
Suppose  is an ordered set with the least-upper-bound property•

Suppose    ,    and  is bounded below•

Let  be the set of lower bounds of  •

Then       exists in  and       •

Theorem 1.11: Greatest-Lower-Bound Property

Given      , and    •

There is a positive integer  such that     •

Theorem 1.20: The Archimedean property of  

If      , and    , then there exists a    s.t.      •

We can always find a rational number between two real numbers•

Theorem 1.20:  is dense in  

For every real    , and positive integer  •

There is one and only one positive real number  s.t.     •

                         
 
 
  •

Theorem 1.21:  -th Root of Real Numbers

If  and  are complex numbers, then•

                 •

            •

                         •

   is real and positive (except when    )•

Theorem 1.31: Properties of Complex Numbers

If  and  are complex numbers, then•

     unless    in which case      •

        •

           •

           •

             (Triangle Inequality)•

Theorem 1.33: Properties of Complex Numbers

Suppose                , then•

      •

Theorem 1.37: Properties of Euclidean Spaces

Theorems
Wednesday, May 9, 2018 12:53 AM
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      if and only if       •

              •

                 (Schwarz's Inequality)•

                 (Triangle Inequality)•

                       (Triangle Inequality)•

Every infinite subset of a countable set is countable•

Theorem 2.8: Infinite Subset of Countable Set

Let     
   

be a sequence of countable sets, then•

     

 

   

                  •

Theorem 2.12: Union of Countable Sets

Let  be a countable set •

    for          ○

  may not be distinct○

Let   be the set of all  -tuples            where•

Then   is countable•

Theorem 2.13: Cartesian Product of Countable Sets

Let  be the set of all sequqnecse whose digits are 0 and 1•

Then  is uncountable•

Theorem 2.14: Cantor's Diagonalization Argument

Every neighborhood is an open set•

Theorem 2.19: Every Neighborhood is an Open Set

If  is a limit point of  •

Then every neighborhood of  contains infinitely many points of  •

Theorem 2.20: Property of Limit Point 

Let     be a finite or infinite collection of sets, then•

    

 

 

 

 

      
 

 

 

•

Theorem 2.22: De Morgan's Law

A set  is open if and only if   is closed•

Note: This does not say that open is not closed and closed is not open•

Theorem 2.23: Complement of Open/Closed Set

Theorem 2.24: Intersection and Union of Open/Closed Sets
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        •

                                          

 

 

          •

                                                     

 

   

             •

                                                       

 

   

               •

Theorem 2.24: Intersection and Union of Open/Closed Sets

If  is a metric space and    , then•

  is closed•

      is closed•

    for every closed set    s.t.    •

Theorem 2.27: Properties of Closure

If        , and  is bouned above, then        •

Hence       if  is closed•

Theorem 2.28: Closure and Least Upper Bound Property of  

Compact subsets of metric spaces are closed•

Theorem 2.34: Compact Sets are Closed

Closed subsets of compact sets are compact•

Theorem 2.35: Closed Subsets of Compact Sets are Compact

If     is a collection of compact subsets of a metric space  s.t.•

The intersection of every finite subcollection of     is nonempty•

        

 

 

            •

Theorem 2.36: Cantor's Intersection Theorem

If  is an infinite subset of a compact set  •

Then  has a limit point in  •

Theorem 2.37: Infinite Subset of Compact Set

If     is a sequence of closed intervals in  s.t.             •

        

 

   

            •

Theorem 2.38: Nested Intervals Theorem

Theorem 2.39: Nested  -cell
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Let  be a positive integer•

If     is a sequence of  -cells s.t.             •

        

 

   

            •

Theorem 2.39: Nested  -cell

Every  -cell is compact•

Theorem 2.40: Compactness of  -cell

For a set     , the following properties are equivalent•

 is closed and bounded•

 is compact•

Every infinite subset of  has a limit point in  •

Theorem 2.41: The Heine-Borel Theorem

Every bounded infinite subset  of   has a limit point in   •

Theorem 2.42: The Weierstrass Theorem

   is connected if and only if  has the following property•

If      and      , then    •

Theorem 2.47: Connected Subset of  

Let     be a sequence in a metric space  •

       any neighborhood of  contains   for all but finitely many  •

Given    and     . If     converges to  and to   , then     •

If     converges, then     is bounded•

                                                               •

Theorem 3.2: Important Properties of Convergent Sequences

                                             
   

        
   

         •

   
   

         •

   
   

             •

   
   

           •

   
   

       •

   
   

 

  
   

 

 
                      •

Theorem 3.3: Algebraic Limit Theorem

Suppose                              where    , then•

                              
   

              

Theorem 3.4: Convergence of Sequence in   
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                •

If     is a sequence in a compact metric space  •

Then some subsequence of     converges to a point of  •

Every bounded sequences in   contains a convergent subsequence•

Theorem 3.6: Properties of Subsequence

If   is the closure of a set  in a metric space  , then               •

Theorem 3.10: Diameter and Closure

If   is a sequence of compact sets in  s.t. •

                 
   

         •

        

 

   

                              •

Theorem 3.10: Nested Compact Set

In any metric space  , every convergent sequence is a Cauchy sequence•

If  is a compact metric space and     is a Cauchy sequence•

Then     converges to some point of  •

In   , every Cauchy sequence converges•

Theorem 3.11: Cauchy Sequence and Convergence

If     is monotonic, then     converges if and only if it is bounded•

Theorem 3.14: Monotone Convergence Theorem

Let     be a sequence of real numbers, then•

    •

If                                •

Moreover   is the only number with these properties•

Theorem 3.17: Properties of Upper Limits

              
   

 

  
     •

              
   

       •

   
   

       •

                   
   

  

     
           •

                 
   

    •

Theorem 3.20: Some Special Sequences

  

 

   

                           

 

   

         

Theorem 3.22: Cauchy Criterion for Series
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          •

      

 

   

                  
   

    •

Theorem 3.23: Series and Limit of Sequence

A series of nonnegative real numbers converges if and only if •

its partial sum form a bounded sequence•

Theorem 3.24: Convergence of Monotone Series

                             

 

   

                   

 

   

          •

                             

 

   

                  

 

   

         •

Theorem 3.25: Comparison Test

                

 

   

 
 

   
     •

If  > 1, the series diverges•

Theorem 3.26: Convergence of Geometric Series

Suppose          , then•

   

 

   

                 

 

   

                      •

Theorem 3.27: Cauchy Condensation Test

 
 

  
   

 

   

                                     •

Theorem 3.28: Convergence of   Series

         

 

   

             
   

     
    

 
     •

          

 

   

          •

          

 

   

         •

                                     •

Theorem 3.33: Root Test

Theorem 3.34: Ratio Test
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       •

   

 

   

              
    

  
                                 •

Theorem 3.34: Ratio Test

                           

 

   

•

             
   

     
   

 
•

      
 

 
                             •

          

 

   

                                         •

Theorem 3.39: Convergence of Power Series

                ○

                  ○

   
   

    ○

Suppose we have a real sequence     s.t.•

        

 

   

          •

Theorem 3.43: Alternating Series Test

If    converges absolutely, then    converges•

Theorem 3.45: Property of Absolute Convergence

Let    be a series of real number which converges nonabsolutely•

Let          •

Then there exists a rearrangement    
 s.t. •

      
   

  
          

   
  

   •

Theorem 3.54: Riemann Series Theorem

If    is a series of complex numbers which converges absolutely•

Then every rearrangement of    converges to the same sum•

Theorem 3.55: Rearrangement and Absolute Convergence

Let  be a metric space, and    •

Suppose  be a limit point of  •

Let    be complex functions on  where •

Theorem 4.4: Algebraic Limit Theorem of Functions
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      ○

Let    be complex functions on  where •

   
   

            ○

   
   

            ○

   
   

          ○

   
   

 
 

 
       

 

 
            ○

Then•

In the context of Definition 4.5, if  is also a limit point of  , then•

                                       
   

         •

Theorem 4.6: Continuity and Limits

Suppose      are metric spaces,                   , and•

     defined by                  •

If  is continuous at    , and  is continuous at     •

Then  is continuous at  •

Theorem 4.7: Composition of Continuous Function

Given metric spaces    •

     is continuous if and only if•

      is open in  for every open set    •

Theorem 4.8: Characterization of Continuity

Let    be metric spaces,  compact○

If      is continuous, then     is also compact○

Statement•

Theorem 4.14: Continuous Functions Preserve Compactness

Let  be a compact metric space•

If       is continuous, then     is closed and bounded•

Thus,  is bounded•

Theorem 4.15: Applying Theorem 4.14 to   

Let  be a continuous real function on a compact metric space  •

Let      
   

               
   

    •

Then       s.t.       and       •

Equivalently,       s.t.                    •

Theorem 4.16: Extreme Value Theorem
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Let    be metric spaces,  compact•

Suppose      is continuous and bijictive•

Define        by                 •

Then    is also continuous and bijective•

Theorem 4.17: Inverse of Continuous Bijection is Continuous

Let    be metric spaces,  compact•

If      is continuous, then  is also uniformly continuous•

Theorem 4.19: Uniform Continuity and Compactness

Let  be noncompact set in  •

  is not bounded○

  is bounded but has no maximum○

 is bounded, but  is not uniformly continuous○

Then there exists a continuous function  on  s.t.•

Theorem 4.20: Continuous Mapping from Noncompact Set

Let    be metric spaces•

Let      be a continuous mapping•

If    is connected then       is also connected•

Theorem 4.22: Continuous Mapping of Connected Set

Let      be continuous on      •

If          and if  statifies            •

Then         s.t.       •

Theorem 4.23: Intermediate Value Theorem

Let  be defined on      •

If  is differentiable at        then  is continuous at  •

Theorem 5.2: Differentiability Implies Continuity 

 is continuous on      , and      exists at        ○

 is defined on        , and  is differentiable at     ○

Given•

 is differentiable at  , and                     ○

If                    , then•

Theorem 5.5: Chain Rule

Let  be defined on      •

If  has a local maximum (or minimum) at        •

Then      if it exists•

Theorem 5.8: Local Extrema and Derivative
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Then        if it exists•

 and  are continuous real-valued functions on      ○

   are differentiable on      ○

Given•

                                 ○

Then there is a point        at which•

Theorem 5.9: Extended Mean Value Theorem

Let          •

If  is continuous on      and differentiable on      •

Then         s.t.                     •

Theorem 5.10: Mean Value Theorem

Suppose  is differentiable on      •

If                 , then  is monotonically increasing•

If                 , then  is constant•

If                 , then  is monotonically decreasing•

Theorem 5.11: Derivative and Monotonicity

 is a real-valued function on      ○

Fix a positive integer  ○

      is continuous on      ○

       exists         ○

Suppose•

Let          , where    •

             
       

  
             

   

   

•

Then   between  and  s.t. •

          
       

  
            

 
•

Theorem 5.15: Taylor's Theorem

If   is a refinement of  , then•

                  •

                  •

Theorem 6.4: Properties of Refinement

  
 

 

    
      

 

    

   •

Theorem 6.5: Properties of Common Refinement
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      on      if and only if•

     there exists a partition  s.t.                    •

Theorem 6.6

If  is continuous on      , then       on      •

Theorem 6.8

If  is monotonic on      , and  is continuous on      •

Then       on      •

Theorem 6.9

If  is bounded on      with finitely many points of discontiunity•

And  is continuous on these points, then       •

Theorem 6.10

Let    on      •

 is continuous on      ○

                   
 

 

                 •

 is differentiable at   , and ○

            ○

Furthermore, if  is continuous at         , then•

Theorem 6.20: Fundamental Theorem of Calculus (Part I)

Let    on      •

If there exists a differentiable function  on      s.t.     •

            
 

 

          •

Theorem 6.21: Fundamental Theorem of Calculus (Part II)
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The real number system•

Metric spaces and basic topology•

Sequences and series•

Continuity•

Topics from differential and integral calculus•

Course Overview

Homework assignments 20%

Quiz (Feb. 9) 5%

Midterm 1 (Mar. 9) 20%

Midterm 2 (Apr. 13) 20%

Final (May 10 @ 7:45-9:45 AM) 35%

A  9 %

B  8 %

C  7 %

D  6 %

Grading

Tom Stone @VV B205•

Monday 2:30 - 4:30 PM•

Tuesday 2:00 - 4:00 PM•

Tutoring

Natural Numbers:            •

Integers:                 •

Rational Numbers:    
 

 
            •

Real numbers  : fill the "holes" in the rational numbers•

Number Systems

There is no rational number  such that     •

Proof by contradiction•

Assume there is a rational number p such that     •

       
 

 
                                                •

 

 

 

   
  

  
         

Example 1.1: Irrationality of   
   

Number Systems, Irrationality of   
   

Wednesday, January 24, 2018 12:01 PM
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            •

So  is even•

                                   •

So  is also even•

   are both division by 2•

This contradicts the fact that    have no common factor•

So no such  exists•
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If  is a set and  is an element of  , then we write    ○

Otherwise, we write    ○

Contains •

The empty set or null set is a set with no elements, and is denoted as  ○

If a set has at least one element, it is called nonempty○

Set•

If  and  are sets and every element of  is an element of  ○

Then  is a subset of  ○

Rubin write this           ○

Fact:    for all sets  ○

Subset•

If  contain something not in A, then A is a proper subset of B○

Proper subset•

If    and    then    ○

Otherwise    ○

Equal•

Definition 1.3: Sets

We have proved that   
   

is not rational•

i.e. there is no rational number  such that     •

Let                          •

Let            ○

        
    

   
       

    

   
      ○

           
    

   
       

 

   
       

     
          ○

           ▪

      
       

     
            ▪

     ▪

    ▪

If    ○

Prove: A has no largest element, and B has no smallest element•

Example 1.1: Gaps in Rational Number System

Sets, Gaps in Q, Field
Friday, January 26, 2018 12:03 PM
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    ▪

    ▪

i.e. A has no largest element▪

           ▪

      
       

     
            ▪

     ▪

    ▪

    ▪

i.e. B has no smallest element▪

If    ○

A field is a set  with two binary operations called addition and multiplication •

(A1) If    and    , then      ▪

(A2) Addition is communicate:               ▪

(A3) Addition is associative:                         ▪

(A4) There exists    s.t.           ▪

(A5)     , there exists an additive inverse     s.t.         ▪

Axioms for addition (+)○

(M1) If    and    , then     ▪

(M2) Addition is communicate:             ▪

(M3) Addition is associative:                     ▪

(M4)  contains an element    s.t.           ▪

(M5) If            , then there exists 
 

 
   s.t.   

 

 
   ▪

Axioms for multiplication  (×     )○

(D) The distributive law:                      ○

that satisfy that following field axioms•

The real numbers are an example of field○

Example•

Definition 1.12: Field
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       ▪

                           by (A5)▪

                              by (A3)▪

                              by (A2)▪

                                                  by (A6)▪

                                                              by (A4)▪

If        , then    (1)

         ▪

    ▪

If      , then    (2)

            ▪

     ▪

If      , then     (3)

              ▪

                  ▪

             ▪

       ▪

       (4)

Given a field  , for        •

Proposition 1.14: Properties of Fields (Addition)

If    and      , then    (1)

If    and     , then    (2)

If    and     , then   
 

 
 (3)

If    , then 
 

   
     (4)

Given a field  , for        •

Proof similar to Proposition 1.14•

Proposition 1.15: Properties of Fields (Multiplication)

     ▪

         ▪

    (1)

Given a field  , for      •

Proposition 1.16: Properties of Fields

Field, Order, Ordered Set
Monday, January 29, 2018 12:00 PM
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        ▪

                        ▪

    ▪

Suppose        , but     ▪

   , so 
 

 
 exists▪

 

 
       

 

 
    ▪

 
 

 
       

 

 
    ▪

     ▪

   ▪

This is a contradiction, so     ▪

If    and    , then     (2)

                        ▪

                      ▪

         ▪

And the rest is similar▪

                 (3)

Use (3),                            ▪

           (4)

The real number line○

Intuition•

Let  be a set.○

An order on  is a relation, denoted by  ○

If      , then only one of the statements            is true▪

If        , if    and    , then    (Transitivity)▪

with the following two properties:○

Definition•

   means either    or    ○

   means either    or    ○

Other notations•

Definition 1.5: Order

An ordered set is a set for which an order is defined.

Definition•

Definition 1.6: Ordered Set
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An ordered set is a set for which an order is defined.○

 is an ordered set under the definition that○

for          if and only if    is positive○

Example •
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Suppose  is an ordered set and    •

If there exists    such that         •

We say that  is bounded above and call  an upper bound for  •

If there exists    such that         •

We say that  is bonded below by  , and  is a lower bound for  •

Definition 1.7: Upper Bound and Lower Bound

Suppose  is an ordered set and    is bounded above.○

 is an upper bond of  ▪

If    , then  is not an upper bound of  ▪

Suppose there exists    s.t.○

Then we call  the least upper bound (or lub or sup or supremium) of  ○

 is an lower bond of  ▪

If    , then  is not an lower bound of  ▪

Suppose there exists    s.t.○

Then we call  the greastst lower bound (or glb or inf or infimum) of  ○

Definition•

Definition 1.8: Least Upper Bound and Greatest Lower Bound

            has no sup in  ○

            has no inf in  ○

Recall•

     doesn't exist▪

          ▪

            ○

     doesn't exist▪

          ▪

            ○

        ▪

        ▪

   
 
            

 

 
   

 

 
   

 

 
     ○

If       exists,  may or may not be in  •

Examples 1.9: Least Upper Bound and Greatest Lower Bound

Definition 1.10: Least-Upper-Bound property

Infimum and Supremum, Ordered Field
Wednesday, January 31, 2018 12:00 PM
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We say that a ordered set  has least-upper-bound property provided that •

if    s.t.    and  is bounded above, then     exists and       •

Definition 1.10: Least-Upper-Bound property

Suppose  is an ordered set with the least-upper-bound property○

Suppose    ,    and  is bounded below○

Let  be the set of lower bounds of  ○

Then       exists in  and       ○

Statement•

 is bounded below, so  is not empty▪

   ○

Given            , we have    by definition of  ▪

Therefore,  is bounded above▪

 is bounded above○

     is bounded above▪

And  has least upper bound property▪

So     exists▪

Let         ▪

    exists in  ○

If    , then  is not an upper bound for  , so    ▪

So    for all    ▪

Thus,  is a lower bound for  ▪

i.e.    ▪

 is a lower bound for  (i.e.    )○

If    is another lower bound for  ▪

        since  is an upper bound for  ▪

So,    , but    if    ▪

Therefore  is the least upper bound of  ▪

i.e.       ▪

      ○

Therefore              ○

Proof•

Theorem 1.11: Greatest-Lower-Bound Property

       if        and    ▪

    if      ,    and    ▪

An ordered field is a field  which is also an ordered set, such that○

Definition•

Definition 1.17: Ordered Field
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    if      ,    and    ▪

If    , we call  positive○

If    , we call  negative○

       ○

Examples•

 is an ordered field with least-upper-bound property○

Note•
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   ▪

             ▪

     ▪

If    then     , and vice versa(1)

         ▪

        ▪

       ▪

      ▪

If    and    then      (2)

   ▪

By (1),     ▪

By (2),            ▪

           ▪

By (1),         ▪

      ▪

If    and    then      (3)

If    , by (2),         ▪

If    , by (3),         ▪

      ×    ▪

So     ▪

If    then     . In particular    (4)

            
 

 
           

 

 
          ▪

   
 

 
                                 ▪

          
 

 
    ▪

           
 

 
    

 

 
     ▪

                              
 

 

 

 

                
 

 
   

 

 
  (5)

Let  be an ordered field, for        •

Proposition 1.18: Properties of Ordered Field

Ordered Field, Archimedean Property,  is dense in  
Friday, February 2, 2018 12:05 PM
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   ▪

       
 

 
   

 

 
  ▪

            
 

 
   

 

 
   ▪

There exists an ordered filed with the least-upper-bond property called  •

Moreover  has  as a subfield•

Proof: See appendix•

Theorem 1.19: Least-Upper-Bound Property of  

Given      , and    ○

There is a positive integer  such that     ○

Statement•

Let                               ○

Assume the Archimedean property is false○

Then  has an upper bound○

i.e.     exists○

Let       ○

   , so      ○

And    is not an upper bound for  ○

By definition of                               ○

      for some positive integer  ○

So,                ○

This contradicts       ○

Therefore the Archimedean property is true○

Proof•

Given    ○

Let    , then ○

     s.t.     ○

                               
 

 
    ○

Corollary•

Theorem 1.20: The Archimedean property of  

If      , and    , then there exists a    s.t.      ○

We can always find a rational number between two real numbers○

Statement•

Theorem 1.20:  is dense in  
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Let      , and    ○

So      ○

There exists a positive integer  s.t. ▪

        ▪

        ▪

        ▪

By the Archimedean property of  ○

There are positive integers      s.t. ▪

            ▪

i.e.          ▪

So there is an integer  s.t. ▪

        ▪

And more importantly,         ▪

By the Archimedean property of  again○

            ▪

                     ▪

                             
 

 
          ▪

 

 
       

 

 
      

 

 
      ▪

                        
 

 
    ▪

Combining two parts together, we have○

Proof•
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▪

For a positive integer  ○

    
 

 
     

 

 
     

 

 
     

 

 
   

               
        

▪

For a negative integer  ○

Notation•

For every real    , and positive integer  ○

There is one and only one positive real number  s.t.     ○

                         
 
 
  

○

Statement•

Try this for    and    , so     
   

○

Intuition•

If there were   and   s.t. ○

  
      

   , but      ○

Without loss of generality, assume      ○

Then   
    

 , so they can't both equal  ○

So, there is at most one such  ○

Proof (Uniqueness)•

                                    ▪

If  is a positive integer, then○

                                                         
       

▪

                
▪

Moreover, if      , then○

Lemma•

Let                     ○

      
 

   
                        ▪

So,         ▪

Thus,    ▪

 is not empty○

Proof (Existence)•

Theorem 1.21:  -th Root of Real Numbers

n-th Root of Real Numbers
Monday, February 5, 2018 12:10 PM
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Thus,    ▪

Therefore  is not empty▪

Let               ▪

Therefore           ▪

So    and  is bounded above by    ▪

By least upper bound property,     exists▪

Let       ▪

 is bounded above○

We now show that     and     ○

               ▪

             
    

      
              ▪

Then        
   

   
▪

Use the lemma                 
▪

Set          ▪

     
 

                 
   

▪

     
 

           
   

▪

     
 

      
▪

     
 

  ▪

Since                ▪

 is not an upper bound of  ▪

This contradicts       ▪

Thus,     ▪

Assume     ○

      
    

     
        ▪

  
    

     
       

  

     
       

 

     
       

  

     
       

 

 
    ▪

          ▪

Let               , then▪

              
 

▪

Use the lemma                 
▪

Set               ▪

              
 

            ▪

Therefore,     ▪

By definition of                     ▪

Assume     ○
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   and  is greater than everything in  ▪

Also      , so    is an upper bound for  ▪

But      , which contradicts       ▪

Thus,     ▪

Therefore     ○

Let    
 

 
      

 

 
  , then○

       ○

    
 

   ○

So        
 

 
  

○

Corollary: If       , and       then  
 

 
    

 

 
       

 

 
  •
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If    , then       where      and      ○

Definition•

If            , then○

                          ○

                          ○

                              ○

    

    
        

    

    
        

    

    
        

            

     
              ○

Addition, multiplication, subtraction, and division•

For       ○

       is the real part of  ○

       is the imaginary part of  ○

Real part and imaginary part•

       is the complex conjugate of  ○

                      ○

Complex conjugate•

        
   

               
is the absolute value of  ○

For a real number  ▪

          
        

    
    

  ▪

     
       

        
▪

Note○

Absolute value•

If                , then○

 

 
   

   

   
    

            

            
               

     

     
        

     

     
        ○

Complex division•

Complex Numbers

If  and  are complex numbers, then•

                 •

            •

           •

          •

Theorem 1.31: Properties of Complex Numbers

Complex Numbers, Euclidean Spaces
Wednesday, February 7, 2018 12:12 PM

   Page 28    



             •

   is real and positive (except when    )•

     unless    in which case      (1)

        (2)

Let              ▪

Then                    ▪

                       
                      

▪

                     
                         

▪

                
                 

▪

       
        

      
        

▪

       ▪

           (3)

           (4)

                         ▪

             ▪

                ▪

                  ▪

                   ▪

                            by (4)▪

                           by (3)▪

                          by (2)▪

           
▪

So                  
▪

Thus,              ▪

             (Triangle Inequality)(5)

If  and  are complex numbers, then•

Theorem 1.33: Properties of Complex Numbers

Inner product•

Definition 1.36: Euclidean Spaces
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               ▪

               ▪

If         with○

           

 

   

▪

Then the inner product of   and   is ○

Inner product•

If      , we define the norm of   to be            
     

○

Norm•

The vector space   with inner product and norm is called Euclidean  -space○

Euclidean spaces•

Suppose                , then•

      •

      if and only if       •

              •

                 (Schwarz's Inequality)•

                 (Triangle Inequality)•

                       (Triangle Inequality)•

Theorem 1.37: Properties of Euclidean Spaces

      
 

 

   

 

 

      
 

 

   

     
 

 

   

○

Statement•

See Theorem 1.35 in Rudin for a proof of Schwarz Inequality for  ○

For intuition, try proving            
 

    
    

     
    

  ○

Proof•

In a Euclidean Space,                  ○

       
 

     
 
            

 
     

 
               

 
            

 
○

Thus                  ○

Let                  , we have                        ○

Triangle Inequality•

Theorem 1.35: Schwarz Inequality
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Given two sets  and  •

A function (or mapping) is a rule that assigns elements in  to elements in  •

Notationally, if  is a function from  to  , we write      •

Set  is called the domain of  •

Set  is called the codomain of  •

For    ,                               is the image of  under  •

    is called the range of  •

If       , then we say that  is onto or surjective•

If                          , then  is one-to-one or injective•

A function that is both one-to-one and onto is said to be bijective•

For    ,                    is the inverse image of  under  •

Definition 2.1 & 2.2: Function

Function, Cardinality, Equivalence Relation
Monday, February 12, 2018 12:08 PM
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   is at most a single element set for all    if and only if  is injective○

In this case,    can be thought of as a function maps to the single element○

Notationally, if    ,                •

     defined by        ○

               ○

                ○

            , we can also write         ○

Example•

If there exists a one-to-one, onto mapping from set  to set  •

We say that  and  can be put in one-to-one correspondence•

And that  and  have the same cardinality (or cardinal number)•

In this case, we write    •

Definition 2.3: Cardinality

One-to-one correspondence is an example of an equivalence relation•

Reflexive:    ○

Symmetric: If    , then    ○

Transitivity: If        , then    ○

An equivalence relation satisfies 3 properties•

Definition 2.3: Equivalence Relation
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Let               and            •

For any set  , we say•

 is finite if     for some  ( is also considered as finite)•

 is infinite if     for all  •

 is countable if    •

 is uncountable if  is neither finite nor countable•

 is at most coutable if  is finite or countable•

Definition 2.4: Cardinality and Countability

           ○

 is countable•

                      ○

Define      by○

     

 
 

 
 

 
           

   

 
             

○

If          ▪

     
 

 
   

 

 
      

   

 
      

   

 
      ▪

Either way,    ▪

 is injective○

Given    , ▪

If            ▪

If               ▪

 is surjective○

Thus  is bijective○

 is countable•

There are "less" rational numbers   
 

 
  (         ) than ○

 

 
   

  

  
                     ▪

We can also ignore negatives and zeros▪

because integers are in 1-1 correspondence with  ▪

there are ordered pairs of integers      ○

 is countable•

Examples 2.5: Countability

Cardinality and Countability, Sequence
Wednesday, February 14, 2018 12:06 PM
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because integers are in 1-1 correspondence with  ▪

Idea: Write ordered pairs of integers in a 2 dimension array○

Putting this all together, we have○

            
 

 
    

 

 
          

 

 
    

 

 
    

 

 
     ○

A sequence is a function defined on  ○

Notationally, this is often written     ○

Meaning        for all    ○

Definition•

 
 

 
       

 

 
   

 

 
     ○

Example•

Definition 2.7: Sequence

Every infinite subset of a countable set is countable○

Statement•

Countable sets represent the "smallest" infinity○

No uncountable set can be a subset of a countable set.○

Intuition•

Let    ○

Suppose  is countable and  is infinite○

Since  is countable, its element will be a sequqnce

Proof•

Theorem 2.8: Infinite Subset of Countable Set
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Since  is countable, its element will be a sequqnce○

(order given by the bijective function      )○

Let   be the smallest     such that    
  ○

Let   be the next smallest    such that    
  ○

So       
      

    
    

   ○

i.e.  is a sequence indexed by    ○

Now consider      given by         
○

 is clearly one-to-one and onto by construction○

Therefore  is countable○

         
 

 
   

 

 
               

 

 
   

 

9
   

 

 6
      ○

        
 

 
           

 

  
                        ○

                  
 

  
   ○

We can show that  is a bijection○

Thus,  is countable○

Example•
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           ○

Set theoretic union•

   

 

   

           ○

Set theoretic intersection•

   

 

   

      ○

                    ○

                                      ○

Indexing set•

Let              ○

Let               ○

       

 

   

              

 

   

  ○

Example•

Definition 2.9: Set-Theoretic Operations

Let     
   

be a sequence of countable sets, then○

     

 

   

                  ○

Statement•

Just like the proof that  is countable○

             
    

    
   ○

              

            

          

        

      

○

Go along the diagonal, we have○

                            ○

Proof•

Suppose  is at most countable

Corollary•

Theorem 2.12: Union of Countable Sets

Set Operations, Countable and Uncountable
Friday, February 16, 2018 12:08 PM
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Suppose  is at most countable○

If   is at most countable     ○

        

 

   

                          ○

Let  be a countable set ○

    for          ▪

  may not be distinct▪

Let   be the set of all  -tuples            where○

Then   is countable○

Statement•

We proof by induction on  ○

                              

                        

                  

            

      

▪

Here,   are all the elements of A with possible repetition▪

Base case:    ○

The set of  -tuples            are countable▪

Now we treat the             as ordered pairs▪

                                ▪

By    case, the set of             is still countable▪

Now assume for    where    ○

Proof•

Theorem 2.13: Cartesian Product of Countable Sets

Let  be the set of all sequqnecse whose digits are 0 and 1○

Then  is uncountable○

Statement•

Suppose  is countable○

                         ▪

                         ▪

                         ▪

 ▪

where        for      ▪

Then               where   is a sequence of  and  for all    ○

Proof: Cantor's Diagonalization Argument•

Theorem 2.14: Cantor's Diagonalization Argument
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where          for      ▪

    
         
         

▪

Construct a new sequence               where○

Then          ○

So    , which is a contradiction○

Thus,  must be uncountable○

 is uncountable○

Corollary•
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A set  of points is called a metric space if ○

        if      and    □

        for all    □

Positivity▪

             for all      □

Symmetry▪

                    for all        □

Triangle Inequality▪

there exists a metric or distance function         ×    such that ○

Definition•

    ○

                ○

If    , this is just standard numerical absolute value ○

and  is the distance on the number line○

Example 1•

    ○

                                  where              ○

Is this a true metric space?○

Clearly                     since it is a sum of absolute values▪

Suppose               

Positivity○

Example 2 (Taxicab metric)•

Definition 2.15: Metric Space

Metric Space, Interval, Cell, Ball, Convex
Monday, February 19, 2018 12:04 PM
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                 □

                □

 
         

         
  

     

     
□

i.e.                □

Suppose                     ▪

                                            □

Suppose                ▪

Thus                                     ▪

                                  ▪

                                   ▪

Symmetry○

                                     ▪

                                ▪

                                    ▪

                            by Triangle Inequality of  ▪

                ▪

                   ▪

Triangular Inequality○

Segment      is            (open interval)○

Interval      is            (closed interval)○

We can also have half-open intervals:      and      ○

Interval•

If      for          ○

The set of points                in   ○

that satisfy         (     ) is called a  -cell○

 -cell•

If      and    ○

The open ball with center   with radius  is                  ○

Ball•

Definition 2.17: Interval,  -cell, Ball, Convex

   Page 40    



the closed ball with center   with radius  is                  ○

We call a set     convex if ○

                            ○

i.e. All points along a straight line from   to   and between   and   is in  ○

Convex•

Given an open  ball with center   and radius  ○

If        , then          and          ○

                ○

                        ○

                          ○

                            by Triangle Inequality○

                      ○

            ○

Thus                   ○

i.e.              ○

Example: Balls are convex•
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Let  be a metric space. All points/elements below are in  •

A neighborhood of  is a set      consisting of ▪

all points  such that         for some    ▪

We call  the radius of      ▪

Definition○

Example:   ○

Example: Taxicab metric○

Neighborhood•

A point  is a limit point of the set    if ▪

every neighborhood of  contains a point    and    ▪

Definition○

Example:   ○

Limit point•

Definitions 2.18: Definitions in Metric Space

Definitions in Metric Space
Wednesday, February 21, 2018 12:01 PM
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For        , the limit points is      ▪

Example:        ○

If    and  is not a limit point of  , then▪

 is an isolated point of  ▪

Definition○

Every integers is an isolated point in  ▪

Example:  in  ○

Isolated point•

A set  is closed if every limit point of  is in  ▪

Definition○

In  , neighborhood of    are open intevals cenerted about  ▪

All of      is a limit point since▪

The neighborhood about  is          □

               is non-empty□

If    , then take         
 

 
    □

Otherwise take         
 

 
    □

So every point in      is a limit point□

If        ▪

i.e.    or    □

If        ▪

Example:        ○

Closed set•
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Take    
         

           
□

Then              □

So nothing outside of      is a limit point of      □

So      contains all its limit points▪

Thus      is closed▪

A point  is an interior point of a set  if ▪

there exists a neighborhood      that is a subset of  ▪

Definition○

For the closed set  ▪

The point  is an interior point of  ▪

The point  is not an interior point of  (on the boundary of  )▪

Example:   ○

Interior point•

 is an open set if every point of  is an interior point▪

Definition○

 is an open set, since              ▪

Example:   ○

Open set•
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For        ▪

Take             ▪

           ▪

Thus every point in      is an interior point▪

Example:        ○

The complement of  (denoted as   ) is          ○

Complement•

 is perfect if  is closed and every point of  is limit point of  ○

Perfect•

 is bounded if there is a real number  and a point    s.t.○

        for all    ○

Bounded•

 is dense in  if ○

every point of  is a limit point of  or a point of  (or both)○

Dense•
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Every neighborhood is an open set○

Statement•

Let  be a metric space○

Choose a neighborhood        ○

Let        ○

Choose    s.t.           ○

Consider the neighborhood      ○

Let                      ○

                            ○

Thus         ○

i.e.        ○

So            ○

Therefore      is open○

Proof•

Theorem 2.19: Every Neighborhood is an Open Set

Statement•

Theorem 2.20: Property of Limit Point 

Neighborhood, Open and Closed, De Morgan's Law
Friday, February 23, 2018 12:06 PM
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If  is a limit point of  ○

Then every neighborhood of  contains infinitely many points of  ○

Suppose the opposite○

Then there exists a set  with a limit point  s.t.○

The neighborhood of  contains only finitely many points of  ○

Namely           ○

Let                                 ○

By definition,         for      ○

This contradicts the fact that  is a limit point○

So, this neighborhood about  must contain infinitely many points○

Proof•

A finite set has no limit points○

Corollary•

Let     be a finite or infinite collection of sets, then○

    

 

 

 

 

      
 

 

 

○

Statement•

            

 

 

 

Proof    •

Theorem 2.22: De Morgan's Law
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○

          

 

 

○

So        ○

Thus,       
 

for all  ○

          
 

 

 

○

        

 

 

 

 

      
 

 

 

○

               
 

 

 

○

Then       
 

for all  ○

So     for all  ○

     

 

 

○

           

 

 

 

 

○

         
 

 

 

     

 

 

 

 

○

Proof    •

A set  is open if and only if   is closed○

Note: This does not say that open is not closed and closed is not open○

Statement•

Suppose   is closed○

Choose    , so     ○

So,  is not a limit point of   ○

i.e. There exists a neighborhood      that contains no points of   ○

So,           ○

Consequently,        ○

So,  is an interior point of  ○

By definition,  is open○

Proof    •

Proof  •

Theorem 2.23: Complement of Open/Closed Set
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Suppose  is open○

Let  be a limit point of   (if exists)○

So, every neighborhood of  contains a point in   ○

So,  is not an interior point of  ○

 is open, so     ○

Thus,   contains its limit points and is closed by definition○

Proof    •

A set  is closed if and only if   is open○

Corollary•

Let     •

Subset Closed Open Perfect Bounded

              × ✓ × ✓

              ✓ × ✓ ✓

A nonempty finite set ✓ × × ✓

 ✓ × × ×

         × × × ✓

  ✓ ✓ ✓ ×

     × ? × ✓

Note:      is open as a subset of  , but not as a subtset of   •

Examples 2.21: Closed, Open, Perfect and Bounded
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Suppose   is open for all  ○

         

 

 

○

If    , then     for some  ○

Since   is open, there is a neighborhood about  in   ○

And consequently, the neighborhood about  is also in  ○

Thus  is open○

                                        

 

 

        (a)

Suppose   is closed for all  ○

Then   
 is open by Theorem 2.23○

      
 

 

 

               ○

    

 

 

 

 

    
 

 

 

                    ○

         

 

 

 

 

         ○

             

 

 

                          ○

                                          

 

 

          (b)

Suppose           is open○

           

 

   

○

So,     for      ○

By definition, since each   is open○

 is contained in a neighborhood    
      ○

Let                  ○

      for      

                                                     

 

   

             (c)

Theorem 2.24: Intersection and Union of Open/Closed Sets

Open and Closed, Closure
Monday, February 26, 2018 12:06 PM
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        for      ○

So,        ○

          

 

   

        ○

Suppose           is closed○

Then   
 is open by Theorem 2.23○

      
 

 

   

               ○

    

 

   

 

 

    
 

 

   

                    ○

         

 

   

 

 

         ○

             

 

   

                          ○

                                                       

 

   

               (d)

   
 

 
   

 

 
   

 

   

    ○

  
 

 
   

 

 
                                     ○

Note•

Let  be a metric space•

If    and   denotes the set of limit points of  in  •

Then the closure of  is defined to be        •

Definition 2.26: Closure

If  is a metric space and    , then•

Let      ○

Then  is neither a point of  nor a limit point of  ○

So there exists a neighborhood  about  that contains no points of  ○

        ○

i.e. every point of    is an interior point○

Thus    is open○

Therefore  is closed

  is closed•

Theorem 2.27: Properties of Closure
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Therefore   is closed○

If     , then  is closed○

If  is closed,  contains its limit points, so     and     ○

      is closed•

Suppose  is closed and    ○

                ○

           ○

Thus          ○

    for every closed set    s.t.    •

Intuition:   is the smallest closed set in  containing  •

If        , and  is bouned above, then        ○

Hence       if  is closed○

Statement•

Let       ○

Clearly     ▪

If    ○

Let    ▪

Let          ▪

Suppose     , then    is an upper bound for  ▪

But this contradicts the fact that       ▪

So there must be some    with        ▪

Thus, for any neighborhood about  ,     in the neighborhood▪

So  is a limit point of  ▪

i.e.        ▪

If    ○

Proof•

Theorem 2.28: Closure and Least Upper Bound Property of  
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A sequence     in a metric space  converges to a point    if○

Given any    ,     s.t.               ○

    ▪

   
   

    ▪

       ▪

If     converges to  , we write○

If     does not converge, it is said to diverge○

Definition•

 is small○

 is a "point of no return"  beyond which sequence is within  of  ○

Intuition•

Definition 3.1: Convergence and Divergence

Given a sequence     •

The set of points   (   ) is called the range of the sequence•

Range could be infinite, but it is always at most countable•

Since we can always construct a function         , where        •

Range

A sequence     is said to be bounded if its range is bounded•

Boundedness

  Limit Range Bounded

Consider the following sequences of complex numbers•

Examples of Limit, Range and Boundedness

Convergence and Divergence, Range, Boundedness
Wednesday, February 28, 2018 12:07 PM
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    Limit Range Bounded

   
 

 
  

0 Infinite Yes

     Divergent Infinite No

     
     

 
      

1 Infinite Yes

     Divergent        Yes

    1    Yes

Let    ○

                                                
 

 
   ○

       
 

 
   

 

 
    ○

      
 

 
       

 

 
          ○

            
   

 

 
    ○

         
   

 

 
    •
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Let     be a sequence in a metric space  •

Let  be a neighborhood of  with radius  ▪

                            ▪

So,          ▪

         may not be in  , but there are only finitely many of these▪

Suppose     converges to  ○

Let    be given▪

                is a neighborhood of  ▪

By assumption, all but finitely points in     are in  ▪

Choose    s.t.          ▪

Then               ▪

      
   

    ▪

Suppose every neighborhood of  contains all but finitely many   ○

       any neighborhood of  contains   for all but finitely many  •

                                     
 

 
        ▪

                                        
 

 
        ▪

Let    be given○

                         
 

 
   

 

 
         ▪

Let             , then ○

Since    is arbitrary,          ○

Therefore     ○

Given    and     . If     converges to  and to   , then     •

Since     converges to some  ○

Let    , then     s.t.          ○

Let                                     ○

Then               ○

By definition,     is bounded○

If     converges, then     is bounded•

                                                               •

Theorem 3.2: Important Properties of Convergent Sequences

Important Properties of Convergent Sequences
Friday, March 2, 2018 12:06 PM
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Since  is a limit point of  ○

Every neighborhood of  contains    , and    ○

                                    
 

 
  ○

Let    be given○

                                 
 

 
    ○

           
 

 
             

 

 
    ○

Therefore     ○
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         •

   
   

                      
 

 
            ▪

   
   

                      
 

 
            ▪

Given    ○

                                             ▪

Let             , then for    ○

             
   

         ○

   
   

         •

Given    ○

   
   

                              ○

So,                      ○

            
   

        ○

   
   

             •

Given    ○

            ▪

If    ○

   
   

                     
 

   
           ▪

                         
 

   
     ▪

If    ○

             
   

      ○

   
   

           •

                                        ▪

Standard approach○

                                    ▪

Rudin's approach○

     s.t.         for     

Given    ○

   
   

       •

Theorem 3.3: Algebraic Limit Theorem

Algebraic Limit Theorem
Monday, March 5, 2018 12:10 PM
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     s.t.            for     ▪

     s.t.            for     ▪

                for    ▪

    
   

              ▪

Let                  ○

    
   

                                 ▪

    
   

                 
   

           
   

         ▪

         ▪

   ▪

   
   

    ○

            
   

       ○

   
   

                      
   

 
            ○

By the Triangle Inequality,                      ○

                     
   

 
    

   

 
         ○

                           
 

 
               ○

 
 

  
   

 

 
     

    

   
        

 
   

     

        
        

 
   

     

   
     

   
        ○

             
   

 

  
   

 

 
  ○

   
   

 

  
   

 

 
                      •
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Suppose                              where    , then○

                                       
   

                ○

Statement (a)•

Given    , there exists    s.t.               for    ▪

Thus,                       for          ▪

             
   

                 ▪

Assume           ○

                                         
 

  
              ▪

              
            

 
 

   

             
 

 
             

 
 

   

             
 

   
  

 
  

 

   

     
 

  ▪

Therefore            ▪

          
   

                 ○

Proof (a)•

         and          are sequences in   ,     is a sequence in  ▪

                          ▪

Suppose○

   
   

                         ▪

   
   

                         ▪

   
   

                 ▪

Then○

Statement (b)•

This follows from (a) and Theorem 3.3 (Algebraic Limit Theorem)○

Proof (b)•

Theorem 3.4: Convergence of Sequence in   

An open cover of a set  in a metric  is •

                                             

 

 

•

Definition 2.31: Open Cover

Definition 2.32: Compact Sets

Sequence Convergence in   , Compact Set
Wednesday, March 7, 2018 12:15 PM
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A set  in a metric space  is compact if ○

every open cover of  has a finite subcover○

Definition•

Intuition for   : Closed and bounded•

               ○

 is a open cover of itself, but  is not compact○

        
 

 
                                                  ○

We cannot take a finite collection of these   and still have an open cover○

So it has no finite subcover○

Therefore        is not compact○

Example 1•

Let            ○

    
 

 
                 ▪

         ▪

            for some    ▪

Consider               ,       ○

Then               is an open cover of      ○

                                            
 

 
     ○

Therefore        is compact○

Example 2•
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Compact subsets of metric spaces are closed○

Statement•

Let  be a compact subset of a metric space  ○

We shall prove that the complement of  is open○

Let         ○

                                
 

 
        ○

Since  is compact,             s.t.○

     
    

      
  ○

Let      
    

      
○

Then  is a neighborhood of  that does not intersect  ○

      is an interior point of   ○

So   is open and therefore  is closed○

Proof•

Theorem 2.34: Compact Sets are Closed

Compact Subset, Cantor's Intersection Theorem
Monday, March 12, 2018 12:08 PM
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Closed subsets of compact sets are compact○

Statement•

Let  be a metric space○

Suppose      , where   is closed, and  is compact○

Let     be an open cover of  ○

Consider          , where   is open○

Then          is an open cover of  ○

Since  is compact,  has a finite subcover  ○

If     , then       is still finite and covers  ○

So we have a finite subcover of     ○

Therefore  is compact○

Proof•

Theorem 2.35: Closed Subsets of Compact Sets are Compact
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If  is closed and  is compact , then    is compact○

Corollary•

 compact   is closed○

We know  is closed, so    is closed○

     , and  is compact○

So    is compact○

Proof•

If     is a collection of compact subsets of a metric space  s.t.○

The intersection of every finite subcollection of     is nonempty○

        

 

 

            ○

Statement•

Fix        and let      
    ○

Assume no point of   belongs to every   ○

Then     is an open cover of   ○

Since   is compact,       
    

      
○

Where           is a finite collection of indices○

Then       
      

  ○

This is a contradiction, so no such set   exists

Proof•

Theorem 2.36: Cantor's Intersection Theorem
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This is a contradiction, so no such set   exists○

The result follows○

If     is a sequence of nonempty compact sets s.t.             ○

        

 

   

            ○

Corollary•

If  is an infinite subset of a compact set  ○

Then  has a limit point in  ○

Statement•

If no point of  were a limit point of  ○

Then     ,      s.t. no point of  other than  ○

i.e.     contains at most one point of E (namely,  , if    )○

So no finite sub-collection of       can cover  , and thus not  ○

This is a contradiction, so  has a limit point in  ○

Proof•

Theorem 2.37: Infinite Subset of Compact Set
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If     is a sequence of closed intervals in  s.t.             ○

        

 

   

            ○

Statement•

Intuition•

Let           ○

 is nonempty▪

 is bounded above by   since           ▪

So     exists▪

Let       
   

○

          ○

               ▪

                ▪

      ,                ○

So,               ○

               

 

   

○

Proof•

Theorem 2.38: Nested Intervals Theorem

Let  be a positive integer○

If     is a sequence of  -cells s.t.             ○

       

 

   

            

Statement•

Theorem 2.39: Nested  -cell

Nested Intervals Theorem, Compactness of  -cell
Wednesday, March 14, 2018 12:06 PM
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            ○

Let   consists of all points                 s.t.○

                                  ○

Let                 ○

For each  ,       satisfies the hypothesis of Theorem 2.38○

             
       

 

   

          ○

Let            
    

      
  ○

                           

 

   

○

Proof•

Every  -cell is compact○

Statement•

Let                                   be a  -cell○

               
 

 

   

            

 

                        ○

Suppose     is an open cover of  with no finite subcover○

       
     

 
      ▪

                                      ▪

Those intervals describes    -cells   whose union is  ▪

Since the number of   is finite, and     has no finite subcover▪

   not covered by a finite subcover of     ; call this   ▪

Repeat this process on   to obtain        ▪

We can build a sequence     ▪

Build sequence     ○

         ▪

  is not covered by any finite sub-collection of     ▪

                         
 

  
   ▪

    is a sequence of  -cells s.t.○

By Theorem 2.38,            

Proof•

Theorem 2.40: Compactness of  -cell
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By Theorem 2.38,             ○

  is open▪

i.e.     s.t.                     ▪

                                  
 

  
     ▪

In this case,      , which is impossible, since▪

  is not covered by any finite sub-collection of     ▪

So no such open cover     exists▪

Then           , for some   ○

So every open cover of  have a finite subcover○

Therefore  is compact○
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 is closed and bounded(a)

 is compact(b)

Every infinite subset of  has a limit point in  (c)

For a set     , the following properties are equivalent•

If (a) holds, then    for some  -cell○

Theorem 2.40 ( is compact)▪

Theorem 2.35 (Closed subsets of compact sets are compact)▪

(b) follow from○

Proof        •

See Theorem 2.37○

Proof        •

     s.t.                 ▪

         is an infinite subset of  with no limit points▪

This is a contradiction, so  must be bounded▪

Suppose  is not bounded○

           that is a limit point of  but not in  ▪

                                         
 

 
  ▪

Let            
   

be a infinite subset of  ▪

By construction,  has        as a limit point▪

Let      and           □

By triangle inequality,□

                                                         
 

 
   

 

 
              □

                           □

                                           
 

 
               □

There are only finitely many points of  in it□

                  cannot be a limit point of  □

Since   was arbitrary,        is the only limit point of  □

We want to show that        is the only limit point of  ▪

Suppose  is not closed○

Proof        •

Theorem 2.41: The Heine-Borel Theorem

Heine-Borel, Weierstrass, Subsequence
Friday, March 16, 2018 12:07 PM
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By (c),  has a limit point in  i.e.           ▪

This is a contradiction, s   has to be closed▪

Therefore  is closed and bounded○

Every bounded infinite subset  of   has a limit point in   ○

Statement•

 is bounded, so       for some         ○

By Theorem 2.40,  is compact○

By Theorem 2.37,  has a limit point in  ○

Hence,  has a limit point in   ○

Proof•

Theorem 2.42: The Weierstrass Theorem

Given a sequence     ○

Consider a sequence       with           ○

Then the sequence     
 is a subsequence of     ○

If     
 converges, its limit is called a subsequential limit of     ○

Definition•

         
 

 
      

 

 
   

 

 
   

 

 
   

 

 
     ○

                     
 

 
   

 

6
   

 

7
   

 

 8
    

 

   
    

 

   
      ○

    
 

 9
    

 

 8
    

 

 
   

 

  7
    

 

  
    

 

 9
    

 

  
                           ○

Example•

A subsequential limit might exist for a sequence in the absence of a limit○

    converges to  if and only if every subsequence of     converges to  ○

Note•

Definition 3.5: Subsequences

If     is a sequence in a compact metric space  ○

Then some subsequence of     converges to a point of  ○

Statement (a)•

Let  be the range of     ○

    and a sequence        with           s.t.▪

   
    

    
    ▪

If  is finite○

Proof (a)•

Theorem 3.6: Properties of Subsequence
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    ▪

By Theorem 2.37,  has a limit point    ▪

                                                 
  

 

 
       ▪

It follows that     
 converges to  ▪

If  is infinite○

Every bounded sequences in   contains a convergent subsequence○

Statement (b)•

By Theorem 2.41, every bounded subset of   is in a compact subset of   ○

Result follows by (a)○

Proof (b)•
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A sequence     in a metric space  is said to be Cauchy sequence•

If          s.t.           ,      •

Definition 3.8: Cauchy Sequence

Let  be a nonempty subset of metric space  •

Let  be set of all real numbers of the form       with      •

Then            is called the diameter of  (possibly  )•

If     is a sequence in  and              •

                                                 
   

         •

Definition 3.9: Diameter

If   is the closure of a set  in a metric space  , then               ○

Statement•

This is obvious since     ▪

              ○

Let       ▪

                                  
 

 
           

 

 
  ▪

                               □

 
 

 
            

 

 
  □

             ▪

              ○

Proof•

Theorem 3.10: Diameter and Closure

Cauchy Sequence, Diameter
Monday, March 19, 2018 12:19 PM
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           □

         □

Since    was arbitrary,              □

So               ▪

Therefore               ○

If   is a sequence of compact sets in  s.t. ○

                 
   

         ○

        

 

   

                              ○

Statement•

         

 

   

○

By Theorem 2.36,  is not empty○

If  contains more than one point,         ○

But          , then ○

                    
   

           ○

                    
   

         ○

There can only be one point in  ○

Proof•

Theorem 3.10: Nested Compact Set
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In any metric space  , every convergent sequence is a Cauchy sequence○

Statement (a)•

Suppose     ○

                               
 

 
       ○

                         
 

 
   

 

 
           ○

So     is a Cauchy sequence○

Proof (a)•

If  is a compact metric space and     is a Cauchy sequence○

Then     converges to some point of  ○

Statement (b)•

Let     be a Cauchy sequenece in compact metric space  ○

For    , let               ○

                   
   

       
        

   
         ○

By Theorem 2.35,   
    as closed subset of  is compact○

Since             
          

         ○

By Theorem 3.10 (b),               
         ○

                      s.t.        
            ○

Since     
                                  

    ○

In other word,                   ○

     
   

    ○

Proof (b)•

In   , every Cauchy sequence converges○

Statement (c)•

Let          be a Cauchy sequence in   ○

Let                              ○

                      ○

Then the range of          is                              ○

By Theorem 2.41, every bounded subset of   has compact closure in   ○

(c) follows from (b)

Proof (c)•

Theorem 3.11: Cauchy Sequence and Convergence

Cauchy Sequence, Complete Metric Space, Monotonic 
Wednesday, March 21, 2018 12:07 PM

   Page 74    



(c) follows from (b)○

A metric space  is said to be complete if○

every Cauchy sequence converges in  ○

Definition•

  is complete○

Compact metric space  is complete○

 is not complete (convergence may lie outside of  )○

Examples•

Definition 3.12: Complete Metric Space

A sequence     of real numbers is said to be •

monotonically increasing if             •

monotonically decreasing if             •

monotonic if     is either monotonically increasing or decreasing•

Definition 3.13: Monotonic Sequence

If     is monotonic, then     converges if and only if it is bounded○

Statement•

By Theorem 3.2 (c), converge implies boundedness○

Without loss of generality, suppose     is monotonically increasing○

Let             , and       , then          ○

Given    ,                      ○

Since    is not an upper bound of  , and     is increasing○

               
   

    ○

Proof•

Theorem 3.14: Monotone Convergence Theorem
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Let     be a sequence of real numbers s.t.•

         s.t.          •

Then we write      •

Similarly if          s.t.          •

Then we write      •

Definition 3.15: Sequences Approaching Infinity

Let     be a sequence of real numbers○

Let  be the set of  (in the extended real number system) s.t.○

   
  for some subsequence     

 ○

 contains all subsequential limits of     plus possibly      ○

       
   

                                           ○

       
   

                                           ○

Definition•

   
     

  
 
 
  

         
 

 
   

 

 
    

 

 
   

 

 
    

 

6
     ○

      
   

              ○

      
   

               ○

Example 1•

All subsequential limits of a convergent sequence▪

converge to the same value as the sequence▪

   
   

           
   

         
   

    ○

          ▪

      ▪

 All subsequential limits =  ▪

    
   

    ▪

      
   

         
   

        
   

    ○

Example 2•

Definition 3.16: Upper and Lower Limits

Let   be a sequence of real numbers, then•

Theorem 3.17: Properties of Upper Limits

Upper and Lower Limits
Friday, March 23, 2018 12:11 PM
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Let     be a sequence of real numbers, then•

 is not bounded above, so     is not bounded above▪

There is a subseqnence      s.t.    
  ▪

So        ▪

When      ○

 is bounded above▪

And at least one subsequential limit exists i.e.    ▪

By Theorem 3.7,  is closed i.e.     ▪

By Theorem 2.28,           ▪

Therefore     ▪

         ○

Then       ▪

     and        ▪

          ○

    •

If      with     for infinitely many    ○

Then     s.t.       ○

This contradicts the definition of   ○

If                                •

Suppose          s.t. the property above holds for    ○

Without loss of generality, suppose    ○

Choose  s.t.      ○

Since  satisfies the property above○

    s.t.          ○

So no subsequence of     can converge to  ○

This contradicts the existence of  ○

Therefore only one number can have these properties○

Moreover   is the only number with these properties•
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Given                where    is some fixed number○

If     , then     ○

(Proof on homework)○

Lemma (The Squeeze Theorem)•

                 
 

  
           

 

    
    ○

         ○

                                   
 

 
   

 
 
  

○

              
 

 
   

 
 
  

    
 

 
   

 

  
       

 

  
        ○

             
   

 

  
     ○

              
   

 

  
     •

                     
   

   ▪

        ○

Then      ▪

Let           , then     ▪

        
 

     
 

   
       

       ▪

        ▪

 
   

 
          ▪

By the Squeeze Theorem,     ▪

       
   

         ▪

      
   

       ▪

When    ○

     
 

 
    ▪

      
   

    
    

  ▪

When    ○

              
   

       •

Theorem 3.20: Some Special Sequences

Some Special Sequences
Monday, April 2, 2018 12:11 PM
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    ▪

Let             ○

        
 

  
 

   
       

  
  

        
           

  
      

 
          

 ○

 
 

   
        

 ○

  
 

   
     

     
 

             ○

                             
   

         ○

       
   

       ○

   
   

       •

Let    s.t.    by                     ○

              
 

  
 
 
    

              

  
                       

    

    
     ○

             
 

 
         

 

 
         

 

 
  ○

     
  

     
          

    

    
         

    

  
         ○

                   
    

  
           ○

                       
  

     
           ○

       
   

  

     
           ○

                   
   

  

     
           •

      
 

   
     ○

      
 

   
       ○

                                     
   

 

     
           ○

      
   

 

   
 
   
      

 

 

                 
   

      ○

        
   

    ○

                 
   

    •
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Given a sequence     •

                                                  •

      

 

   

           •

   

 

   

                                              •

If     diverges, the series is said to diverge•

                                                                   

 

   

  •

 is called the sum of the series•

But it is technically the limit of a sequence of sums•

Definition 3.31: Series

   

 

   

                             

 

   

          ○

Statement•

This is Theorem 3.11 applied to     ○

Proof•

Theorem 3.22: Cauchy Criterion for Series

In the setting of Theorem 3.22, take    ○

We have       for    ○

      

 

   

                  
   

    ○

Statement•

                      

 

   

                   ○

Note•

  
 

 
   

 

 
   

 

 
   

 

 
   

 

6
   

 

7
   

 

8
       

 

 
   

 

 
   

 

 
   

 

8
   

 

8
   

 

8
   

 

8
    ○

          
 

 
  

 

   

         •

Theorem 3.23: Series and Limit of Sequence

Series, Cauchy Criterion for Series, Comparison Test
Wednesday, April 4, 2018 12:09 PM
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         ○

A series of nonnegative real numbers converges if and only if ○

its partial sum form a bounded sequence○

Statement•

See Theorem 3.14 (Monotone Convergence Theorem)○

Proof•

Theorem 3.24: Convergence of Monotone Series

                        

 

   

     

 

   

            ○

                            

 

   

       

 

   

    

 

   

  ○

        

 

   

          ○

                             

 

   

                   

 

   

          •

      

 

   

                           

 

   

○

                              

 

   

         ○

                             

 

   

                  

 

   

         •

Theorem 3.25: Comparison Test

                

 

   

 
 

   
     ○

If  > 1, the series diverges○

Statement•

           
         

          
 

   
     ○

This only works if we know this series converges○

Note•

If      , we have○

              

                  

Proof•

Theorem 3.26: Convergence of Geometric Series
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                  ○

              ○

    
      

   
        ○

               
   

      
   

      

   
         

 

   
     ○

               

 

   

                    ○
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Suppose          , then○

   

 

   

                 

 

   

                      ○

Statement•

By Theorem 3.24, we just need to look at boundness of partial sums○

              ▪

                 ▪

Let○

                               ▪

                  
▪

For     ○

                               ▪

 
 

 
                  

 

 
    

▪

For     ○

                     ▪

So     and     are both bounded or unbounded▪

For     ○

Proof•

Theorem 3.27: Cauchy Condensation Test

 
 

  
   

 

   

                                     ○

Statement•

                       

 

   

                  
   

    ▪

                
   

 

  
                         ▪

      ○

 

  
    

 

      
            

 

  
     ▪

If    ○

Proof•

Theorem 3.28: Convergence of   Series

Convergence Tests for Series
Friday, April 6, 2018 12:06 PM
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   Cauchy Condensation Test, ▪

   
   

 

  
                 

 

    
      

 

   

          ▪

   
 

    
      

 

   

        
 

 

   

                            ▪

By Theorem 3.26, this converges if           ▪

Otherwise,       , and this diverges▪

         

 

   

             
   

     
    

 
     •

Theorem 3.17(b) says if                                ○

              and    s.t.           
    

 
              ○

            

 

   

          ○

        

 

   

                             ○

          

 

   

          •

By Theorem 3.17, there exists a sequence     s.t.      
 

       
  ○

So       for infinitely many  , i.e.     ○

                   

 

   

         ○

          

 

   

         •

     
 

 
  

 

   

       
   

    
    

    
   

    
    

                          ○

     
 

  
   

 

   

       
   

    
    

    
   

 

       
                                  ○

                                     •

Theorem 3.33: Root Test

   

 

   

                     
   

 
    

  
       ○

  

 

   

             
    

  
                            

Statement•

Theorem 3.34: Ratio Test
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                                 ○

          
   

 
    

  
       ○

                         
    

  
            ○

            ▪

                     ▪

 ▪

             ▪

In particular○

So,                    ○

          

 

   

          ○

           
     
        

  

 

   

               ○

             

 

   

                             ○

On the other hand, if                    ○

Then     , so series divreges by Theorem 3.23○

Proof•

     
 

 
  

 

   

    
   

   

       
           ○

     
 

  
   

 

   

    
   

    

        
            ○

      
   

  

    
                                         ○

Note•
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Given a sequence     of complex numbers•

                

 

   

                  •

Definition 3.38: Power Series

                           

 

   

○

             
   

     
   

 
○

      
 

 
                             ○

          

 

   

                                         ○

Statement•

Let        and apply the root test○

       
   

     
    

 
           

   
     

   
 

 
   

 
   ○

Proof•

Note:  is called the radius of convergence of the power series•

     

 

   

        ○

 
  

  
   

 

   

         ○

   

 

   

                                          ○

 
  

 
   

 

   

                                                             ○

 
  

  
   

 

   

                                                         ○

Examples•

Theorem 3.39: Convergence of Power Series

Statement•

Theorem 3.43: Alternating Series Test

Power Series, Absolute Convergence, Rearrangement
Monday, April 9, 2018 12:10 PM
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                ▪

                  ▪

   
   

    ▪

Suppose we have a real sequence     s.t.○

        

 

   

          ○

Proof: HW•

 
       

 
        

 

   

   
 

 
   

 

 
   

 

 
   

 

 
                  ○

Example: alternating harmonic series•

                                                                           •

If    converges but      diverges•

We way that    converges nonabsolutely or conditionally•

Absolute Convergence

If    converges absolutely, then    converges○

Statement•

    

 

   

       

 

   

○

The result follows by Cauchy Criterion○

Proof•

Theorem 3.45: Property of Absolute Convergence

Let     be a sequence in which every natural number appears exactly once•

Let   
     

, then    
 is called a rearrangement of    •

Definition 3.52: Rearrangement

Let    be a series of real number which converges nonabsolutely•

Let          •

Then there exists a rearrangement    
 s.t. •

      
   

  
          

   
  
   •

Theorem 3.54: Riemann Series Theorem

If    is a series of complex numbers which converges absolutely○

Then every rearrangement of    converges to the same sum○

Statement•

Proof•

Theorem 3.55: Rearrangement and Absolute Convergence
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Let    
 be a rearrangement of    with partial sum   

 ○

     

 

   

         ▪

By the Cauchy Criterion, given         s.t.○

Choose  s.t.        are all contained in the set             ○

Where        are the indices of the rearranged series○

Then if            will be cancelled in the difference      
 ○

So,       
        

  converges to the same value as     ○

Proof•
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Let    be metric spaces, and    ○

Suppose      and  is a limit point of  ○

         s.t. ▪

                        ▪

            ○

                                 
   

      ○

Definition•

           is the deleted neighborhood about  of radius  ○

  and   refer to the distances in  and  , respectively○

Note•

Theorem 4.2 relates this type of limit to the limit of a sequence○

Consequently, if  has a limit at  , then its limit is unique○

Relationship with sequence•

Definition 4.1: Limit of Functions

If              , then we define•

                  •

                  •

                •

 
 

 
       

    

    
                      •

Definition 4.3: Algebra of Functions

Let  be a metric space, and    •

Suppose  be a limit point of  •

   
   

              
   

      ○

Let    be complex functions on  where •

   
   

            ○

   
   

            ○

   
   

          ○

   
   

 
 

 
       

 

 
            ○

Then•

Theorem 4.4: Algebraic Limit Theorem of Functions

Limit of Functions
Wednesday, April 11, 2018 12:15 PM
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Suppose    are metric spaces,        , and      ○

For every    , there exists    s.t.▪

                             ▪

Then  is continuous at  if ○

If  is continuous at every point    , then  is continuous on  ○

Definition•

 must be defined at  to be continous at  (as opposed to limit)○

Every function is continuous at isolated point○

Note•

Definition 4.5: Continuous Function

In the context of Definition 4.5, if  is also a limit point of  , then•

                                       
   

         •

Theorem 4.6: Continuity and Limits

Suppose      are metric spaces,                   , and○

     defined by                  ○

If  is continuous at    , and  is continuous at     ○

Then  is continuous at  ○

Statement •

 is called the composition of  and  and is written as    ○

Note•

Let    be given○

If       and             , then                   ▪

Since         is continuous at          s.t.○

If    and          , then                ▪

Since      is continuous at  ,     s.t.○

                                   ▪

Consequently, if          , and    , then○

So,  is continuous at  by definition○

Proof•

Theorem 4.7: Composition of Continuous Function

Continuous Function and Open Set
Monday, April 16, 2018 12:09 PM
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Given metric spaces    ○

     is continuous if and only if○

      is open in  for every open set    ○

Statement•

Suppose  is continuous on  , and    is open○

We want to show that all points of       are interior points○

Suppose    , and       , then           ○

There exists a neighborhood of     that is a subset of  ▪

In other word,     s.t.                 ▪

Since  is open○

    s.t.                          ▪

Since  is continuous at  ○

                                      ▪

Then       , since  is open▪

Thus,         ▪

Suppose          ○

This shows that  is an interior point of       ○

Therefore       is open in  ○

Proof    •

Suppose       is open in  for every open set    ○

Let    and fix    ○

Let                      be the  neighborhood of     ○

Since  is open,       is also open by assumption○

Thus,     s.t.                   ○

But if         , then       , and so                 ○

So,      is continuous at  ○

Since    was arbitrary,  is continuous on  ○

Proof    •

Given metric spaces    ○

     is continuous on  if and only if ○

      is closed in  for every closed set  in  ○

Corollary•

A set is closed if and only if its complement is open

Proof•

Theorem 4.8: Characterization of Continuity
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A set is closed if and only if its complement is open○

Also,                 
 
, for every    ○
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A mapping       is bounded if•

There is a real number  s.t.              •

Definition 4.13: Boundedness

Let    be metric spaces,  compact○

If      is continuous, then     is also compact○

Statement•

Let     be an open cover of     ○

 is continuous, so each of the sets        is open by Theorem 4.8○

         is an open cover of  , and  is compact○

         
         

           
 ▪

So there is a finite set of indices             s.t.○

        
    

      
▪

Since                 ○

This is a finite subcover of       ○

Proof•

Theorem 4.14: Continuous Functions Preserve Compactness

Let  be a compact metric space○

If       is continuous, then     is closed and bounded○

Thus,  is bounded○

Statement•

See Theorem 4.14 and Theorem 2.41○

Proof•

Theorem 4.15: Applying Theorem 4.14 to   

Let  be a continuous real function on a compact metric space  ○

Let      
   

               
   

    ○

Then       s.t.       and       ○

Equivalently,       s.t.                    ○

Statement•

By Theorem 4.15,   is closed and bounded

Proof•

Theorem 4.16: Extreme Value Theorem

Continuity and Compactness, Extreme Value Theorem 
Wednesday, April 18, 2018 12:06 PM
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By Theorem 4.15,     is closed and bounded○

So     contains        by Theorem 2.28○

Let    be metric spaces,  compact○

Suppose      is continuous and bijictive○

Define        by                 ○

Then    is also continuous and bijective○

Statement•

By Theorem 4.8, it suffices to show     is open in  for all open sets    ○

Fix an open set  in  ○

 is open in compact metric space  ○

So   is closed and compact by Theorem 2.35○

Therefore,      is a compact subset of  by Theorem 4.14○

So      is closed in  by Theorem 2.34○

 is 1-1 and onto, so             
 

○

Therefore     is open○

Proof•

Theorem 4.17: Inverse of Continuous Bijection is Continuous
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Let    be metric spaces,      •

 is uniformly continuous on  if          s.t.•

If      and          , then                •

Definition 4.18: Uniform Continuity

Let    be metric spaces,  compact○

If      is continuous, then  is also uniformly continuous○

Statement•

Let    be given○

                                           
 

 
  ▪

Since  is continuous,           s.t.○

           , so       is an open cover of  ▪

Since  is compact,       has a finite subcover▪

So there exists finite set of points          s.t.▪

               ▪

                      
 
        ○

      
 

 
                      ○

Since                ,▪

            s.t.        ▪

Let      s.t.          ○

         
 

 
             ▪

                            
 

 
             ▪

Hence,○

                                            
 

 
   

 

 
  

  

▪

By the triangle inequality and definition of     ,○

Therefore  is uniformly continuous○

Proof•

Theorem 4.19: Uniform Continuity and Compactness

Theorem 4.20: Continuous Mapping from Noncompact Set

Uniform Continuity and Compactness
Friday, April 20, 2018 12:10 PM
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Let  be noncompact set in  ○

  is not bounded(a)

  is bounded but has no maximum(b)

 is bounded, but  is not uniformly continuous(c)

Then there exists a continuous function  on  s.t.○

Definition•

Since  is noncompact,  must be not closed○

So there exists a limit point     s.t.     ○

 is continuous by Theorem 4.9▪

 is clearly unbounded ▪

Let    and    be arbitrary□

Choose    s.t.         □

Taking  close to   □

We can make              , but        □

Since    is arbitrary□

 is not uniformly continuous▪

     
 

    
                      ○

 is continuous by Theorem 4.9▪

 is bounded, since         ▪

 has no maximum, since    
   

      , but       ▪

     
 

        
                             ○

Proof : If  is bounded•

      establishes    ○

     
  

    
                      ○

Proof: If  is not bounded•

Theorem 4.20: Continuous Mapping from Noncompact Set

Let         •

Let      given by                 •

Then  is continuous, and bijective•

But    is not continuous at           •

Example 4.21: Inverse Mapping and Noncompact Set
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Let  be a metric space, and      •

      and       ○

i.e. No point of  lies in the closure of  and vice versa○

 and  are separated if•

 is not a union of two nonempty separated sets○

   is connected if•

Definition 2.45: Connected Set

   is connected if and only if  has the following property○

If      and      , then    ○

Statement•

By way of contrapositive, suppose       , and        s.t.    ○

Let            and            ○

Then   and   are separated and        ○

Therefore  is not connected○

Proof    •

By way of contrapositive, suppose  is not connected○

Then there are nonempty separated sets  and  s.t.      ○

Let        . Without loss of generality, assume    ○

Let               . Then by Theorem 2.28,     ○

By definition of      . So,      ○

   and    ▪

      ▪

    ▪

If    ○

Since  and  are separated,     ▪

So    s.t.       and     ▪

Then       , so     ▪

If    ○

Proof    •

Theorem 2.47: Connected Subset of  

Let    be metric spaces

Statement•

Theorem 4.22: Continuous Mapping of Connected Set

Connected Set, Intermediate Value Theorem
Monday, April 23, 2018 12:10 PM
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Let    be metric spaces○

Let      be a continuous mapping○

If    is connected then       is also connected○

Suppose, by way of contradiction, that     is not connected○

             , where      are nonempty and separated○

Let           and           ○

Then      , where      ○

Since     , we have          ○

Since  is continuous and   is closed,        is also closed○

Therefore                              ○

Since       and       , we have       ○

Similarly,       ○

So,  and  are separated○

This is a contradiction, therefore     is connected○

Proof•

Let      be continuous on      ○

If          and if  statifies            ○

Then         s.t.       ○

Statement•

By Theorem 2.47,      is connected○

By Theorem 4.22,         is a connected subset of  ○

By Theorem 2.47, the result follows○

Proof•

Theorem 4.23: Intermediate Value Theorem
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Let  be defined (and real-valued) on      •

                  
         

   
                      •

                
   

                                    •

  is called the derivative of  •

If   is defined at point  ,  is differentiable at  •

If   is defined           , then  is differentiable on  •

Definition 5.1: Derivative

Let  be defined on      ○

If  is differentiable at        then  is continuous at  ○

Statement•

   
   

               
   

 
         

   
                    

   
              ○

      
   

         ○

Proof•

Theorem 5.2: Differentiability Implies Continuity 

 is continuous on      , and      exists at        ▪

 is defined on        , and  is differentiable at     ▪

Given○

 is differentiable at  , and                     ▪

If                    , then○

Statement•

Let       ○

                                             
   

      ▪

                                         
   

      ▪

By the definition of derivative○

         ▪

                ▪

            

Let       , then○

Proof•

Theorem 5.5: Chain Rule

Derivative, Chain Rule, Local Extrema
Wednesday, April 25, 2018 12:19 PM
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                        ▪

                              ▪

         

   
                                   ▪

If    , then○

      , and       ▪

So              by continuity▪

As    ○

                   
   

         

   
                                   ○

Let  be a metric space,      •

              s.t.         ○

 has a local maximum at    if     s.t. •

              s.t.         ○

 has a local minimum at    if     s.t.•

Definition 5.7: Local Maximum and Local Minimum

Let  be defined on      ○

If  has a local maximum (or minimum) at        ○

Then        if it exists○

Statement•

             ▪

By Definition 5.7, choose  , then ○

         

   
            ▪

Let    (with    ), then        ▪

Suppose        ○

         

   
            ▪

Let    (with    ), then        ▪

Suppose        ○

Therefore        ○

Proof•

Theorem 5.8: Local Extrema and Derivative

   Page 100    



 and  are continuous real-valued functions on      ▪

   are differentiable on      ▪

Given○

                                 ▪

Then there is a point        at which○

Statement•

Let                                     ,         ○

Then  is continuous on      and differentiable on      ○

We want to show that        for some        ○

By definition of  , we have                            ○

       on all of      , and we are done▪

If  is constant○

        s.t.               or               ▪

By Theorem 4.16,         s.t.▪

    is either a global maximum or a global minimum▪

By Theorem 5.8,        ▪

If  is not constant○

Proof•

Theorem 5.9: Extended Mean Value Theorem

Let          ○

If  is continuous on      and differentiable on      ○

Then         s.t.                     ○

Statement•

Let       in Theorem 5.9○

Proof•

Theorem 5.10: Mean Value Theorem

Suppose  is differentiable on      •

If                 , then  is monotonically increasing•

If                 , then  is constant•

If                 , then  is monotonically decreasing•

Theorem 5.11: Derivative and Monotonicity

Theorem 5.15: Taylor's Theorem

Mean Value Theorem, Monotonicity, Taylor's Theorem
Friday, April 27, 2018 12:07 PM
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 is a real-valued function on      ▪

Fix a positive integer  ▪

      is continuous on      ▪

       exists         ▪

Suppose○

Let          , where    ○

             
       

  
             

   

   

○

Then   between  and  s.t. ○

          
       

  
            

 
○

Statement•

When    , this is the Meal Value Theorem○

Note•

Without loss of generality, suppose    ○

                
 

▪

Define      by ○

           for some        ▪

Then we want to show that○

                      , where      ▪

Then       by our choice of  ▪

Taking derivative  times on both side, we get▪

                   , where      ▪

Note that     disappears, since its degree is    ▪

Define difference function  by○

                            by definition of  ▪

Therefore,                         ▪

Also,       , by definition of  ▪

By the Mean Value Theorem,         for some         ▪

                    for some          ▪

After  steps,           for some            ▪

So,         ▪

Now we only need to show           for some        ○

Proof•
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A partition  of a closed interval      is a finite set of points○

            where                    ○

Partition•

      
           

    ▪

      
           

    ▪

Define   and   to be ○

             

 

   

▪

             

 

   

▪

where            ▪

Define the upper sum and lower sum to be ○

  
 

 

    
       

     
      ▪

  
 

    

       
     

      ▪

Define the upper and lower Reimann integral to be ○

Let  be a bounded real function on      , for each partition  of      •

                                            , a             ○

                                    
 

 

           
 

 

○

     
 

 

    
      

 

    

        •

               ▪

Since  is bounded,       s.t.○

                           ▪

Therefore for every partition  of      ○

     
 

 

    
          

 

    

                      ○

Well-definedness of upper and lower Riemann integral•

Definition 6.1: Riemann Integral

Let  be a monotonically increasing function on    •

Definition 6.2: Riemann-Stieltjes Integral

Riemann-Stieltjes Integral, Refinement
Monday, April 30, 2018 12:12 PM
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Let  be a monotonically increasing function on      •

Let  be a real-valued function bouned on      •

      
           

    ○

      
           

    ○

                 ○

               

 

   

○

               

 

   

○

  
 

 

    
       

     
        ○

  
 

    

       
     

        ○

For each partition  of      , define•

                                 
 

 

              
 

 

○

This is the Riemann-Stieltjes integral of  with respect to  over      ○

We say  is integrable with respect to  with on      , and write       ○

    
 

 

    
      

 

    

   •

When       , this is just Riemann integral○

Note•

We say that the partition   is a refinement of  if     •

Given two partitions   and   , their common refinement is      •

Definition 6.3: Refinement and Common Refinement

If   is a refinement of  , then•

                  •

                  •

Theorem 6.4: Properties of Refinement
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   ○

Statement•

Given 2 partitions   and   ○

Let   be the common refinement○

Then                                        ○

Proof Outline•

Theorem 6.5: Properties of Common Refinement

      on      if and only if○

     there exists a partition  s.t.                    ○

Statement•

              
 

    

      
 

 

    
            ○

         
 

 

    
      

 

    

     ▪

    If                    ○

              
 

 

 
 

 
  □

    
 

 

           
 

 
  □

Then       s.t.▪

Consider their common refinement  ▪

By Theorem 6.4,                

   If       ○

Proof Outline•

Theorem 6.6
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By Theorem 6.4,                    ▪

If  is continuous on      , then       on      •

Theorem 6.8

If  is monotonic on      , and  is continuous on      •

Then       on      •

Theorem 6.9

If  is bounded on      with finitely many points of discontiunity•

And  is continuous on these points, then       •

Theorem 6.10
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Thursday, May 10, 7:45 - 9:45 AM, @ Social Science 6102•

~1 question from Exam 1 / Quiz○

~1 question from Exam 2○

~1 question on absolute convergence and/or power series○

~1 question on continuity○

~1 question on derivatives and/or integrals○

Nothing from Chapter 7○

5 or 6 questions•

Final Exam

Let    on      ○

 is continuous on      ▪

                   
 

 

                 ○

 is differentiable at   , and ▪

            ▪

Furthermore, if  is continuous at         , then○

Statement•

               ▪

Since    ,  is bounded, so     s.t.○

                    
 

 

        ▪

If        , then○

                             
 

 
  ▪

Given    ○

So this shows uniform continuity of  ○

Proof:  is continuous on      •

Suppose  is continuous at   ○

              whenever         for      ▪

Given         s.t. ○

If                 where        , then○

Proof:             •

Theorem 6.20: Fundamental Theorem of Calculus (Part I)

Fundamental Theorem of Calculus
May 2, 2018 12:11 PM
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                 ▪

   
 

   
           

 

 

        ▪

   
 

   
           

 

 

   
 

   
            

 

 

  ▪

  
 

   
                   

 

 

 ▪

  
 

   
             ▪

Consequently,             ○

Let    on      ○

If there exists a differentiable function  on      s.t.     ○

            
 

 

          ○

Statement•

Let    be given○

               ▪

Choose a partition               of      s.t.○

                      where      ▪

Apply the Meal Value Theorem,              s.t.○

         

 

   

                              ▪

                                            ▪

          ▪

              

 

   

                           ○

                

 

   

       ▪

           
 

 

       ▪

Combining the obvious inequalities below○

      

 

   

    
 

 

  

We get○

Proof•

Theorem 6.21: Fundamental Theorem of Calculus (Part II)

   Page 108    



          

 

   

     
 

 

   ▪

                
 

 

   ▪

                 
 

 

          ○
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Suppose     is a sequence of functions defined on a set  •

Suppose the sequence of numbers        converges     •

We can then defined  by         
   

          •

Definition 7.1: Limit of Sequence of Functions

         
 

   
              •

   
   

      ○

   
   

   
   

      ○

Fix    •

   
   

      ○

   
   

   
   

      ○

Fix    •

Example 7.2: Double Sequence

          
  

       
                     •

               

 

   

  
  

       
         

 

   

•

       , so       ○

When    •

    is a convergent geometric series with sum○

      
  

       
         

 

   

 
  

   
 

           
                  ○

When    •

Therefore,       
        

           
•

So convergent series of continuous functions may be discontinuous•

Example 7.3: Convergent Series of Continuous Functions

          
       

                      •

Let         
   

       •

Then      , but   
                •

Example 7.5: Changing the Order of Limit and Derivative

Sequence of Functions, Uniform Convergence
May 4, 2018 12:10 PM
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Then        , but   
                     •

Let               
 
                   •

   
   

         
 

 

     
   

          
 
  

 

 

     
   

 

    
       

 

 
  •

     
   

      
 

 

        
   

        
 
 

 

 

        
 

 

  •

Example 7.6: Changing the Order of Limit and Integral

A sequence of function     
   

converges uniformly on  to a function  if•

    ,     s.t. if    , then                    •

Definition 7.7: Uniform Convergence

Suppose     on a set  uniformly on a metric space •

Let  be a limit point of  and suppose that    
   

              •

Then     converges and    
   

        
   

  •

i.e.    
   

   
   

         
   

   
   

     •

Theorem 7.11: Interchange of Limits

If     is a sequence of continuous functions on  , and     uniformly on  •

Then  is continuous on  •

Theorem 7.12: Uniform Convergence Implies Continuity

Let  be a metric space•

Let     be the set of all continuous bounded functions      •

If        define the supremum norm        
   

      •

     is a distance function that makes     a metric space•

Definition 7.14: Space of Bounded Continuous Functions

        ○

      
 

 
     

 

 
     ○

      
 

9
     

 

9
   

 

9
     

6

9
   

7

9
     

8

9
     ○

 ○

Define a sequence of compact sets   •

             

 

   

                         •

Example 2.44: Cantor Set
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 is compact, nonempty, uncountable, perfect, measure zero•

          
       
       

•

Then     is discontinuous at all    •

          
       
       

•

Then     is discontinuous everywhere except    •

Example 4.27: Discontinuous Function
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