Theorems

Wednesday, May 9, 2018 12:53 AM

Theorem 1.11: Greatest-Lower-Bound Property
e Suppose S is an ordered set with the least-upper-bound property
e Suppose B ¢ S, B # @ and B is bounded below
e Let L be the set of lower bounds of B

e Thena = supl existsin S and a¢ = infB

Theorem 1.20: The Archimedean property of R

e Givenx,y € R,andx >0

e There is a positive integer n such that nx > y

Theorem 1.20: Q isdensein R

e Ifx,y € Randx < y,thenthereexistsap € Qst.x<p <y
¢ We can always find a rational number between two real numbers
Theorem 1.21: n-th Root of Real Numbers

e For every real x > 0, and positive integer n

¢ There is one and only one positive real number y s.t. y* = x

1
¢ In this case, we write y = xn

Theorem 1.31: Properties of Complex Numbers

e [f zand w are complex numbers, then

c z+tw=2z+Ww

* ZW=Z-W

e z+2z=2Re(2),z—7Z=2ilm(2)

e zZisreal and positive (except when z = 0)

Theorem 1.33: Properties of Complex Numbers

¢ [f zand w are complex numbers, then

|z| > 0 unless z = 0 in which case |z] = 0

e |zl = ||
o lzw| = |z|lw|
* [Re(2)] < ||

|z + w| < |z| + |w]| (Triangle Inequality)

Theorem 1.37: Properties of Euclidean Spaces
e SupposeX,y,Z € R", a € R, then

e |¥|=0
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|%| = 0if and only if ¥ = 0

0] = lal - |4

|% - y| < |%| - |¥| (Schwarz's Inequality)

|% + ¥| < |%| + |¥| (Triangle Inequality)

|# — y| < |¥ — Z| + |y — Z| (Triangle Inequality)

Theorem 2.8: Infinite Subset of Countable Set
e Every infinite subset of a countable set is countable

Theorem 2.12: Union of Countable Sets

o Let {En}nEN be a sequence of countable sets, then

e §= U E, is also countable

n=1
Theorem 2.13: Cartesian Product of Countable Sets
e Let A be a countable set
¢ Let B, be the set of all n-tuples (al, a,, ... an) where
o aqpy€Afork=1.2,..,n
O a; may not be distinct
¢ Then B, is countable
Theorem 2.14: Cantor's Diagonalization Argument
¢ Let A be the set of all sequqnecse whose digits are 0 and 1
e Then A is uncountable
Theorem 2.19: Every Neighborhood is an Open Set
¢ Every neighborhood is an open set
Theorem 2.20: Property of Limit Point
e Ifpisalimitpointof E
e Then every neighborhood of p contains infinitely many points of E
Theorem 2.22: De Morgan's Law

o Let {Ea} be a finite or infinite collection of sets, then

* UEa :ﬂ(Ea)c

Theorem 2.23: Complement of Open/Closed Set
e AsetE isopenifand onlyif E€ is closed

¢ Note: This does not say that open is not closed and closed is not open
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Theorem 2.24: Intersection and Union of Open/Closed Sets

For any collection {G,,} of open sets, U G, is open
a

For any collection {Fn} of closed sets, ﬂ F, is closed
a

n

For any finite collection, G, G5, ..., G, of open sets, ﬂ G; is also open
i=1
n

For any finite collection, F;, F,, ..., F,, of closed sets, U F; is also closed
i=1

Theorem 2.27: Properties of Closure
e [f X is a metric space and E c X, then
e Eisclosed
e E=FE © Eisclosed
e E cFforeveryclosedsetF c Xst.ECF
Theorem 2.28: Closure and Least Upper Bound Property of R
e IfE #+ @,E c R,and E is bouned above, then supE € E
e HencesupE € E if E is closed
Theorem 2.34: Compact Sets are Closed

¢ Compact subsets of metric spaces are closed

Theorem 2.35: Closed Subsets of Compact Sets are Compact

¢ (losed subsets of compact sets are compact

Theorem 2.36: Cantor's Intersection Theorem
o If {Ka} is a collection of compact subsets of a metric space X s.t.

¢ The intersection of every finite subcollection of {Ka} is nonempty

¢ Then ﬂKa is nonempty
a

Theorem 2.37: Infinite Subset of Compact Set

e If E is an infinite subset of a compact set K

e Then E has a limit point in K

Theorem 2.38: Nested Intervals Theorem

o If {In} is a sequence of closed intervalsin Rs.t. [, D I,,;1,¥n €N

¢ Then ﬂ [,, is nonempty

n=1
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Theorem 2.39: Nested k-cell

¢ Let k be a positive integer

o If{l,}isasequence of k-cellss.t. I, D I,4;,Yn €N

¢ Then ﬂ I, is nonempty

n=1
Theorem 2.40: Compactness of k-cell

e Every k-cell is compact

Theorem 2.41: The Heine-Borel Theorem

e ForasetE c R¥, the following properties are equivalent
e Eisclosed and bounded
e FEis compact

¢ Every infinite subset of E has a limit point in E
Theorem 2.42: The Weierstrass Theorem
e Every bounded infinite subset E of R¥ has a limit point in R¥
Theorem 2.47: Connected Subset of R
e E c Risconnected if and only if E has the following property
e Ifx,yeEEFandx <z <y,thenz€E
Theorem 3.2: Important Properties of Convergent Sequences

o Let {pn} be a sequence in a metric space X
* p, = p € X & any neighborhood of p contains p,, for all but finitely many n

e Givenp € Xandp' € X.If {pn} converges to p and to p’, thenp = p’

If {p, } converges, then {p,,} is bounded

If E c X,and p € E’, then there exists a sequence {pn} inEs.tp,—>p

Theorem 3.3: Algebraic Limit Theorem

e Suppose {sn}, {tn} are complex sequence,and lim s, = s, lim t, = t, then

n—-oo n—oo

e lims,+t,=s+t¢t

n—-oo

e limc+s,=c+s,VceC

n—-oo

e lim cs, =cs,VceC

n—oo

e lim s,t, = st
n—-oo

1 1
o lim—=§ (sn¢0,VnEN,ands¢0)

n-o S,

Theorem 3.4: Convergence of Sequence in R"

e Supposex,, = (051,n, Ay e ak,n) € R¥ wheren € N, then
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o {x_n’} converges to (al,az, ...,ak) = rlll—r»go Ajn = (1 <j< k)

Theorem 3.6: Properties of Subsequence
o If {pn} is a sequence in a compact metric space X
¢ Then some subsequence of {pn} converges to a point of X

e Every bounded sequences in R¥ contains a convergent subsequence

Theorem 3.10: Diameter and Closure

e IfE is the closure of a set E in a metric space X, then diam E = diam E

Theorem 3.10: Nested Compact Set

e If K, is a sequence of compact sets in X s.t.

e K, DK,,;q,Ynand lim diam K,, = 0

n-oo
e Then ﬂ K,, consists of exactly one point
n=1
Theorem 3.11: Cauchy Sequence and Convergence
¢ Inany metric space X, every convergent sequence is a Cauchy sequence
e [f X is a compact metric space and {pn} is a Cauchy sequence
e Then {pn} converges to some point of X

o InR¥, every Cauchy sequence converges

Theorem 3.14: Monotone Convergence Theorem

o If {sn} is monotonic, then {Sn} converges if and only if it is bounded

Theorem 3.17: Properties of Upper Limits
o Let {sn} be a sequence of real numbers, then
e s"E€EE
e Ifx >s*,thenaN e Ns.t.s, <xforn>N

e Moreover s* is the only number with these properties

Theorem 3.20: Some Special Sequences

1
If p > 0,then lim — = 0

n-oon

Ifp>0,then lim }/p =1
n—oco

lim Yn=1

n—-oo
a

Ifp>0,a€Rthen lim —5 =0
n- (1 4 p)

If |x] < 1,then lim x™ =

n—oo

Theorem 3.22: Cauchy Criterion for Series
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m

[o0]
o Zan converges < Ve > 0,3N € Ns. t. Zak <gVmz=n=N
n=1

k=n

Theorem 3.23: Series and Limit of Sequence

n—-oo

(00}
o If Z a, converges,then lim a,, = 0
n=1

Theorem 3.24: Convergence of Monotone Series

e A series of nonnegative real numbers converges if and only if

e its partial sum form a bounded sequence

Theorem 3.25: Comparison Test
o If |an| < ¢, forn = Ny € Nand Z ¢, converges, then Z a, converges

n=1 n=1

[oe]

e Ifa,>d, =0forn>N, € Nand Z d, diverges,then Z a, diverges

n=1 n=1

Theorem 3.26: Convergence of Geometric Series

[o0]

1

o IfO<x< 1,thenzx" =
1—x
n=0

e Ifx > 1, the series diverges

Theorem 3.27: Cauchy Condensation Test

e Supposea; = a, = -+ = 0, then

[00] ©o
o a, converges < Z Zkazk = a, + 2a, + 4a, + --- converges
n=1 k=0

Theorem 3.28: Convergence of p —Series

o 1
. Z —p converges ifp > 1 and divergesifp < 1

n=1

Theorem 3.33: Root Test

[oe]

. . n
Given Z an,puta =limsup |[|a,|,then

Ifa<1, Z a, converges

n=1

Ifa>1, Z a, diverges

n=1

If @ = 1, this test gives no information
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Theorem 3.34: Ratio Test

oo
a
. Z a, converges if lim sup 2l cq

n—-oo
1

n

n
[e0)
. o |On+1 '
. a, divergesif [——| = 1,Vn = n, for some fixed ny € N
n

=1 n
Theorem 3.39: Convergence of Power Series

o]

Given the power sires Z cpz™

n=1

n
Put a :== lim sup |Cn|

n—oo

1
Let R ::E (fa = 40,R =0; Ifa = 0,R = +0)

Then Z cpz" converges if [z| < R and diverges if |z| > R

n=1

Theorem 3.43: Alternating Series Test

e Suppose we have a real sequence {cn} s.t.
o Jaul = lea] = Jes| =
O Cym-1=20,60m £0,VYMmEN
o limc,=0

n—-oo

o)

e Then Z ¢, converges

n=1
Theorem 3.45: Property of Absolute Convergence

¢ If Xa, converges absolutely, then Za,, converges

Theorem 3.54: Riemann Series Theorem

e LetXa, be a series of real number which converges nonabsolutely
o Let—o<a<pf <+
¢ Then there exists a rearrangement XZa,, s.t.

e liminfs, = a,limsups, =f

n-o n—oo

Theorem 3.55: Rearrangement and Absolute Convergence

e IfXa, is aseries of complex numbers which converges absolutely

¢ Then every rearrangement of £a,, converges to the same sum

Theorem 4.4: Algebraic Limit Theorem of Functions
e Let X be a metric space,and E € X

e Suppose p be a limit point of E
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e Letf, g be complex functions on E where
o limf(x) =Aand limg(x) =B
x=p x-p
e Then
o lim(f+g)(x)=A+B
xX-p

o lim(f—g)x)=A-B

X-p
o lim(fg)(x) = AB
X-p
- (f A
o lim|=)(x) =—= whereB # 0
x-p\ g B
Theorem 4.6: Continuity and Limits
¢ In the context of Definition 4.5, if p is also a limit point of E, then

e fis continious at p if and only if lim f(x) = f(p)
X-p

Theorem 4.7: Composition of Continuous Function
e Suppose X,Y,Z are metric spaces,E c X, f:E - Y,g:f(E) » Z,and
e h:E — Z defined by h(x) = g(f(x)), Vx €EE
e If f is continuous atp € E, and g is continuous at f(p)

e Then his continuous at p

Theorem 4.8: Characterization of Continuity
e Given metric spaces X,Y
e f:X — Y is continuous if and only if
e f~Y(V)isopenin X for every opensetV c Y
Theorem 4.14: Continuous Functions Preserve Compactness

e Statement
o LetX,Y be metric spaces, X compact

o If f: X - Y is continuous, then f(X) is also compact

Theorem 4.15: Applying Theorem 4.14 to R¥*
¢ Let X be a compact metric space
o If f: X - R¥is continuous, then f(X) is closed and bounded
e Thus, f is bounded

Theorem 4.16: Extreme Value Theorem

e Let f be a continuous real function on a compact metric space X

e LetM :=sup f(p) ,and m = inf f(p)
peEX PEX

e Thendp,q€Xst.f(p)=Mandf(q)=m
 Equivalently, 3p,q € X s.t. f(q) < f(x) < f(p), Vx € X
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Theorem 4.17: Inverse of Continuous Bijection is Continuous
e Let X,Y be metric spaces, X compact
e Suppose f: X — Y is continuous and bijictive
 Define f~1:Y - X by f71(f(x)) = x,Vx € X
e Then f~1is also continuous and bijective
Theorem 4.19: Uniform Continuity and Compactness
e Let X,Y be metric spaces, X compact

e [If f: X — Y is continuous, then f is also uniformly continuous

Theorem 4.20: Continuous Mapping from Noncompact Set

e Let E be noncompact setin R

e Then there exists a continuous function f on E s.t.
o fisnotbounded
o f is bounded but has no maximum

o E isbounded, but f is not uniformly continuous

Theorem 4.22: Continuous Mapping of Connected Set
¢ LetX,Y be metric spaces
e Letf:X — Y be a continuous mapping
e IfE c X is connected then f(E) c Y is also connected
Theorem 4.23: Intermediate Value Theorem
e Let f: R — Rbe continuous on [a, b]
e If f(a) < f(b) and if ¢ statifies f(a) < ¢ < f(b)
e Then3x € (a,b)st. f(x) =c
Theorem 5.2: Differentiability Implies Continuity
¢ Let f be defined on [a, b]

e If f is differentiable at x € [a, b] then f is continuous at x

Theorem 5.5: Chain Rule
e Given
o fiscontinuous on [a, b], and f'(x) exists at x € [a, b]
o gisdefinedonl > im(f), and g is differentiable at f (x)
o Ifh(t) = g(f(t)) (a <t < b),then
o hisdifferentiable at x, and h'(x) = g’(f(x)) - f'(x)

Theorem 5.8: Local Extrema and Derivative
¢ Let f be defined on [a, b]

e If f has alocal maximum (or minimum) at x € (a, b)
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e Then f'(x) = 0 if it exists
Theorem 5.9: Extended Mean Value Theorem
e (Given
o f and g are continuous real-valued functions on [a, b]

o f,g are differentiable on (a, b)

¢ Then there is a point x € (a, b) at which
o [fb) = f(@]g'(x) = [gb) — g(@]f'(x)

Theorem 5.10: Mean Value Theorem

e Letf:[a,b] > R

e If f is continuous on [a, b] and differentiable on (a, b)

e Then3dx € (a,b)s.t. f(b) —f(a) =(b—a)f'(x)
Theorem 5.11: Derivative and Monotonicity

¢ Suppose f is differentiable on (a, b)

e Iff'(x) = 0,Vx € (a,b), then f is monotonically increasing
e If f'(x) =0,Vx € (a,b), then f is constant

e If f'(x) <0,Vx € (a,b), then f is monotonically decreasing

Theorem 5.15: Taylor's Theorem
e Suppose
o fisareal-valued function on [a, b]
o Fix a positive integer n
o f™=1 s continuous on (a, b)

o f™M(t) exists Vt € (a, b)

Leta, B € [a, b], wherea + 8

n-1
: f® (@)
e Define P(t) = —— L (t—a)k
2.

Then 3x between a and f s.t.

f(B) =P(B) + ARG (B-a)

n!

Theorem 6.4: Properties of Refinement
e [fP*isarefinement of P, then
e L(P,f,a) <L(P"f,a)
e U(P*,f,a)<U(Pf,a)

Theorem 6.5: Properties of Common Refinement
b b
. f fdx Sf fdx
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Theorem 6.6

e f €R(a)on[a,b]ifand only if

e Ve > 0, there exists a partition P s.t. U(P,f, a) — L(P, f, a) <ég¢
Theorem 6.8

e If f is continuous on [a, b], then f € R(a) on [a, b]
Theorem 6.9

e If f is monotonic on [a, b], and « is continuous on [a, b]

e Then f € R(a) on [a, b]
Theorem 6.10

e If f isbounded on [a, b] with finitely many points of discontiunity
¢ And a is continuous on these points, then f € R(@)

Theorem 6.20: Fundamental Theorem of Calculus (Part I)
e Letf € Ron|a,b]

X
e Define F(x) = [ f(t)dt for x € [a, b], then

a

o F is continuous on [a, b]
e Furthermore, if f is continuous at x, € [a, b], then

o F isdifferentiable at x(, and
o F'(xo) = f(xo)
Theorem 6.21: Fundamental Theorem of Calculus (Part I1)
e Letf € Ron]a,b]

 [fthere exists a differentiable function F on [a, b] s.t. F' = f

b
e Then f f(x)dx = F(b) — F(a)

Paqge 11



Number Systems, Irrationality of V2

Wednesday, January 24, 2018 12:01 PM

Course Overview
» The real number system
» Metric spaces and basic topology

» Sequences and series

Continuity

« Topics from differential and integral calculus

Grading
Homework assignments 20%
Quiz (Feb. 9) 5%
Midterm 1 (Mar. 9) 20%
Midterm 2 (Apr. 13) 20%

Final (May 10 @ 7:45-9:45 AM) 35%

A >90%
B >80%
C >70%
D >60%

Tutoring

« Tom Stone @VV B205

+ Monday 2:30 - 4:30 PM

o Tuesday 2:00 - 4:00 PM
Number Systems

o Natural Numbers: N = {1,2,3, ...}

 Integers:Z = {0,+1,4+2,43,...}

« Rational Numbers: Q = {%

ab€Zb+ 0}
« Real numbers R: fill the "holes" in the rational numbers

Example 1.1: Irrationality of V2

« There is no rational number p such that p? = 2
» Proof by contradiction

 Assume there is a rational number p such that p? = 2

m
« Thenp = —,wherem,n € Z,n # 0,and m,n have no common factor
n
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m\2 m?

(——) =2$—2—=2$m2=2n2

n n

Som is even

m =2k (k € Z) = (2k)? = 2n? = 4k? = 2n? = 2k? = n?
So n is also even

m, n are both division by 2

This contradicts the fact that m, n have no common factor

So no such p exists
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Sets, Gaps in Q, Field

Friday, January 26, 2018 12:03 PM

Definition 1.3: Sets

Contains
o IfAisasetand x is an element of 4, then we write x € 4
o Otherwise, we write x € A
Set
o The empty set or null set is a set with no elements, and is denoted as @
o Ifasethasatleast one element, it is called nonempty
Subset
o If A and B are sets and every element of A4 is an element of B
o Then A is a subset of B
o Rubin write thisA € B,orB 2 A
o Fact:A c Aforallsets A
Proper subset
o If B contain something not in 4, then 4 is a proper subset of B
Equal
o fAcBandB c Athen4A =B
o Otherwise A # B

Example 1.1: Gaps in Rational Number System

We have proved that /2 is not rational

i.e. there is no rational number p such that p? = 2

LetA = {p € Q|p2 < 2},B = {p € lez > 2}

Prove: A has no largest element, and B has no smallest element

o Letp€eQ,andp >0

Let p>—2 2p+2
(@] — —_ —
caT=r p+2 p+2
2
2p + 2 2(p%2 -2
o Thenq2—2:<_p___) _2:_(P 2)
o IfpeA
* thenp?—-2<0
2(p2 -2
n ﬁqZ_Z__Q__Z_)<O
(r+2)
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= 3g€A

"=>q>p
= j.e.Ahasno largest element
o IfpeB
* thenp?—-2>0
" = g2 2_2@2___2_)>0
(r+2)

» 5q2>2

= 3qg€B

" =2q<p

= j.e.B has no smallest element

Definition 1.12: Field

e Afieldis a set [F with two binary operations called addition and multiplication
 that satisfy that following field axioms
o Axioms for addition (+)

* (Al)IfxeFandy € F,thenx+y€F

(A2) Addition is communicate: x + y =y + x,Vx,y € F

(A3) Addition is associative: (x + y) +z=x+ (y + Z), vx,y,z€F

* (A4) Thereexists0 € Fst.x+0=x,Vx €F

* (A5) Vx € F, there exists an additive inverse —x € Fs.t. x + (—=x) = 0
o Axioms for multiplication (X or-)

» (M) IfxeFandy € F,thenxy € F

(M2) Addition is communicate: xy = yx,Vx,y € F

(M3) Addition is associative: (xy)z = x(yz),Vx,y,z € F
= (M4) F containsanelementl1 # 0st.1-x =x,Vx €F
= (M5)Ifx € Fand x # 0, then there existsi €Fstx- i =1
o (D) The distributive law: x(y + z) = xy + xz,Vx,y,z € F
e Example

o The real numbers are an example of field
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Field, Order, Ordered Set

Monday, January 29, 2018 12:00 PM

Proposition 1.14: Properties of Fields (Addition)

e GivenafieldF, forx,y,z€ F

(1) Ifx+y=x+ztheny=z

" Xxt+ty=x+z

(x + y) +(—x)=((x+2)+(—x) by (A5)

" x+y+(—x)=x+2z+(—x) by (A3)
" x4+ (—x)+y=x+(—x)+2z by (A2)
= 0+y=0+z by (A6)
" y=7z by (A4)

(2) fx+y=x,theny=20

" x+y=x=x+0

=>y=0

(3) Ifx+y=0,theny = —x
" x+y=0=x+(—x)

>y=—x

4 —(=x)=x

Proposition

(—x) + (—(—x)) =0

x+ (—x) + (—(—x)) =x+0
0+ (—(—x)) =x+0
—(—x)=x

1.15: Properties of Fields (Multiplication)

e GivenafieldF, forx,y,z € F

(1) Ifx+#0andxy = xz,theny =z

(2) Ifx#0andxy =x,theny =1

(3) Ifx+0andxy =1,theny =

Rlr

(4) Ifx+0, then — = x

1/x

¢ Proof similar to Proposition 1.14

Proposition 1.16: Properties of Fields

e GivenafieldF, forx,y € F
(1) 0x=0
* 0+0=0

(0+ 0)x = 0x
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= Ox + 0x = 0Ox
= Ox+ 0x + (—(Ox)) =0x + (—(Ox))
= Ox=0
(2) Ifx#0andy # 0,thenxy # 0
= Supposex # 0,y # 0,butxy =0

1,
= x # 0, so - exists

X
¢ () =0
(L)t
X X
" 1.y=0
= y=0

= Thisis a contradiction, so xy # 0
3) (0)y=—(xy) =x(-y)
» (—)y+xy=((-x)+x)y=0-y=0
» (—x)y+xy+(—xy) =0+ (—xy)
* (-0y = -2y

= And the rest is similar
4) 0)(~y)=xy
= Use (3), (—0)(—y) = = (x(-y)) = —(-xy) = xy
Definition 1.5: Order

e [Intuition

o The real number line

|
[ [ [ [ [ [ [ | [ [ |
504 3 2 1 0 1 2 3 4 5
e Definition

o LetS beaset.
o Anorder on S is a relation, denoted by <
o with the following two properties:
= Ifx,y €S, then only one of the statements x < y,x = y,y < x is true
» Ifx,y,z€S,ifx <yandy < z, then x < z (Transitivity)
¢ Other notations
o x < ymeanseitherx <yorx =y

o0 x =y means eitherx >yorx =y

Definition 1.6: Ordered Set

e Definition
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o An ordered set is a set for which an order is defined.
e Example
o Qisan ordered set under the definition that

o forr,s € Qr <sifandonlyifs —r is positive

Paoe 18



Infimum and Supremum, Ordered Field

Wednesday, January 31, 2018 12:00 PM

Definition 1.7: Upper Bound and Lower Bound

Suppose S is an ordered setand E € S

If there exists f € S suchthatx < §,Vx € E

We say that x is bounded above and call § an upper bound for E
If there exists § € Ssuchthatx > 8,Vx € E

We say that x is bonded below by 3, and £ is a lower bound for E

Definition 1.8: Least Upper Bound and Greatest Lower Bound

Definition

o Suppose S is an ordered setand E c S is bounded above.

o

Suppose there exists a € S s.t.
» @ isanupper bond of E
» Ify < a, theny is not an upper bound of E

Then we call a the least upper bound (or lub or sup or supremium) of E

O

o

Suppose there exists a € S s.t.
* ¢ isanlower bond of E
= Ify > a, then y is not an lower bound of E

o Then we call a the greastst lower bound (or glb or inf or infimum) of E

Examples 1.9: Least Upper Bound and Greatest Lower Bound

e Recall

o A={q€Q|q* <2}hasnosupinQ
o B={q€Q|q2 >2}hasnoinfin(@

e [f ¢ = supE exists, @ may or may not be in E

o E;={reqQ|r<o}
» infE; doesn't exist
= supE;, =0¢E;

o E,={reQlr=<0}
» infFE, doesn't exist

= supE, =0€E,

F={llpent=ls 111
o = 1= — —_ = e
{n‘n } 2’38

infE=0¢E
supE=1€E
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Definition 1.10: Least-Upper-Bound property
e We say that a ordered set S has least-upper-bound property provided that
e ifE € Sst.E+# @andE is bounded above, then sup E existsand supE € S
Theorem 1.11: Greatest-Lower-Bound Property

e Statement

o Suppose S is an ordered set with the least-upper-bound property

o

Suppose B C S, B + @ and B is bounded below

Let L be the set of lower bounds of B

O

o0 Then a = sup L existsin S and a = inf B
e Proof

o L#0
* B is bounded below, so L is not empty

o L isbounded above
» Givenb € Band! € L, we have |l < b by definition of L
= Therefore, L is bounded above

o supl existsin S
= L # @, Lis bounded above
= And S has least upper bound property
= Sosup L exists
= Leta=supL€S

o aisalowerbound for B (i.e.a € L)
» Ify < a, theny is not an upper bound for L,soy & B
= Soa<xforallx €B
= Thus, a is a lower bound for B
= jea€L

o a=infB
= Iff > aisanother lower bound for B
= Then f € L since « is an upper bound for L
" So,a €EL,butp g¢Liff>a
= Therefore a is the least upper bound of B
" jie.a =infB

o Thereforea =supL =infB €S
Definition 1.17: Ordered Field

e Definition
o An ordered field is a field IF which is also an ordered set, such that

" x+y<x+zifx,y,z€Fandy <z
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» xy>0ifx,yeF,x>0andy >0
o Ifx > 0, we call x positive
o Ifx <0, we call x negative
e Examples
o NZQR
e Note

o Risan ordered field with least-upper-bound property
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Ordered Field, Archimedean Property, Q is dense in R

Friday, February 2, 2018 12:05 PM

Proposition 1.18: Properties of Ordered Field

e LetF be an ordered field, for x,y,z € F
(1) Ifx > 0then —x < 0, and vice versa
= x>0
" x4+ (—x) >0+ (—x)
= 0> —xm
(2) Ifx>0andy < zthenxy < xz
= x>0,z—y>0
» x(z—y)>0
= xz—xy>0
" xy <xzm
(3) Ifx<0andy < zthenxy > xz
= x<0
= By(1),—x>0
* By (2), (—x)y < (—x)z
" 0<(—x)(z—y)
. By(l),x(z—y)<0
" xz<xym
(4) Ifx # 0thenx? > 0.In particular 1 > 0
» Ifx>0,by(2),x2>0-x=0
* Ifx<0,by(3),x2>0-x=0
» 1=12=1x1>0
* So1>0m

1 1
(5) If0<x<y,then0<;<;

1 1
Ify>0,then—-y=1>0=0-— by(4)
y y
1
" So,; must have been positive by (2)

1
= Similarly, o >0

1\ /1
= Therefore <—> <—> >0
x)\y
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1\ /1
= Multiply both sides of x < y by (;) (;)
1 1
= Weget —<-—
y X
1 1
* Therefore0 <—<-m
y X

Theorem 1.19: Least-Upper-Bound Property of R
¢ There exists an ordered filed with the least-upper-bond property called R
¢ Moreover R has QQ as a subfield

e Proof: See appendix

Theorem 1.20: The Archimedean property of R
e Statement
o Givenx,y € R,andx >0
o There is a positive integer n such thatnx > y
e Proof
o Letd = {nx|n is a positive integer}
o Assume the Archimedean property is false
o Then A has an upper bound
o i.e.sup A exists
o Leta=supd
o x>0,soa—x<a
o And a — x is not an upper bound for A
o By definition of A = {nx|n is a positive integer}
o a — x < mx for some positive integer m
o So,a<mx+x=(m+1x€A
o This contradicts ¢ = sup 4
o Therefore the Archimedean property is true
e Corollary
o Givenx >0
o Lety =1,then

o An€Z,st.nx >1

1
o Therefore given x > 0,3n € Z, s.t. - <x

Theorem 1.20: Q isdense in R

e Statement
o Ifx,y € R,andx < y,thenthereexistsap € Qstx<p <y

o We can always find a rational number between two real numbers
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Proof

o Letx,y€eR,andx <y

o Soy—x>0

o By the Archimedean property of R

There exists a positive integer n s.t.
n(y - x) >1
>ny—nx>1

>ny>nx+1

o By the Archimedean property of R again

There are positive integers m,, m, s.t.
my > nx,mp > —nx

Le.—m, <nx <my

So there is an integer m s.t.

—_m, <m<my

And more importantly m — 1 <nx <m

o Combining two parts together, we have

nx<m<1l+nx<ny

In particular,nx < m < ny

1
Since n > 0, we can multiply by - and get

1 1 1
- (nx) < - (m) < - (ny)

m
Therefore x < g < y,where g = o EQ

Paoe 24



n-th Root of Real Numbers

Monday, February 5, 2018 12:10 PM

Theorem 1.21: n-th Root of Real Numbers

e Notation
o For a positive integer n

[ | xn =X X XX
N — e’
n times

o For anegative integern

Q-

—n times

e Statement
o For everyreal x > 0, and positive integer n

o There is one and only one positive real number y s.t. y" = x

1
o In this case, we write y = xn

e [ntuition
o Trythisforn=2andx =2,s0y =2
e Proof (Uniqueness)
o Ifthere were y; and y, s.t.
o yi =xy7 =xbuty; #y,
o Without loss of generality, assume y; < y,
o Thenyf' <y}, sothey can't both equal x
o So, there is at most one such y
e Lemma
o Ifnisa positive integer, then
» ph—at=(b-a)(b" +ab" 2+ +a" b +a"?)
o Moreover,if b > a > 0, then
= bt —a" < (b—a) ("t + b 4+ b+ H™T)

n terms

= bt —a" < (b—a)nb™ !
* Proof (Existence)
o LetE:={teR|t>0andt" < x}

o E isnotempty
X
= Lett:=——-,then0<t<landt<x
x+1

= So,0<t"<t<x
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Thus,t € E

Therefore E is not empty

o E isbounded above

LetteRs.t. t>1+x

Thereforet™ >t >14+x > x

Sot ¢ E and E is bounded above by 1 + x
By least upper bound property, sup E exists
Lety :==supE

o We now show that y™ <« x and y™ # x

o Assumey™ < x

Choose h € Rs.t.

x—y"
O0<h<landh<———7
n(y +1)

Then hn(y + 1)n_1 <y"

Use the lemma b™ — a™ < (b — a)nb™ !
Seta:==y,b=y+h

(y+h)" —y"<(y+h-y)n(y+ h)n_1
(y + h)n —y" < hn(y + 1)71_1

(y+h)" —ym <ym

(y+h)" <x
Sincey+h>handy+h€E

y is not an upper bound of E

This contradicts y = sup E

Thus, y™ « x

o Assumey™ > x

n

y
Letk := ;177:1- >0
yrt-x oy x y

k= nyn—l - nyn—l - nyn—l

Thus, 0 <k <y
Lett € Rs.t. t =y — k, then

yr-tt <yt —(y - k)"

Use the lemma b™ — a" < (b — a)nb™ !
Seta:=y,b =y —k,then
y"—t”Sy”—(y—k)n<kny"‘1=y”—x
Therefore, t™ > x

By definition of E = {t € R|t > 0 and t" < x}
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* t & F and t is greater than everything in E

= Alsot =y —k,soy — kisanupper bound for E
= Buty — k <y, which contradicts y = sup E

* Thus,y™ # x

o Therefore y™ = x

Corollary: Ifa,b € R*, and n € Z*, then a% . b% = (ab)%
o Leta = a%,ﬁ = brli, then
o a"B™ =ab

(aﬁ)n =ab

Soap = (ab)%

o

o
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Complex Numbers, Euclidean Spaces

Wednesday, February 7, 2018 12:12 PM

Complex Numbers
e Definition
o Ifz €C thenz = a+ biwherea, b € Randi? = —1
e Addition, multiplication, subtraction, and division
o Ifa+ bi,c +di € C, then
o (a+bi))+(c+di)=(@a+c)+ (b+d)i
o (a+bi))—(c+di)=(a—c)+ (b—d)i
o (a+bi)-(c+di) = (ac—bd) + (ad + bc)i

a+bi  (a+bi) c—di _(a+bi)(c—di)
c+di \c+di/\c—di) c? +dz

e Real part and imaginary part
o Forz=a+ bi
o Re(z) = aisthereal partofz
o Im(z) = b is the imaginary part of z
e Complex conjugate
0 Z = a — bi is the complex conjugate of z
o zz = (a+ bi)(a— bi) = a? + b?
e Absolute value
o |z| = vzZ = Va? + b? is the absolute value of z
o Note
= For areal number x
" xl=Vx2+02 =32 20

. |x|={x ifx=>0
—x ifx <0

e Complex division
o Ifz=a+bi,w=c+di€C,then
z zw (a+bi)(c—di) ac+bd bc—ad.

W_;v%_(c+di)(c—di)_c2+d2+cz+dzl

Theorem 1.31: Properties of Complex Numbers

e Ifzand w are complex numbers, then
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o z—7z=2ilm(z)

e zzisreal and positive (except when z = 0)

Theorem 1.33: Properties of Complex Numbers

¢ [f zand w are complex numbers, then

(1) |z| > O unless z = 0 in which case |z] = 0

(2) lz| =

|z]

(3) lzw| = |z[|w|

Letz=a+ bi,w=c+di
Then zw = (ac — bd) + (ad + bc)i

|zw| = \/(ac — bd)? + (ad + bc)?

= \/azc2 + b2d? + a2d? + b?c?
= \/(az + b2)(c? + d?)
= Va2 +b2\/c? + d2

= |z||w|

(4) IRe(2)| < |z|
(5 |z +w| < |z| + |w| (Triangle Inequality)

lz+wl?=(z+w)(Z+w)
=Z+w)(Z+w)
=2zZ+zZw + Zw + ww

=|z|2 + |w|* + zw + Zw

= |z|? + |w|? + 2Re(zw)

< |z|? + |w|? + 2|zw| by (4)
= |z|* + [w|* + 2|z[lw| Dby (3)
= |zI* + [w|* + 2|zllw] by (2)
= (lz] + w])?

So |z +w|? < (|z] + |w])?

Thus, |z + w| < |z| + [wW|

Iv+wll = [IvI[+]Iwli

Definition 1.36: Euclidean Spaces
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e Inner product
o Ifx,y € R™ with
= %= (21, %p ., Xp)

* ¥ =1Y2 1 Vn)

o Then the inner product of X and y is

n
- -
" X')’=in3’i
i=1

e Norm
o If¥ € R", we define the norm of ¥ to be |¥| = V¥ - ¥
e Euclidean spaces

o The vector space R™ with inner product and norm is called Euclidean n-space

Theorem 1.37: Properties of Euclidean Spaces
e SupposeX,y,Z € R",a € R, then
e |%]=0

. %= 0 ifand only if ¥ = 0

|| = lal - ||

o |%-9| <|%|-|¥| (Schwarz's Inequality)

|% + y| < |%| + |¥| (Triangle Inequality)

| — y| < |¥ — Z| + |y — Z| (Triangle Inequality)
Theorem 1.35: Schwarz Inequality

e Statement

e Proof
o See Theorem 1.35 in Rudin for a proof of Schwarz Inequality for C
o For intuition, try proving (x1y2 + xzyz)z < (xf + xzz)(ylz + yzz)

¢ Triangle Inequality
o InaEuclidean Space, |% - y| > |¥| - |y
o [F+3[" = |7+ 227+ 5" < |7+ 20=l5] + |51 = (%] + |5])°
o Thus |x + y| < |%| + |y

-

o Let¥=%—y,y:=y—Zwehave|x—2Z| <|¥—y|+ |y -7
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Function, Cardinality, Equivalence Relation

Monday, February 12, 2018 12:08 PM

Definition 2.1 & 2.2: Function

e Given two sets A and B
¢ A function (or mapping) is a rule that assigns elements in A to elements in B

e Notationally, if f is a function from A to B, we write f: A - B

Domain

Co-domain
* SetA is called the domain of f

e SetB is called the codomain of f

o ForE c A, f(E) ={b € B|b = f(e) for some e € E} is the image of E under f
* f(A) is called the range of f

e If f(A) = B, then we say that f is onto or surjective

o Iff(a;) = f(a,) implies a; = a,, then f is one-to-one or injective

e A function that is both one-to-one and onto is said to be bijective

e ForE c B, f~Y(E) = {a € A|f(a) € E}is the inverse image of E under f
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Domain

* Notationally,ify € B, f"*(y) = f*({»})
o f~lisatmosta single element set for all y € B if and only if f is injective

o Inthis case, f ! can be thought of as a function maps to the single element

e Example
o f:R - Rdefined by f(x) = x?
o fT(Y = (1,-1)
o fFl{xeRlx<0) =0
o f~1({0}) = {0}, we can also write f~1(0) = 0
Definition 2.3: Cardinality
¢ [fthere exists a one-to-one, onto mapping from set A to set B
¢ We say that 4 and B can be put in one-to-one correspondence

¢ And that A and B have the same cardinality (or cardinal number)

¢ In this case, we write A~B

Definition 2.3: Equivalence Relation

¢ One-to-one correspondence is an example of an equivalence relation
¢ An equivalence relation satisfies 3 properties

o Reflexive: A~A

o Symmetric: If A~B, then B~A

o Transitivity: If A~B, B~C, then A~C
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Cardinality and Countability, Sequence

Wednesday, February 14, 2018 12:06 PM

Definition 2.4: Cardinality and Countability

Let], ={1,2,3,..,n}and N = {1,2,3, ...}

For any set A4, we say

A is finite if A~J,, for some n (@ is also considered as finite)
A is infinite if A » J, for alln

A is countable if A~N

A is uncountable if A is neither finite nor countable

A is at most coutable if A4 is finite or countable

Examples 2.5: Countability

N is countable
o N={1,23,..}
Z is countable

o Z= {Olll _1;2' _2)3)_3I "'}

o Define f:N - Z by
n .
> nis even
O f(n) = 1 —n
—— nisodd
2
o f isinjective
» Iff(n) = f(m)
th n_m 1—n _ 1-m
M= T T
= Eitherway,n=m
o f issurjective

= Givenk € Z,
» Ifk>0,k=f(2k)
» fk<0,k=f(-2k+1)
o Thus f is bijective
Q is countable

o There are "less" rational numbers g = % (m,n € Z,n # 0) than

o there are ordered pairs of integers (m, n)
1_b but (1,2) # (15,30)
2730 N ’

= We can also ignore negatives and zeros
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* because integers are in 1-1 correspondence with N
o Idea: Write ordered pairs of integers in a 2 dimension array

o Putting this all together, we have

H

) i )

wl N

1 1 3
o Q: 0’i1P+21i ‘Pig"igﬁi4ﬁ E’i

1/1 1/2-1/3 1/4
%

B
—_—

\

1/5 1/6->1/7 1/8-> -

v /7
2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8

v /!
Sil 3/2 3/3 3/4 3/5 3/6 3/7 3/8

NN N
NN N
NN
NN

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8

N
N
pN

v
5/1 5/2 5/3 5/4 5/5 5/6 5/7 5/8

N
pN

/!
6/1 6/2 6/3 6/4 6/5 6/6 6/7 6/8

N

4

7/ 7/2 7/3 7/4 7/5 7/6 7/7 7/8
/

8/l 8/2 8/3 8/4 8/5 8/6 8/7 8/8

Definition 2.7: Sequence
¢ Definition
o A sequence is a function defined on N
o Notationally, this is often written {xn}
o Meaning f(x) = x,, foralln € N

e Example

-4
- 153
Theorem 2.8: Infinite Subset of Countable Set
e Statement
o Every infinite subset of a countable set is countable
¢ [ntuition
o Countable sets represent the "smallest” infinity
o No uncountable set can be a subset of a countable set.
¢ Proof
o LetECA

o Suppose A4 is countable and E is infinite
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o

o

Since A is countable, its element will be a sequgnce
(order given by the bijective function f: N — A)
Letn; be the smallestn € N such thatx, € E

Let n, be the next smallestn € N such thatx,,, € E

SoE = {xnk} = {xnl,xnz,xns, }

i.e. E is a sequence indexed by k € N

Now consider g: N — E given by g(k) = xy,

g is clearly one-to-one and onto by construction

Therefore E is countable

e Example

o

O

o

o

LtA'—l11 dE'—l111
e = ,5'5’." an = ,1’5’1_6’...

1 1
Then A = {—},and E = {—} wheren;, = k?fork €N
n ny

1
Leth—>Ebyf(k)=E5

We can show that f is a bijection

Thus, E is countable
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Set Operations, Countable and Uncountable

Friday, February 16, 2018 12:08 PM

Definition 2.9: Set-Theoretic Operations

o Settheoretic union

O UAleAlUAZ UA3U"'
n=1

o Settheoretic intersection

O ﬂAn=AlﬂA2 ﬂA3ﬂ'--

n=1

¢ Indexing set

o U E, ,where

a€EA

o Aisanindexing set

o E, is a specific set that depends on A
e Example

o LetA={x€eR|0<x <1}

o LetE, ={xeR|0<x<a}

o Then U E, = (0,1) and ﬂ E,=90

a€EA a€EA
Theorem 2.12: Union of Countable Sets

e Statement

o Let {En}nEN be a sequence of countable sets, then

o §= U E, isalso countable

n=1

e Proof

o Just like the proof that Q is countable

) En = {xnk} = {xnl; xnz'xn3) "'}

X111 X12 X13  X14
X321 Xz2 X3
O X31 X3z "

X41

o Go along the diagonal, we have

o

S = {x11' X21,%X12,X31,X22,X13 }

e Corollary
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o Suppose 4 is at most countable
o If B, is at most countable Va € A
o Then U B, is also at most countable
a€EA
Theorem 2.13: Cartesian Product of Countable Sets
e Statement
o Let A be a countable set
o Let B, be the set of all n-tuples (ay, a,, ... a, ) where
" q,€Afork=12,..,n
= g, may not be distinct
o Then B, is countable
e Proof
o We proof by induction on n
o Basecase:n =2
(ana) (ana) (avas) (anas) -
(az: a1) (az» az) (az' a3)

" (as,a1) (asaz)

(%: a;)

= Here, a; are all the elements of A with possible repetition

o Now assume forn = m wherem > 2
= The set of m-tuples (a4, a,, ... a,,) are countable

= Now we treat the (m + 1)-tuples as ordered pairs

" (a1,az - @msr) = (a1, 8, - Q). Qs )
» Byn = 2 case, the set of (m + 1)-tuples is still countable
Theorem 2.14: Cantor's Diagonalization Argument
e Statement
o Let A be the set of all sequqnecse whose digits are 0 and 1
o Then A is uncountable
* Proof: Cantor's Diagonalization Argument
o Suppose 4 is countable
o ThenA = {31,52,53, } where s, is a sequence of 0 and 1 forallk € N
"5 = {511;512: 513,514, 515 }
"S5 = {521'522'523;524: S25 }

"S53 = {331'532'533»334» S35 }
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* wheres;; € {0,1}fori,j EN

o Construct a new sequence s = {xl, X, X3, o } where
0 ifSii =1
x; = .
t 1 lfSii =0

o

Thens # s;,Vi EN
o SoS ¢ A, whichis a contradiction

o Thus, 4 must be uncountable

e Corollary

o Ris uncountable

51 =00000000000...
o =11111111111...
5 =01010101010...
s =10101010101...
s, =11010110101...
s =00110110110...
s7 =10001000100...
sy =00110011001...
s =11001100110...
51_()1“1].1011100101...
s11=11010100100 ..

------------
ooooooooooo

...........

s =10111010011...
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Metric Space, Interval, Cell, Ball, Convex

Monday, February 19, 2018 12:04 PM

Definition 2.15: Metric Space
e Definition
o Aset X of points is called a metric space if
o there exists a metric or distance function d(p, q): X X X = R such that
= Positivity
| d(p,q) >0ifp,q € Xandp # q
] d(p,p) =0forallp e X
= Symmetry
| d(p, q) = d(q,p) forallp,q € X
* Triangle Inequality
o d(p, q) < d(p,r) + d(r,q) forallp,q,r € X
e Example 1
o X=R¥
a(5.4) = |5 -l

If k = 1, this is just standard numerical absolute value

o

o

and d is the distance on the number line

o

e Example 2 (Taxicab metric)
o X =R?
od ((PLPZ); (Cll; CIZ)) = |P1 - CI1| + |P2 - CI2| where p;,03,91,q2 € R

P
L ]

P
o Isthis a true metric space?

o Positivity

= Clearlyd ((pl, p2), (41, qz)) > 0 since it is a sum of absolute values
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* Supposed ((p1.Pz). (a1, CIZ)) =0
o |P1_CI1|+|P2—QZ|:0
O |p1—q1|=_|P2_CI2|

|P1—Q1|=0 {P1=Q1
O = —
{|p2—q2|=0 b2 = q>

o ie (pnp2) = (01,92)
= Suppose (p1,p;) = (41,92)
0 d((pup2). (41,42)) = 1 — @] + 2 — @2 = 101 + 101 = 0
= Thusd ((p1,72), (90,42)) = 0 © (Pu.2) = (a0,%2)
o Symmetry
- d((p112). (00,02)) = |pr = | + |2 — @2

" =la—pf+ a2 —p = d ((‘llr‘lz)' (Pl'Pz))
o Triangular Inequality
" d ((I%Pz)' (7”1'7"2)) +d ((Tl””z)' (40 C12))
" =l —nl - al+ |-
" =(lpr—nl+ [ —@l) + (o2 =72 + [ — a2])
= > |p1 -1y +1r— q1| + |p2 -1+ 1y — q2| by Triangle Inequality of R
" = o -]+ [p2 - a2

=d ((PLPZ)' (41 QZ))

Definition 2.17: Interval, k-cell, Ball, Convex

e Interval
o Segment (a,b) is {x € Rla < x < b} (open interval)
o Interval [q, b] is {x € R|a < x < b} (closed interval)
o We can also have half-open intervals: (a, b] and [a, b)
e k-cell
o Ifa; <b;fori=1.2,..,k
o The setof points ¥ = (x1,%,, ..., ¥ ) in R¥
o thatsatisfya; < x; < b; (1 <i<k)iscalled a k-cell
e Ball
o If¥eRKandr >0

o The open ball with center ¥ with radius r is {y € R¥||% — y| < r}
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.

open interval open disk
o the closed ball with center X with radius r is {y € R¥||x — y| < r}

.

closed interval closed disk
e Convex

o Wecall aset E c R¥ convex if
o AMM+(1—-A)Yy€EEVXyEEON<A<1

o i.e. All points along a straight line from X to y and between X and y is in E

Non-convex set

Convex set

e Example: Balls are convex

o Given an open ball with center X and radius r

o Ify,Z€ B, then |y —%| <rand|Z—%| <7

o |22+ (1 -2y —%

o =2Z+(1-Dy-A+1-1%|

o =|1Z-2%+ (1 -Dy—(1—-DF|

o <[z —-2%| +|(1 = 1)y — (1 — x| by Triangle Inequality
o =AZ-%|+Q-D|y-%

o <Ar+(1-Mr=r

o Thus[AZ+ (1 -y —%|<r

o ie.AZ+(1 -2y E€EB
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Definitions in Metric Space

Wednesday, February 21, 2018 12:01 PM

Definitions 2.18: Definitions in Metric Space
¢ Let X be a metric space. All points/elements below are in X
¢ Neighborhood
o Definition
= Aneighborhood of p is a set N,.(p) consisting of
= all points q such that d(p, q) <rforsomer € R
= We call r the radius of N, (p)

o Example: R?

o Example: Taxicab metric

[
¢

e Limit point
o Definition
= A pointp is a limit point of the set E c X if
= every neighborhood of p contains a pointq € FE and p # q

o Example: R?
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o Example: (0,1) € R
* For (0,1) € R, the limit points is [0,1]
¢ [solated point
o Definition
= Ifp € E and p is not a limit point of E, then
* pisanisolated point of £
o Example:Zin R

= Every integers is an isolated pointin R

e Closed set

o Definition
= AsetE is closed if every limit point of E is in E

o Example: [0,1] € R
* In R, neighborhood of p € R are open intevals cenerted about p
= All of [0,1] is a limit point since
» Ifx €[0,1]

o The neighborhood about x is (x —r,x + 1)

o (x—r,x+7r)Nn[0,1]isnon-empty

If x = 0, then take g = min (x +§, 1)

O

0 Otherwise take g = max (x — g, 0)

O So every pointin [0,1] is a limit point
= Ifx ¢ [0,1]

o iex<Oorx>1
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[x| ifx<O0
[x—1] ifx>1

o ThenN,(x)n[0,1]=0

O Takerz{

o So nothing outside of [0,1] is a limit point of [0,1]
* So0[0,1] contains all its limit points
= Thus [0,1] is closed
e [nterior point
o Definition
= Apointp is an interior point of a set E if
= there exists a neighborhood N, (p) that is a subset of E
o Example: R?
= For the closed set S
= The point x is an interior point of §

= The point y is not an interior point of S (on the boundary of S)

e Open set
o Definition
= F isan open setif every point of E is an interior point
o Example: R?

» Uisanopenset,since Vx € U,3B.(x) c U
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; [/ -

"\ B.(x) ool ;

- -
- -
- - —

o Example: (0,1) € R
= Forx € (0,1)
= Taker = min(x,1 — x)
= Ny(x) < (0,1)
» Thus every pointin (0,1) is an interior point
Complement
o The complement of E (denoted as E€) is {p € X|p ¢ E}
Perfect
o E is perfectifE is closed and every point of E is limit point of E
Bounded
o E isbounded if there is a real number M and a pointp € E s.t.
o d(p,q)<Mforallp €E
Dense
o Eisdensein X if

o every point of X is a limit point of E or a point of E (or both)
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Neighborhood, Open and Closed, De Morgan's Law

Friday, February 23, 2018 12:06 PM

Theorem 2.19: Every Neighborhood is an Open Set
e Statement
o Every neighborhood is an open set
e Proof

o Let X be a metric space

o Choose a neighborhood N, (p) cX
o Letq € Nr(p)

o Chooseh € Rs.t.d(p,q)=r—h
o Consider the neighborhood Ny, (q)
o Lets € Nh(q), then d(q,s) <h

o d(p,s)sd(p,q)+d(q,s)<r—h+h=r
o Thus d(p,s) <r

o iLe.sE€E Nr(p)

o So Ny (q) C Nr(p)

o Therefore N, (p) is open

Theorem 2.20: Property of Limit Point

e Statement
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o Ifpisalimitpoint of E

o Then every neighborhood of p contains infinitely many points of £
¢ Proof

o Suppose the opposite

o Then there exists a set E with a limit point p s.t.

o The neighborhood of p contains only finitely many points of E

o Namely g4, 95, ..., qn

o Letr = min (d(p, 01),d(p. q2), . d(p, Qn))

o By definition, q; € Nr(p) fori<i<n

o This contradicts the fact that p is a limit point

o So, this neighborhood about p must contain infinitely many points

e Corollary

o A finite set has no limit points

Theorem 2.22: De Morgan's Law
e Statement

o Let {Ea} be a finite or infinite collection of sets, then

o UEa =ﬂ(Ea)C

¢ Proof (=)
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o Suppose x € UE“

a
o Thenx%UEa
a

o Sox &E,Va

o Thus, x € (Ea)c for all

o soxe(|(E)
a

ie. UE“ Cﬂ(Ea)C

* Proof (&)
o Suppose x € ﬂ(Ea)C
a

Thenx € (Ea)c forall «
Sox ¢ E, foralla

x & UE“
a
c
Thus, x € UE“

a

ie. ﬂ(Ea)C c U E,

a

o

o

O

O

o

Cc

o

Theorem 2.23: Complement of Open/Closed Set
e Statement
o AsetE isopen ifand only if E€ is closed
o Note: This does not say that open is not closed and closed is not open
¢ Proof (&)
o Suppose E€ is closed
o Choosex € E,sox ¢ E€
o So, x is not a limit point of E€
o i.e. There exists a neighborhood N,.(x) that contains no points of E¢
o So,N,(x)NE‘ =0
o Consequently, N,.(x) C E
o So, x is an interior point of £

o By definition, E is open
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e Proof (=)

o

@)

o

o

@)

o

Suppose E is open

Let x be a limit point of E€ (if exists)

So, every neighborhood of x contains a pointin E€
So, x is not an interior point of E

E isopen,so x € E€

Thus, E€ contains its limit points and is closed by definition

e Corollary

o AsetE isclosed if and only if E€ is open

Examples 2.21: Closed, Open, Perfect and Bounded

e LetX = R?
Subset Closed Open Perfect Bounded
{x e R?||%| < 1} X v X v
{x e R?||%| < 1} v X v v
A nonempty finite set N4 X X N4
Z v X X X
{1/n|n € N} X X X v
R? v v v X
(a,b) X ? X v
¢ Note: (a, b) is open as a subset of R, but not as a subtset of R?
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Open and Closed, Closure

Monday, February 26, 2018 12:06 PM

Theorem 2.24: Intersection and Union of Open/Closed Sets
(a) Forany collection {G, } of open sets, U G, is open

o Suppose G, is open for all a

o LetG=UGa
a

o Ifx € G,thenx € G, for some «
o Since G, is open, there is a neighborhood about x in G,
o And consequently, the neighborhood about x is also in ¢

o Thus G is open

(b) For any collection {F,} of closed sets, ﬂ E, is closed
a

o

Suppose F, is closed for all «

o

Then Fy is open by Theorem 2.23

o

So U F¢ is open by (a)
a
Cc

ﬂ F, | = U Ff ,by De Morgan's Law
a

a

o

[

Thus, ﬂFa is open

a

o

o

Therefore ﬂ F, is closed by Theorem 2.23
a

n
(c¢) For any finite collection, G4, G5, ..., G, of open sets, ﬂ G; is also open
i=1

o Suppose G4, Gy, ..., G, is open

n
o Letx € H = ﬂGi
i=1

o So,x€Gifor1<i<n
o By definition, since each G; is open
o x is contained in a neighborhood N, (x) < G;

o Letr= min(rl,rz, ...,rn)

Page 50



o N,(x)cGiforl<i<n

o So,N,.(x) EH

n
o Thus,H = ﬂ G; is open

i=1

n
(d) For any finite collection, F;, F, ..., F,, of closed sets, U F; is also closed
i=1

o Suppose F;, F,, ..., E, is closed
o Then Ff is open by Theorem 2.23

O

n
So ﬂ F{ is open by (c)

=1

o

n ¢ n
U F | = ﬂ Ff ,by De Morgan's Law
i=1 i=1

Cc
n

Thus, UFi is open
i=1

o

n
Therefore U F; is closed by Theorem 2.23

O
=1
e Note
N/ 11
o V(-33)-©
nn
n=1

11
o <_;1;1> is open Vn € N, while {0} is closed

Definition 2.26: Closure
e Let X be a metric space
e IfE c X and E’' denotes the set of limit points of E in X
e Then the closure of E is definedtobe E = E UE’

Theorem 2.27: Properties of Closure

e If X isametric space and E C X, then

e Eisclosed
o Letp € E€
o Then p is neither a point of E nor a limit point of E
o So there exists a neighborhood N about p that contains no points of E
o So,N c E€
o i.e.every point of E€ is an interior point

o Thus E€ is open
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o Therefore E is closed

e F=FE o Eisclosed

o IfE =

E,then E is closed

o IfE isclosed, E contains its limit points,so E' c E and E = E

e E CFforeveryclosedsetF c Xst.ECF

o Suppose F isclosedand E c F

o Fisclosed=>F' cF
o ECF=>E cF' cF
o ThusE=EUE' cF

e Intuition: E is the smallest closed set in X containing E

Theorem 2.28: Closure and Least Upper Bound Property of R

e Statement

o IfE # @,E c R, and E is bouned above, thensupE € E

o HencesupE € EifE is closed

¢ Proof

o Lety =supE

o IfyekE

Clearlyy € E

o IfyeE

Leth >0

Letx € (y— h,y)

Suppose Ax € E, then y — his an upper bound for E

But this contradicts the fact that y = sup E

So there mustbe somex € Ewithy—h<x <y

Thus, for any neighborhood about y, 3x € E in the neighborhood
So y is a limit point of E

ieeyeE cE
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Convergence and Divergence, Range, Boundedness

Wednesday, February 28, 2018 12:07 PM

Definition 3.1: Convergence and Divergence
¢ Definition
o Asequence {p,} in a metric space X converges to a pointp € X if
o Givenanye > 0,3N €Ns.t.d(p,p,) <&eVn=N

o If {pn} converges to p, we write

" Pn—P

= limp, =p
n—-oo

» limp, =p

o If{pn} does not converge, it is said to diverge
e Intuition
o ¢gissmall

o N isa"point of no return" beyond which sequence is within € of p

gy A
L ]
. 1
|
. 1
. L L+ : # . . . .
P Sl -__.___.I_.___f‘__‘_.__-"__."."__
L ] |
L] 1
|
T 11 | L 1T 11
012345678 91091123 n
L ]
N
L ]
Range

* Given a sequence {p,}

¢ The set of points p,, (n € N) is called the range of the sequence

¢ Range could be infinite, but it is always at most countable

¢ Since we can always construct a function f: N — {pn}, where f(n) = p,
Boundedness

¢ Asequence {pn} is said to be bounded if its range is bounded
Examples of Limit, Range and Boundedness

¢ Consider the following sequences of complex numbers
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{sn} Limit Range  Bounded

1 0 Infinite  Yes
Sp=—
n
Sp, = n? Divergent Infinite No
D" 1 Infinite  Yes
Sp=1+-——
n
Sy = 1" Divergent {+1,+i} Yes
s, =1 1 {1} Yes
1
e Proof: lim — =20
n-oon
o Lete>0

o

1
By Archimedean Property, we can choose N € Ns.t. N > Z
1 1
o Vvn=2Nn>->-—-<z¢
e n

1 1
i.e.d(—,O) = ‘—
n n

1
Therefore lim — =0
n—oo n

o

<gVvVn=N

O
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Important Properties of Convergent Sequences

Friday, March 2, 2018 12:06 PM

Theorem 3.2: Important Properties of Convergent Sequences
e Let {pn} be a sequence in a metric space X
* p, P € X © any neighborhood of p contains p,, for all but finitely many n
o Suppose {pn} converges to p
= Let B be a neighborhood of p with radius ¢
" p,2>p=>3INE Ns.t.d(pn,p) <gvVnz=N
= So,p, €EB,Yn=N
" p4,..,Pn—1 Mmay not be in B, but there are only finitely many of these
o Suppose every neighborhood of p contains all but finitely many p,,
= Lete > 0Dbegiven
= B:= {q € X|d(p, q) < s} is a neighborhood of p
= By assumption, all but finitely points in {pn} arein B
= ChooseN e Ns.t. N >1i,Vp;, € B
= Then d(pn, p) <gVn=N
* So, limp, =p
 Givenp € X andp’ € X.If{p,} converges to p and to p’, thenp = p’

o Lete > 0be given

= {pn} convergestop = IN € N s.t. d(pn, p) < ;,Vn > N;

» {pn}convergestop’ = IN’' € Ns.t.d(p,,p') < ;,Vn >N,
o LetN = maX(Nl,nz), then

& &
" d(p,p') <d(pnp) +d(pnp) <5+5=5Vn=N

o Since € > 0 is arbitrary, d(p,p’) =0
o Thereforep = p’

o If{p,} converges, then {p, } is bounded
o Since {p,} converges to some p

o Lete=1,then3N € Ns.t. d(pn, p) <1

o Letqg = max (l,d(pl,p),d(pz,p), ...,d(pN_l,p))
o Then d(p, pn) <q,VneN
o By definition, {pn] is bounded

 IfE c X,and p € E’, then there exists a sequence {p,}inEs.t.p, > p
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Since p is a limit point of E

Every neighborhood of p contains q # p,and q € E

1
Consequently,Vn € N,3p, € E s.t. d(pn, p) < -

Let € > 0 be given

1
By Archimedean property, 3N € N s.t.N <eg

1 1
SofornZN,;l-<£:>d(pn,p) <E<€

Thereforep,, - p
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Algebraic Limit Theorem

Monday, March 5, 2018 12:10 PM

Theorem 3.3: Algebraic Limit Theorem

e Suppose {sn}, {tn} are complex sequence,and lim s, = s, gl_r)lélo t, = t,then

n—-oo

e lims,+t,=s+1

n—>oo

o Givene >0

€
. limsn=s=>3N1€Ns.t.|sn—s|<Ef0rn2N1

n—-oo

&
. limtn=t2>EINZENs.t.|tn—t|<Eforn2N2

n—-oo

o LetN = max(Nl,NZ), thenforn > N
. |sn+tn—(s+t)| = |(sn—s)+(tn—t)| < |sn—s|+|tn—t| <eg

o Therefore lim s, +t, =s+t

n—oo

e limc+s,=c+s,VceC

n—>oo

o Givene >0

o limsn=s:EIN€Ns.t.|sn—s|<£forn2N

n—-oo
o So,|c+sn—(c+s)|=|sn—s|<s

o Therefore limc+s, =c+s

n—-oco

e limcs, =cs,VceC

n—oo

o Givene >0
o Ifc=0

" lesp,—cs|=0<e

o Ifc+0
) £
* lims,=s=>3INeNs.t|s,—s|<—forn>=N
n-0co |cl
€
. So|csn—cs|=|c||sn—s|<|c|m=£

o Therefore lim cs, = cs

n-oo
. rlll_)lg) Spty, = st
o Standard approach
" Sptp — St = Spty — Sty + sty — st = ty(sy, —s) +s(t, — )
o Rudin's approach
" oSpty, — st = (sn - s)(tn - t) + t(sn - s) + s(tn - t)

o Givene >0
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* 3N, ENst|s, —s| <eforn =N,

= AN, e Nst |6, —t| <+eforn =N,
o LetN = max(Nl,NZ),then

. |(sn—s)(tn—t)|<sforn2N

= :Am(sn—s)(tn—t)=0

o lim s,t,

n—co
= = lim[(sp = s)(ta — ) + t(sp —5) + s(tn — 1) + st]
= =11i_r)1(}o(sn —s)(tn—t) + tii_r}glo(sn —s) +sgi_r)£10(tn —t) + st

= =04+0+0+st

= =5t
o Therefore lim s,t, = st
n—-0o
11
lim— == (s, # 0,vn € N,and s # 0)
nows, S

S
o limsn=s=>E|N’eNs.t.|sn—s|<|2—|forn2N’

n—-oo
o By the Triangle Inequality, |s| — |s,| < |s, —s|, yn = N’

Is| s ,
o = |Sn| > |S|—|Sn—S| > |S|——2——7,VTLZN

1
o Givene >0,3N > N's.t.|s, — s| <§|s|2£forn >N

1 1
11 slsl’e lsl?e

Sn S

5—Sp

SIS
SpS |sn| - sl _Z_.|S|

1
o Therefore lim —=-—
n-ws, S
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Sequence Convergence in R", Compact Set

Wednesday, March 7, 2018 12:15 PM

Theorem 3.4: Convergence of Sequence in R"
e Statement (a)
o SupposeXx, = (al,nv Aoy wees ak'n) € R¥ wheren € N, then
o {x,}convergesto (ay, a5, .., a;) & lim a;,, = (1<j<k)

* Proof (a)

o Assumex, — X
= Given & > 0, there exists N € N s.t. |ﬁ’ — 5c’| <eforn=N
= Thus, |, — | < | — %[ forn = N,1<j <k
= Therefore T{l_)l’glo ajn=qjforl<j<k

o Assume lim q;, =qjforl1 <j<k

n—-oo

£
* Given ¢ > 0, there exists N € N s. t. |aj,n - aj| <—=forn=N

vk

* Therefore x, - X

e Statement (b)
o Suppose
. {ﬁ} and {ﬁ} are sequences in R¥, {ﬁn} is a sequence in R
" Xy 2 XYy 2V, P> B
o Then
+ lmE T =E4Y

- lim%, -y, =%y

n—>oo
* limB, x,=p%
n—oo
e Proof (b)
o This follows from (a) and Theorem 3.3 (Algebraic Limit Theorem)

Definition 2.31: Open Cover

e Anopen cover of a set E in a metric X is

¢ acollection of open sets {Ga} inXs.t.EcC U Gy
a

Definition 2.32: Compact Sets
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¢ Definition
o Aset K in a metric space X is compact if
o every open cover of K has a finite subcover

e Intuition for R¥: Closed and bounded

- L -

¢

- Vs j—-—,l R #
¥

2y . } F
’IJ_P-I._’- i LY [
-
1
i

-
%
|
B
v
i
1
LY

1

Y \oA---f T . i 2
~ ! & 1 ‘" 5
: \ ! R .-
- i 1
Open cover Finite subcover

e Example 1
o LetE=(01),X=R

o E isaopen cover of itself, but E is not compact
a
o LetG, = (E' 1) for a € (0,1),then E has {Gn} as an open cover

o We cannot take a finite collection of these G, and still have an open cover
o So it has no finite subcover
o Therefore E = (0,1) is not compact
e Example 2
o LetK =[0,1, X =R
Consider {G,} U {Go} U {G;}, where

o

a
" Gy = (E'l) fora € (0,1)
- GO = (—S, g)
" G;=(010—-¢1+¢)forsomee >0
Then {Ga} U {GO} U {G,} is an open cover of [0,1]

o

O

€
It has finite subcover {GO, Gy, GE} where G, = (E' 1)

o

Therefore K = [0,1] is compact
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Compact Subset, Cantor's Intersection Theorem

Monday, March 12, 2018 12:08 PM

Theorem 2.34: Compact Sets are Closed

e Statement

o

¢ Proof

o

o

o

Compact subsets of metric spaces are closed

Let K be a compact subset of a metric space X

We shall prove that the complement of K is open

Letp EK¢,q €K

LetV, = Nr(p), W, = Ns(q) wherer,s < %d(p, q)
Since K is compact, 3q4, 93, ... qn € K s.t.

KcW, UWg,Uu--uW, =W

LetV ="V, NV, NNV,

Then V is a neighborhood of p that does not intersect W
V c K¢ = pisan interior point of K¢

So K¢ is open and therefore K is closed
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Theorem 2.35: Closed Subsets of Compact Sets are Compact

e Statement

o

e Proof

o

o

Closed subsets of compact sets are compact

Let X be a metric space

Suppose F ¢ K c X, where F is closed, and K is compact
Let {V,} be an open cover of F

Consider {V, } U {F¢}, where F€ is open

Then {V,} U {F¢} is an open cover of K

Since K is compact, K has a finite subcover ®

If F€ € @, then @ \ {F€} is still finite and covers F

So we have a finite subcover of {V,,}

Therefore F is compact
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e Corollary

o IfFisclosed and K is compact, then F N K is compact
¢ Proof

o K compact = K is closed

o Weknow F is closed, so F N K is closed

o FNK cK,andK is compact

o SoF N K is compact

Theorem 2.36: Cantor's Intersection Theorem
e Statement
o If {Ka} is a collection of compact subsets of a metric space X s.t.

o The intersection of every finite subcollection of {K, } is nonempty

o Then ﬂKa is nonempty
a

¢ Proof
o FixK; € {K,}andletG, = KS,Va
o Assume no point of K; belongs to every K,
o Then {Ga} is an open cover of K;
o Since K; is compact, Ky € Gg, N Gg, NN Gy,
o Where a4, ay, ..., @, is a finite collection of indices

o ThenK; NGy, N-+NGy =@
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o Thisis a contradiction, so no such set K; exists
o The result follows
e Corollary

o If{Kn} is a sequence of nonempty compactsetss.t. K,, D K,,,1,Yn € N

o Then ﬂ K,, is nonempty

n=1
Theorem 2.37: Infinite Subset of Compact Set
e Statement
o IfE is an infinite subset of a compact set K
o Then F has a limit point in K
e Proof
o If no point of K were a limit point of E
o Thenvq €K, EIN(q) s.t. no point of E other than g
o ie. N(q) contains at most one point of E (namely, q, ifq € E)
o So no finite sub-collection of {N(q)} can cover E, and thus not K

o Thisis a contradiction, so E has a limit point in K
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Nested Intervals Theorem, Compactness of k-cell

Wednesday, March 14, 2018 12:06 PM

Theorem 2.38: Nested Intervals Theorem
o Statement

o If{I,} is a sequence of closed intervals in Rs.t. I, D I,;1,Vn € N

o Then ﬂ I, is nonempty
n=1

e Intuition

R
I, 1,
[ I 1131_1

it

¢ Proof

o

Let [, := [an, bn]

o

LetE = {an}neN
= E isnonempty
= F isbounded above by b; since b; = a,,Yn € N
= So sup E exists

o Letx:=supkE

o

vmneN,a, < anin < bpin < by
" a,<b,>x<b,, VmeN

= x=supE=>a, <x,VmeN

o

So,x € [am, m],Vm EN

O

Therefore x € ﬂ I,

n=1
Theorem 2.39: Nested k-cell
e Statement
o Letk be a positive integer

o If{I,}is a sequence of k-cellss.t. I,  I,,;;,Vn € N
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o Then ﬂ [, is nonempty
n=1

e Proof
o LetI, consists of all points ¥ = (xl,xz, ,xk) s.t.
O apj<xj<by,jwherel <j<kn=1253,..

o Let In,j = [an,j, bn,j

o Foreachj, {In,j} satisfies the hypothesis of Theorem 2.38

o Therefore 3x; € n Iyj,forl1<j<k

n=1

o Letx* = (x{,x3, .., x5)

(00}
o By construction, x* € ﬂ I,
n=1

Theorem 2.40: Compactness of k-cell
e Statement
o Every k-cell is compact

e Proof

o Letl = {(xl,xz, o X ) € Rk|aj <x<b,1<j< k} be a k-cell

2
o Letd = Z(bj — aj) ,then [ —y| <6, VX, y €1
j=1
o Suppose {Ga} is an open cover of [ with no finite subcover

o Build sequence {In}
* Letg¢ = a_];ﬁ
= (Consider intervals [aj, c]-] and [cj,bj]
= Those intervals describes 2¥ k-cells Q; whose union is I
= Since the number of Q; is finite, and {Ga} has no finite subcover
= 3JQ; not covered by a finite subcover of {Ga}; call this I;
= Repeat this process on I; to obtain I,, I3, ...
= We can build a sequence {In}

o {In} is a sequence of k-cells s.t.
= [ DD, D
= [, is not covered by any finite sub-collection of {Ga}

)
» If%,y €I, then|¥ —y| < o
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o By Theorem 2.38,3x* € I,,,Vvn € N
o Thenx* € G,, for some G,
= G, isopen

* je.3r>0st |37—F

<r=yeEaqG,

= By Archimedean Property,3dn € N s.t. ;in <r
» Inthiscase, I, € G,, which is impossible, since
= [, is not covered by any finite sub-collection of {Ga}
= Sono such open cover {Ga} exists
o So every open cover of [ have a finite subcover

o Therefore I is compact
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Heine-Borel, Weierstrass, Subsequence

Friday, March 16, 2018 12:07 PM

Theorem 2.41: The Heine-Borel Theorem
e ForasetE c R¥, the following properties are equivalent
(a) E isclosed and bounded
(b) E is compact
(c) Every infinite subset of E has a limit pointin E
e Proof (a) = (b)
o If (a) holds, then E c I for some k-cell
o (b) follow from
* Theorem 2.40 (I is compact)
= Theorem 2.35 (Closed subsets of compact sets are compact)
e Proof (b) = (¢)
o See Theorem 2.37
¢ Proof(c) = (a)
o Suppose E is not bounded
» Ix, €Est|x,|>nVneN
" {ﬁ} is an infinite subset of E with no limit points
= This is a contradiction, so E must be bounded
o Suppose E is not closed

= 3X, € R¥ that is a limit point of E but notin E

bvand —_— Eud 1
» Forn €N, 3%, € Es.t.|x, — x| <=

LetS = {X,} _, beainfinite subset of E
* By construction, S has X, as a limit point
* We want to show that X is the only limit point of S

o Lety € R¥andy # xq

O

By triangle inequality,

1 1,
|x0

|ﬁ_37| = |%_37|_|ﬁ—x_0>| > |x_0’—37|—£>§

O

o For all but finitely many n

1
o Take the neighborhood of y with radius of > I — 9,

o There are only finitely many points of S in it
o By Theorem 2.20,y cannot be a limit point of §

o Since y was arbitrary, x; is the only limit point of S
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* By (c), S has alimit pointin E i.e. x; € E
= Thisis a contradiction, so E has to be closed

o Therefore E is closed and bounded

Theorem 2.42: The Weierstrass Theorem
e Statement
o Every bounded infinite subset E of R¥ has a limit point in R*
e Proof
o Eisbounded, so E c I c R¥ for some k-cell I
o By Theorem 2.40, I is compact
o By Theorem 2.37, E has a limit pointin [

o

Hence, E has a limit point in R¥

Definition 3.5: Subsequences

e Definition

o Given a sequence {p, }
o Considera sequence {n;} € Nwithn; <n, <nz <
o Then the sequence {pni} is a subsequence of {p, }
o If {pni} converges, its limit is called a subsequential limit of {p,, }
e Example
o Let {pn} = 1 = {1,1,1,1,1, }
n 2°'3'4°5
o One subsequence is {1,1,1,1,i-,i ,i , }
4°6°7 38 101135

But 111 1 1 11 < 1ot b
° Buty75.75'5'337°12/59° 32 - ( IS notasubsequence
¢ Note

o A subsequential limit might exist for a sequence in the absence of a limit

o {pn} converges to p if and only if every subsequence of {pn} converges to p

Theorem 3.6: Properties of Subsequence
e Statement (a)
o If{pn} is a sequence in a compact metric space X
o Then some subsequence of {p, } converges to a point of X
e Proof (a)
o LetE be the range of {pn}
o IfE is finite

= Jp € E and a sequence {ni} c Nwithn; <n, <nz <--st
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- pnlzpnzzpn3:.“:p
o If E is infinite

= By Theorem 2.37, E has a limit pointp € X
1
= By Theorem 2.20, inductively choose n; s.t.d (p, pni) < 7 Vi eEN

= [t follows that {pni} converges to p

e Statement (b)
o Every bounded sequences in R* contains a convergent subsequence
* Proof (b)
o By Theorem 2.41, every bounded subset of R¥ is in a compact subset of R¥

o Result follows by (a)
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Cauchy Sequence, Diameter

Monday, March 19, 2018 12:19 PM

Definition 3.8: Cauchy Sequence

e Asequence {pn} in a metric space X is said to be Cauchy sequence

e IfVe>0,3N € Ns.t. d(pp, pm) <EVRLM =N

/\X

\
\a’3

Definition 3.9: Diameter
¢ Let E be a nonempty subset of metric space X

Let S be set of all real numbers of the form d(p, q) withp,q €E

Then diam S := sup S is called the diameter of E (possibly o)

If {pn} isasequencein X and E = {pN,pN+1, }

Then {p,} is a Cauchy sequence if and only if lim diam Ey = 0

Theorem 3.10: Diameter and Closure

e Statement

o IfE is the closure of a set E in a metric space X, then diam E = diam E

¢ Proof
o diamE < diam E
* Thisis obvious since E c E
o diamE < diam E

* Letp,q €E
€ €
» Lete > 0,thendp’,q' €Es.t.d(p,p’) < E,d(q,q’) < 2

* d(p,q) < diamE
o d(p.q)<d(p.p')+d(p".q")+d(qd" . q)

g ! I f
O <E+d(p,q)+2
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o =e+d(p.q')

o <e+diamE

o Since € > 0 was arbitrary, d(p, q) < diam E
* Sodiam E < diam E

o Therefore diam E = diam E

Theorem 3.10: Nested Compact Set

e Statement
o If K, is a sequence of compact sets in X s.t.

o K,>K,,q,¥nand lim diamK,, =0

n—->oo

o Then ﬂ K, consists of exactly one point

n=1

e Proof

o LetK = ﬂKn
n=1

o By Theorem 2.36, K is not empty
o If K contains more than one point, diam K > 0
o ButK, D K,Vn €N, then

o diamK,, = diam K > 0= lim K, = diam K >0

n—oo

o This contradicts lim diam K,, =0

n—-oco

o There can only be one pointin K
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Cauchy Sequence, Complete Metric Space, Monotonic

Wednesday, March 21, 2018 12:07 PM

Theorem 3.11: Cauchy Sequence and Convergence
e Statement (a)
o In any metric space X, every convergent sequence is a Cauchy sequence
e Proof (a)
© Supposep, = p

&
o Lete>0,then3N € Ns.t. d(p,p,) < 2 ¥nzN

& &
© d(pnpm) < d(p.pn) +d(p,pm) <5+5=eVnm=N

o So{py}isa Cauchy sequence
e Statement (b)
o IfX is a compact metric space and {p, } is a Cauchy sequence
o Then {p,} converges to some point of X
e Proof (b)
o Let {pn} be a Cauchy sequenece in compact metric space X
o ForN eN,letEy = {pN,pN+1, }
o By Theorem 3.10, Alll_r}go diam Ey = 1\111—r>rolo diam Ey = 0
o By Theorem 2.35, Ey as closed subset of X is compact
o Since Eyyq, € Ey,Eys1 € Ey,VN €N
o By Theorem 3.10 (b),3!'p € Xs.t.p € Ey,VN €N
o Lete > 0begiven, N, € Ns.t.diam Ey < &, VN > N,
o Sincep € Ey,d(p,q) < &Vq € Ey = {pn,Pn+1, -} C Ey
o Inother word, d(p,p,) < & forn > N,
o Solimp,=p
n—w
e Statement (c)
o In R, every Cauchy sequence converges
e Proof (c)
o Let{x,}be a Cauchy sequence in R¥
o LetEy = {xy, Xy11, -}
o ForsomeN € N,diam Ey < 1
o Then the range of {x,,} is {x7, ..., Xy_1} U Ey

o By Theorem 2.41, every bounded subset of R¥ has compact closure in R¥
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o (c) follows from (b)

Definition 3.12: Complete Metric Space
¢ Definition
o A metric space X is said to be complete if
o every Cauchy sequence converges in X
e Examples
o RFiscomplete
o Compact metric space X is complete

o @ is not complete (convergence may lie outside of Q)

Definition 3.13: Monotonic Sequence
¢ Asequence {sn} of real numbers is said to be
¢ monotonically increasing ifs,, < s,,1,Vn € N
¢ monotonically decreasing if s,, > s,,,1,Yn €N

e monotonic if {sn} is either monotonically increasing or decreasing

Theorem 3.14: Monotone Convergence Theorem
e Statement
o If{s,}is monotonic, then {s, } converges if and only if it is bounded
¢ Proof
o By Theorem 3.2 (c), converge implies boundedness
o Without loss of generality, suppose {sn} is monotonically increasing
o LetE =range {sn}, and s = supFE, thens, <s,vn €N
o Givene >03N€E€ENs.ts—e<s,<s,Vn=N

o Since s — ¢ is not an upper bound of E, and {sn} is increasing

0 s—s,<gvVn=N=lims,=s

n—-oo
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Upper and Lower Limits

Friday, March 23, 2018 12:11 PM

Definition 3.15: Sequences Approaching Infinity

o Let {sn} be a sequence of real numbers s.t.

VM e R, AN eNsts, > M,Vvn=>N

Then we write s,, = +o0

Similarly if vM € R,3IN € Ns.t.s, < M,vn>N

e Then we write s,, » —o0

Definition 3.16: Upper and Lower Limits

e Definition

o

Let {sn} be a sequence of real numbers

o

Let E be the set of x (in the extended real number system) s.t.

o

Sp, = x for some subsequence {snk}

o

E contains all subsequential limits of {s, } plus possibly +co, —c0

o limsups, = s* = supE is called the upper limit of {s,}

n—-oo

o liminfs, = s, = infE is called the lower limit of {sn}

n—-oo

e Example 1
(—nn {12 34 5 }
S‘n:___'= B I e R R
1 2’3" 4’5" 6
T+

o limsups, =sup{—-1,1} =1

n—-oo
o liminfs, = inf{-1,1} = -1
n—-oo
e Example 2

o lim s, =s = limsups, =liminfs,, =s
oo

n—oo n—oo n-
= All subsequential limits of a convergent sequence
= converge to the same value as the sequence

o limsups, =liminfs, =s= lims, =5
n—oo n—oco n—-oo

» 3 supFE =infE
= > F={s}
= = All subsequential limits = s

" > lims,=s

n—-oco

Theorem 3.17: Properties of Upper Limits

Paoge 76



e Let {sn} be a sequence of real numbers, then

e SEE

o

o

o

When s* = +o
= [ is not bounded above, so {sn} is not bounded above
= There is a subsegnence {Snk} S.t. Sy, > @
" Sos*=4w€EE
When s* € R
= FE isbounded above
= And at least one subsequential limit existsi.e. E + @
* By Theorem 3.7,E isclosedie. E = E
* By Theorem 2.28,s* = supE € E
= Therefores* € E
When s* = —o0
* ThenE = {—}

" 5, > —occands*=—oEE

e Ifx>s"thendN e Ns.t.s, <xforn>N

o

@)

o

If 3x > s* with s,, = x for infinitely many n € N
Thendy € Esty=>x>s"

This contradicts the definition of s*

e Moreover s* is the only number with these properties

o

o

@)

Supposep, q € E,p # g s.t. the property above holds for p, g
Without loss of generality, suppose p < q
Choosexstp<x<gq

Since p satisfies the property above

AN eNsts, <x,¥n=N

So no subsequence of {sn} can converge to g

This contradicts the existence of q

Therefore only one number can have these properties

Paqge 77



Some Special Sequences

Monday, April 2, 2018 12:11 PM

Theorem 3.20: Some Special Sequences
e Lemma (The Squeeze Theorem)
o Given 0 < x,, < s,,forn = N where N € N is some fixed number
o Ifs, - 0,thenx, - 0

o (Proof on homework)

1
e Ifp>0,thenlim—=0
n p

—ooNn

1

<€=>7’l>£1—/p

o Forn = N,we need

1
w0

o Givene >0

1

1\r
o Using Archimedean Property, take N > <§>

1

1\p 1 1 1
o Soforn=>Nn>(-] =2nP>-=>—<e=>|—-0|<¢
& & npbP nb
o Therefore lim — =20
n-on

e Ifp>0,thenlim?ip=1
n—>oo
o Whenp =1

= We are done,since lim1=1

n—->oo

o Whenp >1
* Thenp—-1>0
* Letx, =7%/p—1,thenx, >0

. p=(xn+1)n21”+(nf )1”‘1x}l=1+nxn

1
" 5p-—1=nx,
-1
LIS P—- =>x,>0
n
= By the Squeeze Theorem, x,, = 0
* e lmZ%p—-1=0
n—-oo
= So lim%p=1
n—oo

o Whenp <1

1
= Then—->1
p

= So, lim f/l_/;a =1
n—oo
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1
* Therefore lim 3/p = 1= 1
n—oo

limiyn=1

n—>oo

o

Letx, =3Yn—-1>0

n=(x+1)">( " ,)1" %% =

=>—— > x2
n—1 "

’ 2
= n—_—l—an>0forn>1

2

(n—2)21"" 2

o By the Squeeze Theorem,x, = lim Yn—1 - 0
n—-oco
o ielimin=1
n—-oo
a
Ifp>0acR then lim ———; =0

n—-oo (1 + p)n -

o Letk € Ns.t. k > a by Archimedean Property

O

o

o

o

o

o

Forn > Zk,(l +p)n > (Z)pk =

n n n
Becausen>2k:>5>k:>n—k>5:>n—k+1>—

So,0 < (1+p)a <nkpk.n

n® 2Ky 2Kk
=—pT-

nn—-1)--m-k+1) ,
p

n! nn—-1) ,

n

nkpk

k!

2

na—k

2k k!

Sincea—k<0,n“_k—>0:>—k—-n

If [x| < 1,then lim x" =0

o

O

o

O

n—oo

1
x| <1=>—>1
| x|

1
Letp=|?|-—1>0

Take a = 0 in the limit above, we get lim

Then lim x™ =0

n—->oo

a—k S0

——
n-0 (] +p)n
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Series, Cauchy Criterion for Series, Comparison Test

Wednesday, April 4, 2018 12:09 PM

Definition 3.31: Series

e Given a sequence {an}

 We associate a sequence of partial sums {s,, } where

n

o SnZZak:a1+a2+...+an
k=1

[oe]

. z a;, is called an infinite series, or simply series
k=1

o If {sn} diverges, the series is said to diverge

(00)

o If {sn} converges to s, the series is said to converge, and write Z a, =s
k=1

¢ s iscalled the sum of the series

e Butitis technically the limit of a sequence of sums

Theorem 3.22: Cauchy Criterion for Series

e Statement

m

oo
o Zan converges & Ve > 0,3N € Ns.t. Zak <gvVm=n=N
n=1

k=n
e Proof

o Thisis Theorem 3.11 applied to {sn}

Theorem 3.23: Series and Limit of Sequence

e Statement
o Inthe setting of Theorem 3.22,takem =n

o Wehave |a,| < eforn >N

[0¢]
o If Z a, converges,thenlima, =0
n—-oo
n=1
¢ Note

[oe]

o Ifa, — 0,the series Z a, might not converge

n=1

o 1
e Example: Z - diverges
n=1

O P U I B U
O —_— —_— —_— —_— —_— —_— —_— ces —_— —_— —_— —_— —_— —_— —_— ces
2 3 4567 8 T 724 488 8 8
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o 1
o Therefore z - diverges

n=1
Theorem 3.24: Convergence of Monotone Series
e Statement
o A series of nonnegative real numbers converges if and only if
o its partial sum form a bounded sequence
e Proof
o See Theorem 3.14 (Monotone Convergence Theorem)

Theorem 3.25: Comparison Test

o]

¢, converges, then 2 a, converges

n=1

e If|a,| < ¢, forn >N, € Nand

m

Cx =ch<sform2n2N

k=n

o Givene > 0,3IN = N s.t.

I 1M

m

m m
o By the Cauchy Criterion, Z ag| < |ak| < z <€
k=n k=n k=n

o)

o Thus Z a, converges

n=1
oo

e Ifa,>d, =0forn=>N; € Nand Z d, diverges,then Z a, diverges

n=1 n=1

oo oo
o If Z a, converges,then so must Z d,
n=1 n=1

[oe]

o This is a contradiction, so Z a, diverges

n=1
Theorem 3.26: Convergence of Geometric Series

e Statement

[o¢]

1
o Ifo<x< 1,thenzx":—__
— 1-—x

o Ifx> 1, the series diverges

e Note

= 24 ...
o S_1+x+§ T os—xS=15=
xS=x+x+- 1-—x

o This only works if we know this series converges
¢ Proof

o If0 < x < 1,wehave
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sp=1+x+x%+ - +x"
XSy =X+ x2 4+ x" + x"

= Sy — xSy = 1 —x"*1
1_xn+1
>5, =—
n 1—x
1_xn+1 1
Since 0 < x < 1, lim s, = lim =
n-co n-oo 1 —x 1—x

Note if x = 1, Z x™ =141+ ---which diverges

n=1
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Convergence Tests for Series

Friday, April 6, 2018 12:06 PM

Theorem 3.27: Cauchy Condensation Test
e Statement

o Supposea; = a, = -+ = 0, then

o o
o Z a, converges < Zkazk =a, + 2a, + 4a, + --- converges
n=1 k=0
e Proof
o By Theorem 3.24, we just need to look at boundness of partial sums
o Let
" Ssp=ayt+a;+ -+ ag,

"t = ag +2a, + -+ 2%a,n

o Forn <2k
» sp<ap+(agt+az) o+ (age+ o+ agren_,)
» <a;+2a;+-+2ka =tk

o Forn > 2k
sy =ay+(agt+az)+o+ (a1, + o+ agr)
- 2> %al +ay + -+ 2K la = %tk

o Forn =2k

" Sy St S 25, 2 S,k Sty < 28,k

= So {sn] and {tk} are both bounded or unbounded

Theorem 3.28: Convergence of p-Series

e Statement

1
o Z o converges if p > 1 and divergesifp <1
n=1

¢ Proof
o Ifp<o0
= Theorem 3.23 says ifz a, converges,then lim a,, =0
n=1 "
1
= In this case lim — # 0, so series diverges
n—-oo nP
o Ifp>0
1 1 d 1 -0
n? — (n+1)P N =
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= By Cauchy Condensation Test,

* lim — converges & Z 2"

converges
n-—-oo n

[ee)

= Z — 2(21 p) which is a geometric series

n=1 (Zk)
* By Theorem 3.26, this convergesif 2! P <1 & p > 1

» Otherwise, 2177 > 1, and this diverges

Theorem 3.33: Root Test

[oe]

¢ Given Z a, ,put & = lim sup "“an| ,then
n—oo

n=1

e Ifa<1, Z a, converges
n=1

o Theorem 3.17(b) saysif x > s*,thenaN € Ns.t.s, <xforn >N

o Soletp € (a,1)andN € Ns.t.‘v’nZN,n/|an| < Bie|a,| < p"

o 0<pB<1,5s0 Z B™ converges

n=1

o)

o Thus, Z a, converges by comparison test

n=1

e Ifa>1, Z a, diverges
n=1

g
o By Theorem 3.17, there exists a sequence {nk} s.t. |ank| ->a

o So |an| > 1 for infinitely many n, i.e.a,, » 0

o By Theorem 3.23, Z a, diverges

n=1

e Ifa = 1, this test gives no information

oo

o For Z —,lim sup \/_I = lim \/7_1 1 = 1, but the series diverges

n—-oo n-oo
n=1

o)

1 — 1
o For Z Llimsup Yn=2 = lim —— = 1, but the series converges
— n n—oo n%a)cv—)
n=1

Theorem 3.34: Ratio Test

e Statement

Apt1

<1

o Z a, converges if lim sup
n=1

n—oo n
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[oe]

o Z a, diverges 1f > 1,Vn = n, for some fixed ny € N

n

Intl) g

o If lim sup
an

n—-oo

Int1l - g yn >N

n

o Wecanfindf >1,N € Ns.t.

o In particular
lan+1] < Blaw]

lan+2| < Blay+1| < B?|an]

|lan+p| < BP|an]

o So,|ay| <|ay|B~NB™, VR =N

o f<1,s0 z B™ converges
n=1

(o]

o So Z |aN|B_N B™ also converges
e

n=1 constant

o]

o Therefore Z a, converges by comparison test

n=1
o On the other hand, if |an+1| = |an|,Vn =>nyEN
o Thena, +» 0, so series divreges by Theorem 3.23

Note

: i 1. 1n
O _____
or n n1—>001/(n+1)

For 3 4 tim — " — 4
o _____
o L2 501/ (n+ 1)2

an
o So lim —— = 1is not enough to conclude anything
n=00n4q
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Power Series, Absolute Convergence, Rearrangement

Monday, April 9, 2018 12:10 PM

Definition 3.38: Power Series

¢ Given a sequence {cn] of complex numbers

[oe]

¢ The series z c,Zz" is a power series

n=1
Theorem 3.39: Convergence of Power Series

e Statement

[o¢]

o Given the power sires Z cnz™

n=1

n
o Puta = limsup |cn|

n—-oo
1
o LetR:= P (Ifa = 4+00,R=0; Ifa = 0,R = +00)
o Then z ¢,z converges if |z| < R and divergesif |z| > R
n=1
e Proof

o Leta, = c,z™ and apply the root test

. n . n ||
o limsup [|a,| = lz|limsup [|c,| =—

n—oo n—oo R
¢ Note: R is called the radius of convergence of the power series

e Examples

o Zn”zn hasR=0
n=1
[oe) Zn
o Z—— has R = 4o
n!

S
I
=

NgE

z™ has R = 1.If |z| = 1,then the series diverges

S
Il
=

n
g has R = 1,diverges if z = 1, converges for all other z with |z| = 1

O
gk
N

S
Il
[y

n
— has R = 1, but converges for all z with |z| = 1 by comparison
n

O
Ngk
N

S
]
[

Theorem 3.43: Alternating Series Test

e Statement
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o Suppose we have a real sequence {cn} s.t.
- |C1|2|C2|2|C3|2“'
" Com_1=0,60,, <0, VMEN
* limc,=0

n—-oo

(o]

o Then z ¢, converges

n=1
e Proof: HW

e Example: alternating harmonic series

+
ull =

.- converges toln 2

_, 1+1 1
N 2 3 4

n=1
Absolute Convergence
* The series Za,, is said to converge absolutely if the series 2|an| converges
¢ IfXa, converges but 2|an| diverges
¢ We way that £a,, converges nonabsolutely or conditionally

Theorem 3.45: Property of Absolute Convergence

e Statement

o IfZa, converges absolutely, then £a,, converges

e Proof
© ©
o Zak SZ|ak|
k=1 n=k

o The result follows by Cauchy Criterion

Definition 3.52: Rearrangement
e Let {kn} be a sequence in which every natural number appears exactly once

* Leta, = ay,, then Zay is called a rearrangement of Za,,

Theorem 3.54: Riemann Series Theorem
e LetXa, be a series of real number which converges nonabsolutely
e Llet—oo<a<f <400
¢ Then there exists a rearrangement Za,, s.t.

e liminfs;,, = a limsups, =

n-—oo n—oo

Theorem 3.55: Rearrangement and Absolute Convergence

e Statement
o IfZa, is a series of complex numbers which converges absolutely

o Then every rearrangement of Xa,, converges to the same sum
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Proof

o

O

o

o

O

o

Let Za,, be a rearrangement of Za,, with partial sum s,

By the Cauchy Criterion, given € > 0,3N € N s.t.

m

= Z|ai| <gVmmn=N

i=n
Chooseps.t. 1,2, ..., N are all contained in the set {kl, ky, ..., kp}
Where kq, ..., k;, are the indices of the rearranged series
Thenif n > p, a4, ..., ay will be cancelled in the difference s,, — s,

So, |sn - STI1| <e> {s,’l} converges to the same value as {sn}
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Limit of Functions

Wednesday, April 11, 2018 12:15 PM

Definition 4.1: Limit of Functions
¢ Definition
o LetX,Y be metric spaces,and E c X
o Suppose f:E = Y and p is a limit point of E
o IfagevYs.t
" V> 0,36 > 0s.t.
» 0<dy(x,p)<é=>dy(f(x).q)<e
o Then, we write f(x) > qas x - p,or!ci_r)gf(x) =q
e Note
o 0< dX(x, p) < § is the deleted neighborhood about p of radius §
o dy and dy refer to the distances in X and Y, respectively
¢ Relationship with sequence
o Theorem 4.2 relates this type of limit to the limit of a sequence

o Consequently, if f has a limit at p, then its limit is unique
Definition 4.3: Algebra of Functions
o Iff:E — Rk, g: E —» R, then we define
(f+9)@) = f() + g
(f=9)@) = ()~ g)
(F9) ) = f(x)g ()

. (5) (x) = ;—Eg where g(x) # 0on E

Theorem 4.4: Algebraic Limit Theorem of Functions
e Let X be a metric space,and E € X
¢ Suppose p be a limit point of E
e Let f, g be complex functions on E where

o limf(x) =Aand limg(x) =B
x-p x-p
¢ Then
o Lilg(f +9)x)=A+B

o ;gg(f—g)(x) =A-B

o lim(fg)(x) = AB

tim (L) (x) =2 where B # 0
O —_— —
m X wnere

X-p
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Continuous Function and Open Set

Monday, April 16, 2018 12:09 PM

Definition 4.5: Continuous Function
e Definition
o Suppose X,Y are metric spaces,E c X,p €E,and f:E > Y
o Then f is continuous at p if

= For every € > 0, there exists § > 0 s.t.

" XE E,dX(x,p) <d=>dy (f(x),f(p)) <eg

o If f is continuous at every point p € E, then f is continuous on E
e Note
o f mustbe defined at p to be continous at p (as opposed to limit)

o Every function is continuous at isolated point

Theorem 4.6: Continuity and Limits
e In the context of Definition 4.5, if p is also a limit point of E, then

* fis continious atp ifand only if lim f(x) = f(p)
x-p

Theorem 4.7: Composition of Continuous Function

e Statement

o

Suppose X, Y, Z are metric spaces,E c X, f:E = Y,g: f(E) - Z,and
o h:E — Z defined by h(x) = g(f(x)),‘v’x EE
o If fis continuous atp € E, and g is continuous at f (p)
o Then h is continuous at p
e Note
o his called the composition of f and g and is writtenas g o f
e Proof

o Lete > 0begiven

o Since g: f(E) - Z is continuous at f(p),3n > 0 s.t.
» Ify € f(E)anddy (y,f(p)) <7, thendy, (g(y),g (f(p))) <e&
o Since f:E — Y is continuous atp, 3§ > 0 s.t.
» Ifx € E and dy(x,p) < 6, thendy (f(x),f(p)) <7
o Consequently, if dy(x,p) < &, and x € E, then
¢ 4z (9.9 (F())) = &z (hGLR(P)) <&
o So, his continuous at p by definition
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Theorem 4.8: Characterization of Continuity

e Statement
o Given metric spaces X,Y
o f:X — Y is continuous if and only if
o f~Y(V)isopenin X for every opensetV c Y

e Proof (=)
o Suppose f is continuous on X, and VV c Y is open
o We want to show that all points of f~(V) are interior points
o Supposep € X,and f(p) € V,thenp € f~1(V) c X
o SinceV is open

= There exists a neighborhood off(p) that is a subset of V
* Inotherword, 3¢ > 0s.t. dy (y,f(p)) <g=>y€eV

o Since f is continuous at p

= 35> 0st.dy(x,p)<8=>dy (f(x),f(p)) <e

o Suppose dy(x,p) <&

= By the continuity of f, dy (f(x),f(p)) <e¢
» Then f(x) € V, since V is open
* Thus,x € f~1(V)
o This shows that p is an interior point of f~1(V)
Therefore f ~1(V) is open in X

o

¢ Proof (&)

o

Suppose f~1(V) is open in X for every opensetV c Y

o

Letp € X and fixe > 0
o LetV := {y € Y|dy (y,f(p)) <e¢g } be the € neighborhood off(p)

o SinceV is open, f~1(V) is also open by assumption

o Thus,36 > 0s.t.dy(p,x) <8 =>x€ f1(V)
o Butifx € f~1(V), then f(x) € V,and so dy (f(x),f(p)) <e

o So, f:X — Y is continuous at p

o

Since p € X was arbitrary, f is continuous on X
e Corollary
o Given metric spaces X,Y
o f:X — Y is continuous on X if and only if
o f~Y(V)is closed in X for every closed set V in Y

e Proof
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o Asetis closed if and only if its complement is open

o Also, f71(E°) = [f_l(E)]C, foreveryE c Y
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Continuity and Compactness, Extreme Value Theorem

Wednesday, April 18, 2018 12:06 PM

Definition 4.13: Boundedness
e A mapping f: E - R¥ is bounded if

e Thereis areal number M s.t. |f(x)| <M\Vx€EE

Theorem 4.14: Continuous Functions Preserve Compactness
e Statement
o LetX,Y be metric spaces, X compact
o If f:X - Y is continuous, then f(X) is also compact
e Proof
o Let{V,}be an open cover of f(X)

o f is continuous, so each of the sets f‘l(Va) is open by Theorem 4.8

o

{f‘l(Va)} is an open cover of X, and X is compact

o

So there is a finite set of indices {al, Ay, ey an} s.t.
X () U (V) U0 £ (V)
Since f(f~Y(E)) cE,VEcY
* fX)cV,, UV, U-Ul,

o

o This is a finite subcover of f~1(X)

Theorem 4.15: Applying Theorem 4.14 to R¥*

e Statement
o Let X be a compact metric space
o If f:X - Rk is continuous, then f(X) is closed and bounded
o Thus, f is bounded

e Proof

o See Theorem 4.14 and Theorem 2.41

Theorem 4.16: Extreme Value Theorem
¢ Statement

o Let f be a continuous real function on a compact metric space X

Let M = sup f(p) ,and m := inf f(p)
PEX PEX

o

O

Then3p,q € Xst.f(p) =Mandf(q) =m
o Equivalently, 3p,q € Xs.t. f(q) < f(x) < f(p),Vx € X

e Proof
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o By Theorem 4.15, f(X) is closed and bounded
o So f(x) contains M and m by Theorem 2.28

Theorem 4.17: Inverse of Continuous Bijection is Continuous
e Statement
o LetX,Y be metric spaces, X compact
o Suppose f: X — Y is continuous and bijictive
o Define f~1:Y - X by f71(f(x)) =x,Vx € X
o Then f~1is also continuous and bijective
e Proof
o By Theorem 4.8, it suffices to show f(V) isopeninY for all opensets V c X
o FixanopensetVinX
o V is open in compact metric space X
o SoV¢is closed and compact by Theorem 2.35
o Therefore, f(V¢) is a compact subset of Y by Theorem 4.14
o So f(V¢)isclosedinY by Theorem 2.34
o fis1-1andonto,so f(V) = (f(VC))C
o Therefore f(V) is open
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Uniform Continuity and Compactness

Friday, April 20, 2018 12:10 PM

Definition 4.18: Uniform Continuity
e LetX,Y be metricspaces, f: X =Y

e f is uniformly continuous on X if Ve > 0,36 > 0s.t.
« Ifp,q € Xand dx(p,q) < 5 thendy (f(p).f(q)) < £

Theorem 4.19: Uniform Continuity and Compactness
e Statement
o LetX,Y be metric spaces, X compact
o If f:X — Y is continuous, then f is also uniformly continuous
e Proof
o Lete > 0be given

o Since f is continuous, Vp € X,3¢(p) s.t.

= 1fq € X,and dx(p,q) < $(p),then dy (f(»).£(a)) <

1
o Letj(p) = {q € X|dx(p.q) < 7¢(p)}
" pE ](p), Vp € X, so {](p)} is an open cover of X
= Since X is compact, {](p)} has a finite subcover

= So there exists finite set of points py, ..., p, € X s.t.
= X< J(p)u-uj(pn)
1
o Letd = Emin{(,b(pl), ...,qb(pn)} >0
o Letp,q € Xstdx(p,q)<§

= Since X < J(p1) U UJ(pn),
= Ame{1,2,..,n}st.p € J(pm)

o Hence,

¢ dy(p.pm) <3(Pm) < $(pn)

1
» dy(q,pm) < dx(p.q) + dx(p.pm) <6 + §¢(pm) < ¢(pm)

o By the triangle inequality and definition of ¢(p),

= dy (F(0). £(2)) < dy (f(0). f (o)) + dy (o). £ (0)) < ; +§

=&

o Therefore f is uniformly continuous
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Theorem 4.20: Continuous Mapping from Noncompact Set
¢ Definition
o Let E be noncompactsetin R
o Then there exists a continuous function f on E s.t.
(a) fisnotbounded
(b) f isbounded but has no maximum
(c) Eisbounded, but f is not uniformly continuous
e Proof: If E is bounded
o Since E is noncompact, E must be not closed
o So there exists a limit pointxy € E s.t. xq € E
o f(x):= x_—l_x_o establishes (c)
* fis continuous by Theorem 4.9
= fisclearly unbounded
* fis not uniformly continuous
o Lete > 0and§ > 0 be arbitrary
o Choosex € E s.t. |x — x0| <é
o Takingt close to x,
o We can make |f(t) —f(x)| >¢gbut|t—x| <4

o Since § > 0is arbitrary

1
o g(x) == —————; establishes (b)

= g is continuous by Theorem 4.9
= gisbounded,since 0 < g(x) <1

* g has no maximum, since sup g(x) = 1,but g(x) <1
x€EE

e Proof: If E is not bounded

o f(x) = x establishes (a)
2

o h(x):= 1—_%(—2 establishes (b)
Example 4.21: Inverse Mapping and Noncompact Set
e LetX =1[0,2m)
e Letf:X - Ygivenby f(t) = (cost,sint)
¢ Then f is continuous, and bijective

e But f~!is not continuous at £(0) = (1,0)
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Connected Set, Intermediate Value Theorem

Monday, April 23, 2018 12:10 PM

Definition 2.45: Connected Set

e Let X be ametricspace,and 4,B c X
¢ Aand B are separated if

o AUB=0andAUB =20

o i.e.No point of A lies in the closure of B and vice versa
e FE c X is connected if

o E isnota union of two nonempty separated sets

Theorem 2.47: Connected Subset of R

e Statement
o E c Ris connected if and only if E has the following property
o Ifx,ye Eandx<z<y,thenz€eE
e Proof (=)
o By way of contrapositive, suppose 3x,y € E,and z € (x, y) st.z¢ E
o LetA, =EN(—o,z)and B, = E N (z, +0)
o Then A, and B, are separatedand E = A, U B,
o Therefore E is not connected
e Proof (&)
o By way of contrapositive, suppose E is not connected
o Then there are nonempty separated sets Aand Bs.t. E = AUB
o Letx € A,y € B. Withoutloss of generality, assume x <y
o Letz:= sup(A N [x, y]) Then by Theorem 2.28, z € A
o By definitionof E,z ¢ B.So,x <z <y
o Ifzg A
" x€EAandz & A
" 5x<z<y
" 5z¢FE
o IfzeA
= Since A and B are separated, z & B
» So3dz;stz<z;<yandz, €B
* Thenx <z, <y,soz; € E

Theorem 4.22: Continuous Mapping of Connected Set

e Statement
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o

o

o

e Proof

o

@)

o

o

@)

Let X, Y be metric spaces
Let f: X — Y be a continuous mapping

If E c X is connected then f(E) c Y is also connected

Suppose, by way of contradiction, that f(E) is not connected
i.e. f(E) = AU B, where A, B c Y are nonempty and separated
LetG:=Enf1(A)andH :=En f~1(B)

ThenE = G U H,whereG,H + @

Since A ¢ A, we have G c f~1(4)

Since f is continuous and 4 is closed, f ~*(4) is also closed
Therefore G © f~1(A),and hence f(G) c A

Since f(H) =BandANB = @,wehave GNH =@

Similarly, G N H = @

So, G and H are separated

This is a contradiction, therefore f(E) is connected

Theorem 4.23: Intermediate Value Theorem

e Statement

o

@)

o

e Proof

o

o

o

Let f: R - R be continuous on [a, b]
If f(a) < f(b) and if c statifies f(a) < ¢ < f(b)
Then3x € (a,b) s.t. f(x) =c¢

By Theorem 2.47, [a, b] is connected

By Theorem 4.22, f([a, b]) is a connected subset of R

By Theorem 2.47, the result follows
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Derivative, Chain Rule, Local Extrema

Wednesday, April 25, 2018 12:19 PM

Definition 5.1: Derivative
* Let f be defined (and real-valued) on [a, b]

* Vx € [a,b] letp(t) =———— (a<t<bt+x)

e Define f'(x) = ltim ¢(t),provided that this limit exists
—>Xx

e f'is called the derivative of f

o If f'is defined at point x, f is differentiable at x
e If f'isdefined Vx € E c [a, b], then f is differentiable on E

Theorem 5.2: Differentiability Implies Continuity
e Statement
o Let f be defined on [a, b]
o If f is differentiable at x € [a, b] then f is continuous at x

e Proof

o lim(f(®) ~ £()) = lim (f(—t)—‘—f@ (- x)> ~ lim(f ()¢ ) = 0

t—x

o So limf(t) = f(x)

Theorem 5.5: Chain Rule

e Statement
o Given
* fiscontinuouson [a,b], and f'(x) exists at x € [a, b]
= gisdefinedon] o im(f), and g is differentiable at f(x)
o Ifh(t) = g(f(t)) (a <t <b),then
= his differentiable at x, and h'(x) = g'(f(x)) - f'(x)
e Proof
o Lety = f(x)
o By the definition of derivative

" f)—f(x)=(t— x)(f’(x) + u(t)),where te [a,b],%i_r)g u(®) =0

» gs)—g(¥)=(s-y) (g’(y) + v(s)),where SEI il_rg/ v(s) =0
o Lets = f(t), then

= A(t) — h(x)

= =g(f®©) -9(f@)
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= (FO-F®) (g’ 0) + )
. = (t— x)(f’(x) + u(t)) (g’(y) + U(S))

o Ift # x, then

o MOZRO (1) +u®) (0 0) + v0))

t—x
o Ast-ox
= y(t) > 0,andv(s) » 0
» Sos = f(t) = f(x) = y by continuity

h(t) — h(x)

o Therefore h'(x) = }:I_I)I; — = - f'@)g' ) =g (f())f'(x)

Definition 5.7: Local Maximum and Local Minimum
e Let X be ametricspace, f: X - R
¢ fhasalocal maximumatp € X if3§ > O s.t.
o f(q)<f(p)vgeXstd(pq) <8
e fhasalocal minimumatp € Xif36 > 0s.t.
o f(q)=f(p)vqgeXstd(pq)<$§
Theorem 5.8: Local Extrema and Derivative
e Statement
o Let f be defined on [a, b]
o If f has alocal maximum (or minimum) at x € (a, b)
o Then f'(x) = 0 if it exists
e Proof
o By Definition 5.7, choose &, then
" a<x—-0<x<x+6<b

o Supposex —6<t<x

f@® - fx)

- >0

* Lett — x (witht < x),then f'(x) >0
o Supposex <t<x+4§

f@® - fx)

- <0

* Lett — x (witht > x),then f'(x) <0
o Therefore f'(x) =0
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Mean Value Theorem, Monotonicity, Taylor's Theorem

Friday, April 27, 2018 12:07 PM

Theorem 5.9: Extended Mean Value Theorem
e Statement
o Given
* fand g are continuous real-valued functions on [a, b]
= f,g are differentiable on (a, b)
o Then thereis a point x € (a, b) at which
= [f(B) - f(@)]g'(x) = [g(b) — g(@)]f' (x)
¢ Proof
o Leth(®) = [f(b) — f@]g(®) — [9(B) — g@]f (@), (@ <t <b)
o Then his continuous on [a, b] and differentiable on (a, b)
o We want to show that h’'(x) = 0 for some x € (a, b)
o By definition of h, we have h(a) = f(b)g(a) — f(a)g(b) = h(b)
o If his constant
= h'(x) =0onallof (a,b), and we are done
o If his not constant
= 3t € (a,b)s.t. h(t) > h(a) = h(b) or h(t) < h(a) = h(b)
= By Theorem 4.16,3x € (a, b) s.t.
» h(x) is either a global maximum or a global minimum
» By Theorem 5.8, h'(x) =0
Theorem 5.10: Mean Value Theorem
e Statement
o Letf:[a,b] > R
o If f is continuous on [a, b] and differentiable on (a, b)
o Then3x € (a,b) s.t. f(b) — f(a) =(b—a)f'(x)
e Proof

o Letg(x) = xin Theorem 5.9

Theorem 5.11: Derivative and Monotonicity
e Suppose f is differentiable on (a, b)

e Iff'(x) = 0,Vx € (a,b), then f is monotonically increasing
e Iff'(x) = 0,Vx € (a,b), then f is constant

o If f'(x) < 0,Vx € (a,b), then f is monotonically decreasing

Theorem 5.15: Taylor's Theorem
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e Statement
o Suppose
* fisareal-valued function on [a, b]
= Fix a positive integer n
= f=1 js continuous on (a, b)
= fM(¢) exists Vt € (a, b)
o Leta,p € [a,b], wherea #

(k)
o Define P(t) = Z f——(ﬁ) (t—a)k
o Then 3x between a and f s.t.
o 18 =P+ LoD (g -y

e Note
o Whenn = 1, this is the Meal Value Theorem
e Proof

o Withoutloss of generality, suppose a < f8

o Define M € R by
* f(B)=P(B)+M(B-a)

o Then we want to show that
= nIM = fM™(x) for somex € [a,ﬁ]

o Define difference function g by
m g)=f(@t)—P({t)—M(t—a)",wherea <t<bh
= Then g(ﬂ) = 0 by our choice of M
= Taking derivative n times on both side, we get
= g™ = FW() —n!M, wherea <t <b
» Note that P(t) disappears, since its degreeisn — 1

o Now we only need to show g™ (x) = 0 for some x € [, B]
» PO(@) = F®)(a),for 0 < k < n — 1, by definition of P
» Therefore, g(a) = g'(a) = - = g™ V(a) =0
= Also, g(ﬁ) = 0, by definition of M
= By the Mean Value Theorem, g’(xl) = (0 for some x; € [a, B]
* g'(a) =0,s0 g”(xz) = 0 for some x, € [a, x]
= After n steps, g(n)(xn) = 0 for some x,, € [a, Xn—1]

= So,x, € [a,ﬁ]
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Riemann-Stieltjes Integral, Refinement

Monday, April 30, 2018 12:12 PM

Definition 6.1: Riemann Integral
e Partition
o A partition P of a closed interval [a, b] is a finite set of points
o {xo,xl, ...,xn} wherea=xg <x; < <x,_1<x,=b
» Let f be abounded real function on [a, b], for each partition P of [a, b]

o Define M; and m; to be

= M= sup fQ)

X€[x;-1,%;]

» m; = _inf _f(x)

X€E[x;-1,%;]

o Define the upper sum and lower sum to be

= U(P,f) = Z M;Ax;
i=1

= L(P,f) = ZmiAxi
i=1

= where Axi =Xi — Xi-1
o Define the upper and lower Reimann integral to be
b
= fdx = Alrllg U(P,f)
b
. fdx = sup L(P, f)
AllP

Q

|s

b b
. Iff fdx=f fdx, then
a a

o We say that f is Riemann-integrable on [a, b], and write f € R

b b
o Their common value is denoted byf fdx or f f(x)dx
a a

e Well-definedness of upper and lower Riemann integral
o Since f isbounded, 3m, M € Rs.t.
" m<f(x)<M@@<x<bh)
o Therefore for every partition P of [a, b]

» m(b—a)<L(P,f)<U(P,f)<M(b—a)

b b
o So f fdx and f fdx are always defined
a a

Definition 6.2: Riemann-Stieltjes Integral
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* Let a be a monotonically increasing function on [a, b]
* Let f be a real-valued function bouned on [a, b]

¢ For each partition P of [a, b], define

o My= sup f(x)
X€[x1,%;]

o m;= inf f(x)
x€[xi—1,xi]

Aa; = a(xi) - a(xi_l)

o

o

UP,f,a)= Z M;Aa;
i=1

o

n
L(P, f, a) = z m;Aa;
i=1

o

b
Ja fdx =Ailr11£U(P,f,a)

o

b
f fdx = sup L(P,f, a)
Ja_ AllP

. If?fdx = fbfdx

b b
o We denote the common value byj fda or j f(x)da(x)
a

a

o This is the Riemann-Stieltjes integral of f with respectto « over [a, b]
o Wesay f is integrable with respect to @ with on [a, b], and write f € R(«)
e Note
o When a(x) = x, this is just Riemann integral
Definition 6.3: Refinement and Common Refinement

e We say that the partition P* is a refinement of P if P* D P

e Given two partitions P; and P,, their common refinementis P; U P,

Theorem 6.4: Properties of Refinement
e [fP*isarefinement of P, then
e L(P.f,a)<L(P.f a)
e UP",f,a)<U(Pf a)
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Theorem 6.5: Properties of Common Refinement
e Statement

o ?fdxsfbfdx

¢ Proof Outline
o Given 2 partitions P; and P,

o Let P* be the common refinement
o ThenL(Py,f,a) < L(P*,f,a) <U(P*,f,a) <U(P,f,a)
Theorem 6.6
e Statement
o f € R(a)on [a,b]ifand only if
o Ve > 0, there exists a partition P s.t. U(P, f,a) — L(P, f, &) < &

e Proof Outline

b b
o VvP,L(P,f,a) sj fdxsj fdx <U(P,f,a)

o (&=)IfU(P,f,a)—L(P,f,a)<e

b b
] ThenOSJ fdx—j fdx <e
a a

o (=)Iff € R(a)
* Then 3P, P, s.t.

b
O U(Pl,f,a)—ffda<§

a

b
O f fda—L(Pl,f,a) <§

= (Consider their common refinement P
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= By Theorem 6.4, U(P, f, a) — L(P,f, a) <e
Theorem 6.8
e If f is continuous on [q, b], then f € R(a) on [a, b]

Theorem 6.9
» If f is monotonic on [q, b], and « is continuous on [a, b]

e Then f € R(a) on [a, b]
Theorem 6.10

e If f isbounded on [a, b] with finitely many points of discontiunity

* And a is continuous on these points, then f € R(a)
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Fundamental Theorem of Calculus

May 2, 2018 12:11 PM

Final Exam

e Thursday, May 10, 7:45 - 9:45 AM, @ Social Science 6102

e 5or 6 questions
o ~1 question from Exam 1 / Quiz
o ~1 question from Exam 2
o ~1 question on absolute convergence and/or power series
0 ~1 question on continuity
o ~1 question on derivatives and/or integrals

o Nothing from Chapter 7

Theorem 6.20: Fundamental Theorem of Calculus (Part 1)

e Statement
o Letf € Ronla,b]

X
o Define F(x) = f f(t)dt for x € [a, b], then

a

= Fis continuouson [a, b]
o Furthermore, if f is continuous at x, € [a, b], then
= F is differentiable at x,, and
" F'(xo) = f(xo0)
e Proof: F is continuous on [a, b]
o Since f € R, f isbounded, so IM € Rs.t.
= |f®)| <M vVa<t<bh

o Ifa<x<y<hb,then

. |F(y)—F(x)|= SM(x—y)

X
f f(t)dt
y
o Givene >0
€
» |F(y) — F(x)| < e provided |y — x| < W
o So this shows uniform continuity of F
e Proof: F'(x0) = f(x0)
o Suppose f is continuous at x

o Givene > 0,36 > 0s.t.
= |f(x) = f(xo)| < e whenever |x —xo| < Sfora<x < b

o Ifxg—6<s<xy<t<xy+dwherea<s<t<bh,then
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. - (t—f—s j tf(x)dx> - f(x)

. = <t—i—sfstf(x)dx> - <t—i—5£tf(x0)dx>

<ol JS t(f(x)— f(xo)) dx

t—s

=&

1
n < |—(t—9)¢
t—s

o Consequently, F'(xo) = f(xo)
Theorem 6.21: Fundamental Theorem of Calculus (Part I1)

e Statement
o Letf € Ronla,b]

o Ifthere exists a differentiable function F on [a,b] s.t. F' = f
b

o Then f f(x)dx = F(b) — F(a)
a

* Proof
o Lete > 0be given

o Choose a partition P = {x, xy, ..., X, } of [a, b] s.t.

= U(P,f)—L(P,f)<e
o Apply the Meal Value Theorem, 3t; € [x;_q, x;] s.t.
" F(xl-) - F(xi_l) = f(tl-)Axi wherel <i<n

n
o Thus, Z f(ti)Axi forms a telescoping series

. Zf(ti)Axi = F(xp) = F(xp_1) + F(xn_1) + - — F(x,)

= = F(b) + (F(otno1) = F(tnor)) + -+ (F(x1) = F(1)) = F(a)
= =F(b)—F(a)

o Combining the obvious inequalities below

= L(P,f) < z f(t)Ax; < U(P,f)

b
= L(P,f) sf fdx <U(P,f)

o We get
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b
. S F(b)—F(a)—ffdx <¢€

b
o Therefore,f f(x)dx = F(b) — F(a)
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Sequence of Functions, Uniform Convergence

May 4, 2018 12:10 PM

Definition 7.1: Limit of Sequence of Functions
* Suppose {f; } is a sequence of functions defined on a set E

* Suppose the sequence of numbers {f,,(x)} converges Vx € E

¢ We can then defined f by f(x) = lim f,,(x),Vx € E
n—oo

Example 7.2: Double Sequence
m
e Let Smn = ;n_-l—_n' (m,n € N)

e FixneN

o lim sy, ,=1
m—oco ’

o lim lim s,,, =1
Nn—00 M—00 ’

e FixmeN

o lims,,=0

n—-oo

o lim lims,, =0
m—co n—oo ’

Example 7.3: Convergent Series of Continuous Functions

x
e Letf,(x) = EETATL (x € R,n € Zy)

e Letf(x) = z fa(x) = e
n=0 n=0

e Whenx =0
o f,(0)=0,s0f(0)=0
e Whenx #0

o f(x) is a convergent geometric series with sum
d 2 2
Z x x
le) X) = = =1 + xz
f( ) ~ (1 + x2)n 1 _ (_1__>Tl
" 1+ x?

0 forx =0
14+x? forx+#0

¢ So convergent series of continuous functions may be discontinuous

¢ Therefore, f(x) = {

Example 7.5: Changing the Order of Limit and Derivative

e Letf,(x) = sin(nx) (xeR,n€N)
n - __ﬁ_' ,

+ Letf(x) = lim £,() =0
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e Then f'(x) = 0,but f;; (x) = vV/ncos(nx) - co # 0
Example 7.6: Changing the Order of Limit and Integral
o Letfy(x) =nx(1-— xz)n, (x € [0,1],n € N), then
1 1
. 711_1)130 (fo fn(x)dx) = 7ll_r)rolo (fo nx(1— x2)"dX) = TP_{EO an:_ > = %

+ [ (mco)ax= [

Definition 7.7: Uniform Convergence

1
(lim nx(l —xz)n> dx = f 0dx=0
n—00 0

* Asequence of function {f,} _ converges uniformly on E to a function f if
e Ve>0,IN€Nstifn >N, then|f,(x) — f(x)| < gVx€EE

Theorem 7.11: Interchange of Limits
e Suppose f,, = f on a set E uniformly on a metric space
e Let x be alimit point of E and suppose that lim fnt) = A, (n€EN)
—x
* Then{4,} converges and 1im f() = lim A4,
>X n—oo

e ie limlim f,(t) = lim ltim fa(®)
n—-oo t-x

t->x n—-o

Theorem 7.12: Uniform Convergence Implies Continuity

« If{f,}is a sequence of continuous functions on E, and f,, - f uniformly on E

e Then f is continuous on E

Definition 7.14: Space of Bounded Continuous Functions

Let X be a metric space

Let C(X) be the set of all continuous bounded functions f: X — C

If f € C(X), define the supremum norm ||f|| := sup|f (x)|
xX€EX

|lf — gl| is a distance function that makes €(X) a metric space

Example 2.44: Cantor Set

e Define a sequence of compact sets E,,

o E,=1[01]

o) Elz[O,1 U 3,1]
3 3

= odfoE3ofe v
9 9'9 9'9 9

o

e ThesetP := ﬂ E, is called the Cantor Set

n=1
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¢ P is compact, nonempty, uncountable, perfect, measure zero

Example 4.27: Discontinuous Function

1 if
. Letf(x)::{0 ifﬁ;%

e Then f(x) is discontinuous at all x € R

x ifx €
* Letg(x) ’z{o ifxeég

¢ Then g(x) is discontinuous everywhere except x = 0
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