightforward, so we will omit the 
details here.

○

Because  is an isomorphism, it follows that  and  are isomorphic graphs.○

See the text for an illustration of how adjacency matrices can be used for this verification.○
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begins at a vertex of a graph and▪

travels from vertex to vertex along edges of the graph.▪

A path is a sequence of edges that○

It visits the vertices along this path, that is, the endpoints of these.▪

As the path travels along its edges○

Informal Definition•

determining whether a message can be sent between two computers.▪

efficiently planning routes for mail delivery▪

Numerous problems can be modeled with paths formed by traveling along edges of graphs○

Applications•

Let  be a nonnegative integer and  an undirected graph○

there exists a sequence                    of vertices such that▪

  has, for        , the endpoints     and   . ▪

A path of length  from  to  in  is a sequence of  edges        of  for which○

          (since listing the vertices uniquely determines the path).▪

When the graph is simple, we denote this path by its vertex sequence○

it begins and ends at the same vertex and has length greater than zero.▪

The path is a circuit if○

pass through the vertices             and▪

traverse the edges        ▪

The path or circuit is said to○

A path or circuit is simple if it does not contain the same edge more than once.○

Definition•

In the simple graph here:○

         is a simple path of length 4. 

Example•

Paths

10.4 Connectivity
May 2, 2018 9:07 AM
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         is a simple path of length 4. ○

       is not a path because e is not connected to c.○

         is a circuit of length 4. ○

           is a path of length 5, but it is not a simple path. ○

In an acquaintanceship graph there is a path between two people if there is a chain of people 
linking these people, where two people adjacent in the chain know one another.

○

In this graph there is a chain of six people linking Kamini and Ching.○

Paths in Acquaintanceship Graphs•

Some have speculated that almost every pair of people in the world are linked by a small 
chain of no more than six, or maybe even, five people. 

○

The play Six Degrees of Separation by John Guare is based on this notion.  ○

Note:•

Degrees of Separation

An undirected graph is called  connected if there is a path between every pair of vertices.  ○

An undirected graph that is not connected is called disconnected.○

We say that we disconnect a graph when we remove vertices or edges, or both, to produce a 
disconnected subgraph. 

○

Definition•

   is connected because there is a path between any pair of its vertices, as can be easily seen.○

However    is not connected because there is no path between vertices  and  , for example. ○

Example•

Connectedness in Undirected Graphs
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Every pair of distinct vertices in a connect graph is connected by a simple path○

Theorem•

Let  and  be two distinct vertices of the connected undirected graph        ○

Because  is connected, there is at least one path between  and  ○

Let           , where     and     , be the vertex sequence of a path of least length.○

This path of least length is simple.○

To see this, suppose is not simple, then       for some i and  with 0     ○

                    ▪

This means that there is a path from  to  of shorter length with vertex sequence○

Obtained by deleting the edges corresponding to the vertex sequence          ○

Proof•

a connected subgraph of  that is ▪

not a proper subgraph of another connected subgraph of  ▪

A connected component of a graph  is○

A graph  that is not connected has two or more connected components that are disjoint and 
have  as their union. 

○

Definition•

The graph  is the union of three disjoint subgraphs   ,   , and   ○

None of which are proper subgraphs of a larger connected subgraph of  ○

These three subgraphs are the connected components of  . ○

Example•

Connected Components
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A directed graph is strongly connected if ○

there is a path from  to  and a path from  to  whenever  and  are vertices in the graph ○

Definition•

A directed graph is weakly connected if○

there is a path between every two vertices in the underlying undirected graph, which is○

the undirected graph obtained by ignoring the directions of the edges of the directed graph ○

Definition•

Connectedness in Directed Graphs

We can use the adjacency matrix of a graph to find the number of paths between two vertices in 
the graph.

•

Let  be a graph with adjacency matrix  with respect to the ordering         of vertices○

(with directed or undirected edges, multiple edges and loops allowed).○

The number of different paths of length  from   to   , where   0 is a positive integer, ○

equals the      th entry of   .○

Theorem•

By definition of the adjacency matrix▪

The number of paths from   to   of length 1 is the      th entry of A. ▪

Basis Step○

the      th entry of   is the number of different paths of length  from   to   . □

For the inductive hypothesis, we assume that ▪

                      , where    is the      th entry of   .□

Because         ,  the       th entry of     equals▪

By the inductive hypothesis,    is the number of paths of length  from   to   . ▪

a path of length  from   to some   , and□

an edge from   to   .□

A path of length  + 1 from   to   is made up of ▪

By the product rule for counting, the number of such paths is the product of▪

Inductive Step○

Proof by mathematical induction: •

Counting Paths between Vertices
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the number of paths of length  from   to      (i.e.,    ) and□

the number of edges from   to   (i.e, akj).□

By the product rule for counting, the number of such paths is the product of▪

The sum over all possible intermediate vertices   is                       ▪
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A tree is a connected undirected graph with no simple circuits.○

Definition•

Which of these graphs are trees?○

Example•

  and   are trees - both are connected and have no simple circuits○

Because          is a simple circuit,   is not a tree. ○

  is not a tree because it is not connected.○

Solution•

A forest is a graph that has no simple circuit, but is not connected.○

Each of the connected components in a forest is a tree.○

Definition•

An undirected graph is a tree if and only if○

There is a unique simple path between any two of its vertices. ○

Theorem•

Then  is connected with no simple circuits.▪

Hence, if  and  are distinct vertices of  ▪

There is a simple path between them (by Theorem 1 of Section 10.4).▪

If there were a second path□

There would be a simple circuit in  (by Exercise 59 of Section 10.4). □

This path must be unique▪

Hence, there is a unique simple path between any two vertices of a tree.▪

   Assume that  is a tree.○

Proof•

Trees

11.1 Introduction to Trees
May 4, 2018 9:01 AM
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Hence, there is a unique simple path between any two vertices of a tree.▪

 is connected because there is a path between any two of its vertices.  ▪

If there were a simple circuit□

There would be two paths between some two vertices□

Furthermore,  can have no simple circuits since▪

Therefore  is a tree▪

   Assume that there is a unique simple path between any two vertices of graph  ○

Hence, a graph with a unique simple path between any two vertices is a tree.○

One vertex has been designated as the root, and▪

Every edge is directed away from the root.▪

A rooted tree is a tree in which○

Definition•

An unrooted tree is converted into different rooted trees when different vertices are 
chosen as the root

•

Rooted Trees

Terminology for rooted trees is a mix from botany and genealogy•

(such as this family tree of the Bernoulli family of  mathematicians)•

the unique vertex  such that there is a directed edge from  to  ○

If  is a vertex of a rooted tree other than the root, the parent of  is •

Rooted Tree Terminology
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When  is a parent of  ,  is called a child of  .•

Vertices with the same parent are called siblings.•

The vertices in the path from the root to this vertex○

Excluding the vertex itself and including the root.○

The ancestors of a vertex are •

The descendants of a vertex  are those vertices that have  as an ancestor.•

A vertex of a rooted tree with no children is called a leaf.•

Vertices that have children are called internal vertices.•

consisting of  , and ○

its descendants, and○

all edges incident to these descendants○

If  is a vertex in a tree, the subtree with  as its root is the subgraph of the tree•

Find the parent of  , the children of  , the siblings of  , the ancestors of  , and the 
descendants of  . 

○

Find all internal vertices and all leaves.○

What is the subtree rooted at G?○

Example: In the rooted tree  (with root  ): •

The parent of  is  ○

The children of  are    , and  ○

The siblings of  are  and  ○

The ancestors of  are    , and  ○

The descendants of b are    , and  ○

The internal vertices are          , and  ○

The leaves are            , and    ○

We display the subtree rooted at  

Solution: •

Examples of Rooted Trees
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We display the subtree rooted at  ○

A tree with  vertices has    edges.○

Theorem 2•

When  = 1, a tree with one vertex has no edges.▪

Hence, the theorem holds when  = 1. ▪

Basis Step○

Assume that every tree with  vertices has      edges. ▪

Suppose that a tree  has  + 1 vertices and that  is a leaf of  ▪

Let  be the parent of  ▪

Removing the vertex  and the edge connecting  to  ▪

This produces a tree   with  vertices.▪

By the inductive hypothesis,   has      edges.▪

Because  has one more edge than   , we see that  has  edges.▪

This completes the inductive step▪

Inductive Step○

Proof (by mathematical induction):•

Properties of Trees

A rooted tree is called an  -ary tree if ○

Every internal vertex has no more than  children.○

The tree is called a full  -ary tree if every internal vertex has exactly  children.○

An  -ary tree with  = 2 is called a binary tree.○

Definition•

Are the following rooted trees full  -ary trees for some positive integer m?○

Example•

  is a full binary tree because each of its internal vertices has two children.○

  is a full 3-ary tree because each of its internal vertices has three children.○

In   each internal vertex has five children, so   is a full 5-ary tree○

some of its internal vertices have two children and others have three children▪

  is not a full  -ary tree for any  because○

Solution•

 -ary Rooted Trees

Theorem 3•

Counting Vertices in Full  -Ary Trees
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A full  -ary tree with  internal vertices has   =     + 1 vertices.○

Theorem 3•

Every vertex, except the root, is the child of an internal vertex.○

Because each of the  internal vertices has  children, ○

there are   vertices in the tree other than the root.○

Hence, the tree contains  =     + 1 vertices.○

Proof •

 vertices has   
   

 
   internal vertices and   

        

 
        leaves▪

 internal vertices has  =    + 1 vertices and           leaves▪

 leaves has   
    

   
    vertices and   

   

   
   internal vertices▪

A full  -ary tree with ○

Solving for  in  =    + 1 (from Theorem 3) gives   
   

 
   .▪

Since each vertex is either a leaf or an internal vertex,      .▪

By solving for  and using the formula for  , we see that▪

        
   

 
      

        

 
            ▪

Proof (vertices)○

Theorem 4•

the subtrees at each vertex contain paths of approximately the same length○

When working with trees, we often want to have rooted trees where•

the length of the unique path from the root to this vertex.  ▪

The level of a vertex  in a rooted tree is ○

the maximum of the levels of the vertices. ▪

The height of a rooted tree is○

To make this idea precise we need some definitions:•

Find the level of each vertex in the tree to the right.                        ○

What is the height of the tree?○

Example: •

Solution: •

Level of vertices and height of trees
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The root  is at level 0. ○

Vertices    , and  are at level 1.  ○

Vertices      , and  are at level 2.○

Vertices        , and  are at level 3. ○

Vertex  is at level 4. ○

The height is 4, since 4 is the largest level of any vertex. ○

A rooted  -ary tree of height h is balanced if all leaves are at levels  or     . ○

Definition•

Which of the rooted trees shown below is balanced?○

Example•

  and   are balanced, but   is not because it has leaves at levels 2, 3, and 4. ○

Solution•

Balanced  -Ary Trees

There are at most    leaves in an  -ary tree of height  .○

Theorem 5•

Consider an  -ary trees of height 1.▪

The tree consists of a root and no more than  children, all leaves.▪

Hence, there are no more than     leaves in an  -ary tree of height 1.▪

Basis Step○

Assume the result is true for all  -ary trees of height <  .▪

Let  be an  -ary tree of height  .▪

The leaves of  are the leaves of the subtrees of  we get when we delete the 
edges from the root to each of the vertices of level 1. 

▪

Each of these subtrees has height      .▪

Inductive Step○

Proof (by mathematical induction on height): •

The Bound for the Number of Leaves in an  -Ary Tree
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Each of these subtrees has height      .▪

By the inductive hypothesis, each of these subtrees has at most     leaves.▪

Since there are at most  such subtrees▪

There are at most       =   leaves in the tree.  ▪

If an  -ary tree of height  has l leaves, then     log   .○

If the  -ary tree is full and balanced, then  =  log   .  (see text for the proof)○

Corollary 1•
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