Theorem 1.11: Greatest-Lower-Bound Property

- Suppose *S* is an ordered set with the least-upper-bound property
- Suppose $B \subset S$, $B \neq \emptyset$ and B is bounded below
- Let *L* be the set of lower bounds of *B*
- Then $\alpha = \sup L$ exists in S and $\alpha = \inf B$

Theorem 1.20: The Archimedean property of $\mathbb R$

- Given $x, y \in \mathbb{R}$, and x > 0
- There is a positive integer n such that nx > y

Theorem 1.20: \mathbb{Q} is dense in \mathbb{R}

- If $x, y \in \mathbb{R}$, and x < y, then there exists a $p \in \mathbb{Q}$ s.t. x
- We can always find a rational number between two real numbers

Theorem 1.21: n-th Root of Real Numbers

- For every real x > 0, and positive integer n
- There is one and only one positive real number y s.t. $y^n = x$
- In this case, we write $y = x^{\frac{1}{n}}$

Theorem 1.31: Properties of Complex Numbers

- If *z* and *w* are complex numbers, then
- $\overline{z+w} = \bar{z} + \bar{w}$
- $\overline{zw} = \overline{z} \cdot \overline{w}$
- $z + \overline{z} = 2\operatorname{Re}(z), z \overline{z} = 2i\operatorname{Im}(z)$
- $z\bar{z}$ is real and positive (except when z=0)

Theorem 1.33: Properties of Complex Numbers

- If z and w are complex numbers, then
- |z| > 0 unless z = 0 in which case |z| = 0
- $|\bar{z}| = |z|$
- |zw| = |z||w|
- $|\operatorname{Re}(z)| \leq |z|$
- $|z + w| \le |z| + |w|$ (Triangle Inequality)

Theorem 1.37: Properties of Euclidean Spaces

- Suppose \vec{x} , \vec{y} , $\vec{z} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, then
- $|\vec{x}| \ge 0$

- $|\vec{x}| = 0$ if and only if $\vec{x} = \vec{0}$
- $|\alpha \vec{x}| = |\alpha| \cdot |\vec{x}|$
- $|\vec{x} \cdot \vec{y}| \le |\vec{x}| \cdot |\vec{y}|$ (Schwarz's Inequality)
- $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$ (Triangle Inequality)
- $|\vec{x} \vec{y}| \le |\vec{x} \vec{z}| + |\vec{y} \vec{z}|$ (Triangle Inequality)

Theorem 2.8: Infinite Subset of Countable Set

• Every infinite subset of a countable set is countable

Theorem 2.12: Union of Countable Sets

- Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of countable sets, then
- $S = \bigcup_{n=1}^{\infty} E_n$ is also countable

Theorem 2.13: Cartesian Product of Countable Sets

- Let *A* be a countable set
- Let B_n be the set of all n-tuples $(a_1, a_2, ... a_n)$ where
 - $\circ \quad a_k \in A \text{ for } k = 1, 2, \dots, n$
 - \circ a_k may not be distinct
- Then B_n is countable

Theorem 2.14: Cantor's Diagonalization Argument

- Let A be the set of all sequences whose digits are 0 and 1
- Then *A* is uncountable

Theorem 2.19: Every Neighborhood is an Open Set

• Every neighborhood is an open set

Theorem 2.20: Property of Limit Point

- If *p* is a limit point of *E*
- Then every neighborhood of *p* contains infinitely many points of *E*

Theorem 2.22: De Morgan's Law

- Let $\{E_{\alpha}\}$ be a finite or infinite collection of sets, then
- $\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}\right)^{c}$

Theorem 2.23: Complement of Open/Closed Set

- A set E is open if and only if E^c is closed
- Note: This does not say that open is not closed and closed is not open

Theorem 2.24: Intersection and Union of Open/Closed Sets

- For any collection $\{G_n\}$ of open sets, $\bigcup_{\alpha} G_{\alpha}$ is open
- For any collection $\{F_n\}$ of closed sets, $\bigcap_{\alpha} F_{\alpha}$ is closed
- For any finite collection, G_1, G_2, \dots, G_n of open sets, $\bigcap_{i=1}^n G_i$ is also open
- For any finite collection, $F_1, F_2, ..., F_n$ of closed sets, $\bigcup_{i=1}^n F_i$ is also closed

Theorem 2.27: Properties of Closure

- If *X* is a metric space and $E \subset X$, then
- \bar{E} is closed
- $E = \bar{E} \Leftrightarrow E$ is closed
- $\overline{E} \subset F$ for every closed set $F \subset X$ s.t. $E \subset F$

Theorem 2.28: Closure and Least Upper Bound Property of $\mathbb R$

- If $E \neq \emptyset$, $E \subset \mathbb{R}$, and E is bouned above, then $\sup E \in \overline{E}$
- Hence $\sup E \in E$ if E is closed

Theorem 2.34: Compact Sets are Closed

· Compact subsets of metric spaces are closed

Theorem 2.35: Closed Subsets of Compact Sets are Compact

• Closed subsets of compact sets are compact

Theorem 2.36: Cantor's Intersection Theorem

- If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X s.t.
- The intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty
- Then $\bigcap_{\alpha} K_{\alpha}$ is nonempty

Theorem 2.37: Infinite Subset of Compact Set

- If *E* is an infinite subset of a compact set *K*
- Then *E* has a limit point in *K*

Theorem 2.38: Nested Intervals Theorem

- If $\{I_n\}$ is a sequence of closed intervals in $\mathbb R$ s.t. $I_n \supset I_{n+1}, \forall n \in \mathbb N$
- Then $\bigcap_{n=1}^{\infty} I_n$ is nonempty

Theorem 2.39: Nested k-cell

- Let *k* be a positive integer
- If $\{I_n\}$ is a sequence of k-cells s.t. $I_n \supset I_{n+1}$, $\forall n \in \mathbb{N}$
- Then $\bigcap_{n=1}^{\infty} I_n$ is nonempty

Theorem 2.40: Compactness of k-cell

• Every *k*-cell is compact

Theorem 2.41: The Heine-Borel Theorem

- For a set $E \subset \mathbb{R}^k$, the following properties are equivalent
- E is closed and bounded
- *E* is compact
- Every infinite subset of *E* has a limit point in *E*

Theorem 2.42: The Weierstrass Theorem

• Every bounded infinite subset E of \mathbb{R}^k has a limit point in \mathbb{R}^k

Theorem 2.47: Connected Subset of R

- $E \subset \mathbb{R}$ is connected if and only if *E* has the following property
- If $x, y \in E$ and x < z < y, then $z \in E$

Theorem 3.2: Important Properties of Convergent Sequences

- Let $\{p_n\}$ be a sequence in a metric space X
- $p_n \to p \in X \iff$ any neighborhood of p contains p_n for all but finitely many n
- Given $p \in X$ and $p' \in X$. If $\{p_n\}$ converges to p and to p', then p = p'
- ullet If $\{p_n\}$ converges, then $\{p_n\}$ is bounded
- If $E \subset X$, and $p \in E'$, then there exists a sequence $\{p_n\}$ in E s. t. $p_n \to p$

Theorem 3.3: Algebraic Limit Theorem

- Suppose $\{s_n\}$, $\{t_n\}$ are complex sequence, and $\lim_{n\to\infty}s_n=s$, $\lim_{n\to\infty}t_n=t$, then
- $\bullet \quad \lim_{n \to \infty} s_n + t_n = s + t$
- $\lim_{n \to \infty} c + s_n = c + s, \forall c \in \mathbb{C}$
- $\lim_{n\to\infty} cs_n = cs, \forall c \in \mathbb{C}$
- $\lim_{n\to\infty} s_n t_n = st$
- $\lim_{n\to\infty} \frac{1}{s_n} = \frac{1}{s} \left(s_n \neq 0, \forall n \in \mathbb{N}, \text{ and } s \neq 0 \right)$

Theorem 3.4: Convergence of Sequence in \mathbb{R}^n

• Suppose $\overrightarrow{x_n} = (\alpha_{1,n}, \alpha_{2,n}, ..., \alpha_{k,n}) \in \mathbb{R}^k$ where $n \in \mathbb{N}$, then

• $\{\overrightarrow{x_n}\}\$ converges to $(\alpha_1, \alpha_2, ..., \alpha_k) \Leftrightarrow \lim_{n \to \infty} \alpha_{j,n} = \alpha_j \ (1 \le j \le k)$

Theorem 3.6: Properties of Subsequence

- If $\{p_n\}$ is a sequence in a compact metric space X
- Then some subsequence of $\{p_n\}$ converges to a point of X
- Every bounded sequences in \mathbb{R}^k contains a convergent subsequence

Theorem 3.10: Diameter and Closure

• If \overline{E} is the closure of a set E in a metric space X, then diam $\overline{E} = \operatorname{diam} E$

Theorem 3.10: Nested Compact Set

- If K_n is a sequence of compact sets in X s.t.
- $K_n \supset K_{n+1}$, $\forall n$ and $\lim_{n \to \infty} \operatorname{diam} K_n = 0$
- Then $\bigcap_{n=1}^{\infty} K_n$ consists of exactly one point

Theorem 3.11: Cauchy Sequence and Convergence

- In any metric space *X*, every convergent sequence is a Cauchy sequence
- If X is a compact metric space and $\{p_n\}$ is a Cauchy sequence
- Then $\{p_n\}$ converges to some point of X
- In \mathbb{R}^k , every Cauchy sequence converges

Theorem 3.14: Monotone Convergence Theorem

• If $\{s_n\}$ is monotonic, then $\{s_n\}$ converges if and only if it is bounded

Theorem 3.17: Properties of Upper Limits

- Let $\{s_n\}$ be a sequence of real numbers, then
- $s^* \in E$
- If $x > s^*$, then $\exists N \in \mathbb{N}$ s. t. $s_n < x$ for $n \ge N$
- Moreover s^* is the only number with these properties

Theorem 3.20: Some Special Sequences

- If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$
- If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- If p > 0, $\alpha \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$
- If |x| < 1, then $\lim_{n \to \infty} x^n = 0$

Theorem 3.22: Cauchy Criterion for Series

•
$$\sum_{n=1}^{\infty} a_n$$
 converges $\iff \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s. t. } \left| \sum_{k=n}^{m} a_k \right| < \varepsilon, \forall m \ge n \ge N$

Theorem 3.23: Series and Limit of Sequence

• If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$

Theorem 3.24: Convergence of Monotone Series

- A series of nonnegative real numbers converges if and only if
- its partial sum form a bounded sequence

Theorem 3.25: Comparison Test

- If $|a_n| < c_n$ for $n \ge N_0 \in \mathbb{N}$ and $\sum_{n=1}^{\infty} c_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges
- If $a_n \ge d_n \ge 0$ for $n \ge N_0 \in \mathbb{N}$ and $\sum_{n=1}^{\infty} d_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

Theorem 3.26: Convergence of Geometric Series

- If 0 < x < 1, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$
- If x > 1, the series diverges

Theorem 3.27: Cauchy Condensation Test

- Suppose $a_1 \ge a_2 \ge \cdots \ge 0$, then
- $\sum_{n=1}^{\infty} a_n$ converges $\iff \sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + \cdots$ converges

Theorem 3.28: Convergence of p —Series

• $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$

Theorem 3.33: Root Test

- Given $\sum_{n=1}^{\infty} a_n$, put $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$, then
- If $\alpha < 1$, $\sum_{n=1}^{\infty} a_n$ converges
- If $\alpha > 1$, $\sum_{n=1}^{\infty} a_n$ diverges
- If $\alpha = 1$, this test gives no information

Theorem 3.34: Ratio Test

- $\sum_{n=1}^{\infty} a_n$ converges if $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$
- $\sum_{n=1}^{\infty} a_n$ diverges if $\left| \frac{a_{n+1}}{a_n} \right| \ge 1$, $\forall n \ge n_0$ for some fixed $n_0 \in \mathbb{N}$

Theorem 3.39: Convergence of Power Series

- Given the power sires $\sum_{n=1}^{\infty} c_n z^n$
- Put $\alpha := \limsup_{n \to \infty} \sqrt[n]{|c_n|}$
- Let $R := \frac{1}{\alpha}$ (If $\alpha = +\infty$, R = 0; If $\alpha = 0$, $R = +\infty$)
- Then $\sum_{n=1}^{\infty} c_n z^n$ converges if |z| < R and diverges if |z| > R

Theorem 3.43: Alternating Series Test

- Suppose we have a real sequence $\{c_n\}$ s.t.
 - $\circ |c_1| \ge |c_2| \ge |c_3| \ge \cdots$
 - $c_{2m-1} \ge 0, c_{2m} \le 0, \forall m \in \mathbb{N}$
 - $\circ \lim_{n\to\infty} c_n = 0$
- Then $\sum_{n=1}^{\infty} c_n$ converges

Theorem 3.45: Property of Absolute Convergence

• If Σa_n converges absolutely, then Σa_n converges

Theorem 3.54: Riemann Series Theorem

- Let Σa_n be a series of real number which converges nonabsolutely
- Let $-\infty \le \alpha \le \beta \le +\infty$
- Then there exists a rearrangement $\Sigma a_n'$ s.t.
- $\liminf_{n\to\infty} s'_n = \alpha$, $\limsup_{n\to\infty} s'_n = \beta$

Theorem 3.55: Rearrangement and Absolute Convergence

- If Σa_n is a series of complex numbers which converges absolutely
- Then every rearrangement of Σa_n converges to the same sum

Theorem 4.4: Algebraic Limit Theorem of Functions

- Let X be a metric space, and $E \subset X$
- Suppose *p* be a limit point of *E*

• Let *f* , *g* be complex functions on *E* where

$$\circ \lim_{x \to p} f(x) = A \text{ and } \lim_{x \to p} g(x) = B$$

• Then

$$\circ \lim_{x \to p} (f + g)(x) = A + B$$

$$\circ \lim_{x \to p} (f - g)(x) = A - B$$

$$\circ \lim_{x \to n} (fg)(x) = AB$$

$$\circ \lim_{x \to p} \left(\frac{f}{g} \right)(x) = \frac{A}{B} \text{ where } B \neq 0$$

Theorem 4.6: Continuity and Limits

- In the context of Definition 4.5, if *p* is also a limit point of *E*, then
- f is continious at p if and only if $\lim_{x \to p} f(x) = f(p)$

Theorem 4.7: Composition of Continuous Function

- Suppose X, Y, Z are metric spaces, $E \subset X, f: E \to Y, g: f(E) \to Z$, and
- $h: E \to Z$ defined by $h(x) = g(f(x)), \forall x \in E$
- If f is continuous at $p \in E$, and g is continuous at f(p)
- Then *h* is continuous at *p*

Theorem 4.8: Characterization of Continuity

- Given metric spaces *X*, *Y*
- $f: X \to Y$ is continuous if and only if
- $f^{-1}(V)$ is open in X for every open set $V \subset Y$

Theorem 4.14: Continuous Functions Preserve Compactness

- Statement
 - Let *X*, *Y* be metric spaces, *X* compact
 - If $f: X \to Y$ is continuous, then f(X) is also compact

Theorem 4.15: Applying Theorem 4.14 to \mathbb{R}^k

- Let *X* be a compact metric space
- If $f: X \to \mathbb{R}^k$ is continuous, then f(X) is closed and bounded
- Thus, *f* is bounded

Theorem 4.16: Extreme Value Theorem

- Let *f* be a continuous real function on a compact metric space *X*
- Let $M := \sup_{p \in X} f(p)$, and $m := \inf_{p \in X} f(p)$
- Then $\exists p, q \in X \text{ s.t. } f(p) = M \text{ and } f(q) = m$
- Equivalently, $\exists p, q \in X \text{ s.t. } f(q) \le f(x) \le f(p), \forall x \in X$

Theorem 4.17: Inverse of Continuous Bijection is Continuous

- Let *X*, *Y* be metric spaces, *X* compact
- Suppose $f: X \to Y$ is continuous and bijictive
- Define $f^{-1}: Y \to X$ by $f^{-1}(f(x)) = x, \forall x \in X$
- Then f^{-1} is also continuous and bijective

Theorem 4.19: Uniform Continuity and Compactness

- Let *X*, *Y* be metric spaces, *X* compact
- If $f: X \to Y$ is continuous, then f is also uniformly continuous

Theorem 4.20: Continuous Mapping from Noncompact Set

- Let *E* be noncompact set in \mathbb{R}
- Then there exists a continuous function *f* on *E* s.t.
 - o *f* is not bounded
 - o *f* is bounded but has no maximum
 - \circ *E* is bounded, but *f* is not uniformly continuous

Theorem 4.22: Continuous Mapping of Connected Set

- Let *X*, *Y* be metric spaces
- Let $f: X \to Y$ be a continuous mapping
- If $E \subset X$ is connected then $f(E) \subset Y$ is also connected

Theorem 4.23: Intermediate Value Theorem

- Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on [a, b]
- If f(a) < f(b) and if c statisties f(a) < c < f(b)
- Then $\exists x \in (a, b)$ s.t. f(x) = c

Theorem 5.2: Differentiability Implies Continuity

- Let *f* be defined on [*a*, *b*]
- If f is differentiable at $x \in [a, b]$ then f is continuous at x

Theorem 5.5: Chain Rule

- Given
 - f is continuous on [a, b], and f'(x) exists at $x \in [a, b]$
 - o g is defined on $I \supset \text{im}(f)$, and g is differentiable at f(x)
- If h(t) = g(f(t)) ($a \le t \le b$), then
 - o h is differentiable at x, and $h'(x) = g'(f(x)) \cdot f'(x)$

Theorem 5.8: Local Extrema and Derivative

- Let f be defined on [a, b]
- If f has a local maximum (or minimum) at $x \in (a, b)$

Theorem 5.9: Extended Mean Value Theorem

- Given
 - o f and g are continuous real-valued functions on [a, b]
 - o f, g are differentiable on (a, b)
- Then there is a point $x \in (a, b)$ at which
 - $\circ [f(b) f(a)]g'(x) = [g(b) g(a)]f'(x)$

Theorem 5.10: Mean Value Theorem

- Let $f: [a, b] \to \mathbb{R}$
- If f is continuous on [a, b] and differentiable on (a, b)
- Then $\exists x \in (a, b)$ s.t. f(b) f(a) = (b a)f'(x)

Theorem 5.11: Derivative and Monotonicity

- Suppose f is differentiable on (a, b)
- If $f'(x) \ge 0$, $\forall x \in (a, b)$, then f is monotonically increasing
- If f'(x) = 0, $\forall x \in (a, b)$, then f is constant
- If $f'(x) \le 0$, $\forall x \in (a, b)$, then f is monotonically decreasing

Theorem 5.15: Taylor's Theorem

- Suppose
 - o f is a real-valued function on [a, b]
 - o Fix a positive integer n
 - o $f^{(n-1)}$ is continuous on (a, b)
 - o $f^{(n)}(t)$ exists $\forall t \in (a,b)$
- Let $\alpha, \beta \in [a, b]$, where $a \neq \beta$
- Define $P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t \alpha)^k$
- Then $\exists x$ between α and β s.t.
- $f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta \alpha)^n$

Theorem 6.4: Properties of Refinement

- If P^* is a refinement of P, then
- $L(P, f, \alpha) \le L(P^*, f, \alpha)$
- $U(P^*, f, \alpha) \leq U(P, f, \alpha)$

Theorem 6.5: Properties of Common Refinement

Theorem 6.6

- $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if
- $\forall \varepsilon > 0$, there exists a partition *P* s.t. $U(P, f, \alpha) L(P, f, \alpha) < \varepsilon$

Theorem 6.8

• If f is continuous on [a,b], then $f \in \mathcal{R}(\alpha)$ on [a,b]

Theorem 6.9

- If f is monotonic on [a, b], and α is continuous on [a, b]
- Then $f \in \mathcal{R}(\alpha)$ on [a, b]

Theorem 6.10

- If *f* is bounded on [*a*, *b*] with finitely many points of discontiunity
- And α is continuous on these points, then $f \in \mathcal{R}(\alpha)$

Theorem 6.20: Fundamental Theorem of Calculus (Part I)

- Let $f \in \mathcal{R}$ on [a, b]
- Define $F(x) = \int_{a}^{x} f(t)dt$ for $x \in [a, b]$, then
 - o F is continuous on [a, b]
- Furthermore, if f is continuous at $x_0 \in [a, b]$, then
 - o F is differentiable at x_0 , and
 - $\circ F'(x_0) = f(x_0)$

Theorem 6.21: Fundamental Theorem of Calculus (Part II)

- Let $f \in \mathcal{R}$ on [a, b]
- If there exists a differentiable function F on [a,b] s.t. F'=f
- Then $\int_{a}^{b} f(x)dx = F(b) F(a)$

Number Systems, Irrationality of $\sqrt{2}$

Wednesday, January 24, 2018

12:01 PM

Course Overview

- The real number system
- · Metric spaces and basic topology
- Sequences and series
- Continuity
- Topics from differential and integral calculus

Grading

Homework assignments	20%
Quiz (Feb. 9)	5%
Midterm 1 (Mar. 9)	20%
Midterm 2 (Apr. 13)	20%
Final (May 10 @ 7:45-9:45 AM)	35%

A	≥90%
В	≥80%
С	≥70%
D	≥60%

Tutoring

- Tom Stone @VV B205
- Monday 2:30 4:30 PM
- Tuesday 2:00 4:00 PM

Number Systems

- Natural Numbers: $\mathbb{N} = \{1,2,3,...\}$
- Integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$
- Rational Numbers: $\mathbb{Q} = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{Z}, b \neq 0 \right\}$
- Real numbers \mathbb{R} : fill the "holes" in the rational numbers

Example 1.1: Irrationality of $\sqrt{2}$

- There is no rational number p such that $p^2 = 2$
- Proof by contradiction
- Assume there is a rational number p such that $p^2 = 2$
- Then $p = \frac{m}{n}$, where $m, n \in \mathbb{Z}$, $n \neq 0$, and m, n have no common factor

•
$$\left(\frac{m}{n}\right)^2 = 2 \Rightarrow \frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2$$

• So m is even

•
$$m = 2k \ (k \in \mathbb{Z}) \Rightarrow (2k)^2 = 2n^2 \Rightarrow 4k^2 = 2n^2 \Rightarrow 2k^2 = n^2$$

- So n is also even
- *m*, *n* are both division by 2
- This contradicts the fact that m, n have no common factor
- So no such *p* exists

Sets, Gaps in Q, Field

Friday, January 26, 2018

12:03 PM

Definition 1.3: Sets

- Contains
 - If A is a set and x is an element of A, then we write $x \in A$
 - Otherwise, we write $x \notin A$
- Set
 - The **empty set** or **null set** is a set with no elements, and is denoted as \emptyset
 - o If a set has at least one element, it is called **nonempty**
- Subset
 - If *A* and *B* are sets and every element of *A* is an element of *B*
 - Then *A* is a **subset** of *B*
 - Rubin write this $A \subset B$, or $B \supset A$
 - \circ Fact: $A \subseteq A$ for all sets A
- · Proper subset
 - If *B* contain something not in *A*, then *A* is a **proper subset** of *B*
- Equal
 - If $A \subset B$ and $B \subset A$ then A = B
 - Otherwise $A \neq B$

Example 1.1: Gaps in Rational Number System

- We have proved that $\sqrt{2}$ is not rational
- i.e. there is no rational number p such that $p^2 = 2$
- Let $A = \{ p \in \mathbb{Q} | p^2 < 2 \}, B = \{ p \in \mathbb{Q} | p^2 > 2 \}$
- Prove: A has no largest element, and B has no smallest element
 - Let $p \in \mathbb{Q}$, and p > 0

$$\circ \text{ Let } q := p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}$$

o Then
$$q^2 - 2 = \left(\frac{2p+2}{p+2}\right)^2 - 2 = \frac{2(p^2-2)}{(p+2)^2}$$

- \circ If $p \in A$
 - then $p^2 2 < 0$

$$\Rightarrow q^2 - 2 = \frac{2(p^2 - 2)}{(p+2)^2} < 0$$

$$\Rightarrow q^2 < 2$$

- $\Rightarrow q \in A$
- $\blacksquare \Rightarrow q > p$
- i.e. A has no largest element
- \circ If $p \in B$
 - then $p^2 2 > 0$
 - $\Rightarrow q^2 2 = \frac{2(p^2 2)}{(p+2)^2} > 0$
 - $\Rightarrow q^2 > 2$
 - $\Rightarrow q \in B$
 - $\blacksquare \Rightarrow q < p$
 - i.e. B has no smallest element

Definition 1.12: Field

- A field is a set F with two binary operations called addition and multiplication
- that satisfy that following field axioms
 - Axioms for addition (+)
 - (A1) If $x \in \mathbb{F}$ and $y \in \mathbb{F}$, then $x + y \in \mathbb{F}$
 - (A2) Addition is communicate: $x + y = y + x, \forall x, y \in \mathbb{F}$
 - (A3) Addition is associative: $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{F}$
 - (A4) There exists $0 \in \mathbb{F}$ s.t. $x + 0 = x, \forall x \in \mathbb{F}$
 - (A5) $\forall x \in \mathbb{F}$, there exists an additive inverse $-x \in \mathbb{F}$ s.t. x + (-x) = 0
 - \circ Axioms for multiplication (\times or \cdot)
 - (M1) If $x \in \mathbb{F}$ and $y \in \mathbb{F}$, then $xy \in \mathbb{F}$
 - (M2) Addition is communicate: $xy = yx, \forall x, y \in \mathbb{F}$
 - (M3) Addition is associative: $(xy)z = x(yz), \forall x, y, z \in \mathbb{F}$
 - (M4) \mathbb{F} contains an element $1 \neq 0$ s.t. $1 \cdot x = x, \forall x \in \mathbb{F}$
 - (M5) If $x \in \mathbb{F}$ and $x \neq 0$, then there exists $\frac{1}{x} \in \mathbb{F}$ s.t. $x \cdot \frac{1}{x} = 1$
 - (D) The distributive law: x(y+z) = xy + xz, $\forall x, y, z \in \mathbb{F}$
- Example
 - o The real numbers are an example of field

Field, Order, Ordered Set

Monday, January 29, 2018 12:00 PM

Proposition 1.14: Properties of Fields (Addition)

- Given a field \mathbb{F} , for $x, y, z \in \mathbb{F}$
 - (1) If x + y = x + z, then y = z
 - x + y = x + z
 - (x + y) + (-x) = (x + z) + (-x) by (A5)
 - x + y + (-x) = x + z + (-x) by (A3)
 - x + (-x) + y = x + (-x) + z by (A2)
 - 0 + y = 0 + z by (A6)
 - y = z by (A4)
 - (2) If x + y = x, then y = 0
 - x + y = x = x + 0
 - $\Rightarrow y = 0$
 - (3) If x + y = 0, then y = -x
 - x + y = 0 = x + (-x)
 - $\Rightarrow y = -x$
 - (4) -(-x) = x
 - (-x) + (-(-x)) = 0
 - x + (-x) + (-(-x)) = x + 0
 - 0 + (-(-x)) = x + 0
 - -(-x) = x

Proposition 1.15: Properties of Fields (Multiplication)

- Given a field \mathbb{F} , for $x, y, z \in \mathbb{F}$
 - (1) If $x \neq 0$ and xy = xz, then y = z
 - (2) If $x \neq 0$ and xy = x, then y = 1
 - (3) If $x \neq 0$ and xy = 1, then $y = \frac{1}{x}$
 - (4) If $x \neq 0$, then $\frac{1}{1/x} = x$
- Proof similar to Proposition 1.14

Proposition 1.16: Properties of Fields

- Given a field \mathbb{F} , for $x, y \in \mathbb{F}$
 - (1) 0x = 0
 - 0 + 0 = 0
 - (0+0)x = 0x

- 0x + 0x = 0x
- 0x + 0x + (-(0x)) = 0x + (-(0x))
- 0x = 0
- (2) If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$
 - Suppose $x \neq 0$, $y \neq 0$, but xy = 0
 - $x \neq 0$, so $\frac{1}{x}$ exists
 - $\frac{1}{x}(xy) = \frac{1}{x} \cdot 0$

 - $1 \cdot y = 0$
 - $\mathbf{v} = 0$
 - This is a contradiction, so $xy \neq 0$
- (3) (-x)y = -(xy) = x(-y)
 - $(-x)y + xy = ((-x) + x)y = 0 \cdot y = 0$
 - (-x)y + xy + (-xy) = 0 + (-xy)
 - (-x)y = -xy
 - And the rest is similar
- $(4) \quad (-x)(-y) = xy$
 - Use (3), (-x)(-y) = -(x(-y)) = -(-xy) = xy

Definition 1.5: Order

- Intuition
 - The real number line

- Definition
 - Let *S* be a set.
 - An **order** on *S* is a relation, denoted by <
 - with the following two properties:
 - If $x, y \in S$, then only one of the statements x < y, x = y, y < x is true
 - If $x, y, z \in S$, if x < y and y < z, then x < z (Transitivity)
- Other notations
 - o $x \le y$ means either x < y or x = y
 - o $x \ge y$ means either x > y or x = y

Definition 1.6: Ordered Set

• Definition

- An **ordered set** is a set for which an order is defined.
- Example
 - $\circ \ \ \mathbb{Q}$ is an ordered set under the definition that
 - for $r, s \in \mathbb{Q}$, r < s if and only if s r is positive

Infimum and Supremum, Ordered Field

Wednesday, January 31, 2018

12:00 PM

Definition 1.7: Upper Bound and Lower Bound

- Suppose *S* is an ordered set and $E \subset S$
- If there exists $\beta \in S$ such that $x \leq \beta, \forall x \in E$
- We say that x is bounded above and call β an **upper bound** for E
- If there exists $\beta \in S$ such that $x \ge \beta$, $\forall x \in E$
- We say that x is bonded below by β , and β is a **lower bound** for E

Definition 1.8: Least Upper Bound and Greatest Lower Bound

- Definition
 - Suppose *S* is an ordered set and $E \subset S$ is bounded above.
 - Suppose there exists $\alpha \in S$ s.t.
 - α is an upper bond of E
 - If $\gamma < \alpha$, then γ is not an upper bound of E
 - Then we call α the **least upper bound** (or lub or sup or supremium) of *E*
 - Suppose there exists $\alpha \in S$ s.t.
 - α is an lower bond of *E*
 - If $\gamma > \alpha$, then γ is not an lower bound of E
 - Then we call α the **greastst lower bound** (or glb or inf or infimum) of *E*

Examples 1.9: Least Upper Bound and Greatest Lower Bound

- Recall
 - $\circ A = \{q \in \mathbb{Q} | q^2 < 2\}$ has no sup in \mathbb{Q}
 - $\circ B = \{q \in \mathbb{Q} | q^2 > 2\} \text{ has no inf in } \mathbb{Q}$
- If $\alpha = \sup E$ exists, α may or may not be in E
 - $\circ \ E_1 \coloneqq \{r \in \mathbb{Q} | r < 0\}$
 - $\inf E_1$ doesn't exist
 - $\sup E_1 = 0 \notin E_1$
 - $\circ \ E_2 \coloneqq \{r \in \mathbb{Q} | r \leq 0\}$
 - inf *E*₂ doesn't exist
 - $\sup E_2 = 0 \in E_2$
 - $\circ E := \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots \right\}$
 - $\inf E = 0 \notin E$
 - $\sup E = 1 \in E$

Definition 1.10: Least-Upper-Bound property

- We say that a ordered set S has **least-upper-bound property** provided that
- if $E \in S$ s.t. $E \neq \emptyset$ and E is bounded above, then sup E exists and sup $E \in S$

Theorem 1.11: Greatest-Lower-Bound Property

- Statement
 - Suppose *S* is an ordered set with the **least-upper-bound property**
 - Suppose $B \subset S$, $B \neq \emptyset$ and B is bounded below
 - Let *L* be the set of lower bounds of *B*
 - Then $\alpha = \sup L$ exists in S and $\alpha = \inf B$
- Proof
 - $\circ L \neq \emptyset$
 - *B* is bounded below, so *L* is not empty
 - *L* is bounded above
 - Given $b \in B$ and $l \in L$, we have $l \le b$ by definition of L
 - Therefore, *L* is bounded above
 - sup *L* exists in *S*
 - $L \neq \emptyset, L$ is bounded above
 - And S has least upper bound property
 - So sup *L* exists
 - Let $\alpha = \sup L \in S$
 - α is a lower bound for B (i.e. $\alpha \in L$)
 - If $\gamma < \alpha$, then γ is not an upper bound for L, so $\gamma \notin B$
 - So $\alpha \leq x$ for all $x \in B$
 - Thus, α is a lower bound for B
 - i.e. $\alpha \in L$
 - $\circ \quad \alpha = \inf B$
 - If $\beta > \alpha$ is another lower bound for *B*
 - Then $\beta \notin L$ since α is an upper bound for L
 - So, $\alpha \in L$, but $\beta \notin L$ if $\beta > \alpha$
 - Therefore α is the least upper bound of B
 - i.e. $\alpha = \inf B$
 - Therefore $\alpha = \sup L = \inf B \in S$

Definition 1.17: Ordered Field

- Definition
 - \circ An **ordered field** is a field \mathbb{F} which is also an ordered set, such that
 - x + y < x + z if $x, y, z \in \mathbb{F}$ and y < z

- xy > 0 if $x, y \in \mathbb{F}$, x > 0 and y > 0
- o If x > 0, we call x **positive**
- o If x < 0, we call x **negative**
- Examples
 - \circ N, Z, Q, R
- Note
 - $\circ \ \ \mathbb{R}$ is an ordered field with least-upper-bound property

Ordered Field, Archimedean Property, $\mathbb Q$ is dense in $\mathbb R$

Proposition 1.18: Properties of Ordered Field

- Let \mathbb{F} be an ordered field, for $x, y, z \in \mathbb{F}$
 - (1) If x > 0 then -x < 0, and vice versa
 - x > 0
 - x + (-x) > 0 + (-x)
 - 0 > -x
 - (2) If x > 0 and y < z then xy < xz
 - x > 0, z y > 0
 - x(z-y) > 0
 - xz xy > 0
 - xy < xz
 - (3) If x < 0 and y < z then xy > xz
 - *x* < 0
 - By (1), -x > 0
 - By (2), (-x)y < (-x)z
 - 0 < (-x)(z-y)
 - By (1), x(z-y) < 0
 - xz < xy
 - (4) If $x \neq 0$ then $x^2 > 0$. In particular 1 > 0
 - If x > 0, by (2), $x^2 > 0 \cdot x = 0$
 - If x < 0, by (3), $x^2 > 0 \cdot x = 0$
 - $1 = 1^2 = 1 \times 1 > 0$
 - So 1 > 0 ■
 - (5) If 0 < x < y, then $0 < \frac{1}{y} < \frac{1}{x}$
 - If y > 0, then $\frac{1}{y} \cdot y = 1 > 0 = 0 \cdot \frac{1}{y}$ by (4)
 - So, $\frac{1}{y}$ must have been positive by (2)
 - Similarly, $\frac{1}{x} > 0$
 - Therefore $\left(\frac{1}{x}\right)\left(\frac{1}{y}\right) > 0$

- Multiply both sides of x < y by $\left(\frac{1}{x}\right) \left(\frac{1}{y}\right)$
- We get $\frac{1}{y} < \frac{1}{x}$
- Therefore $0 < \frac{1}{y} < \frac{1}{x}$

Theorem 1.19: Least-Upper-Bound Property of $\mathbb R$

- There exists an ordered filed with the least-upper-bond property called $\mathbb R$
- Moreover \mathbb{R} has \mathbb{Q} as a subfield
- Proof: See appendix

Theorem 1.20: The Archimedean property of $\mathbb R$

- Statement
 - Given $x, y \in \mathbb{R}$, and x > 0
 - There is a positive integer n such that nx > y
- Proof
 - $\circ \quad \text{Let } A = \{ nx | n \text{ is a positive integer} \}$
 - Assume the Archimedean property is false
 - Then A has an upper bound
 - i.e. sup *A* exists
 - \circ Let $\alpha = \sup A$
 - $\circ x > 0$, so $\alpha x < \alpha$
 - And αx is not an upper bound for A
 - By definition of $A = \{nx | n \text{ is a positive integer}\}$
 - o $\alpha x < mx$ for some positive integer m
 - \circ So, $\alpha < mx + x = (m+1)x \in A$
 - This contradicts $\alpha = \sup A$
 - o Therefore the Archimedean property is true
- Corollary
 - \circ Given x > 0
 - \circ Let y = 1, then
 - $\exists n \in \mathbb{Z}_+ \text{ s.t. } nx > 1$
 - Therefore given x > 0, $\exists n \in \mathbb{Z}_+$ s. t. $\frac{1}{n} < x$

Theorem 1.20: $\mathbb Q$ is dense in $\mathbb R$

- Statement
 - If $x, y \in \mathbb{R}$, and x < y, then there exists a $p \in \mathbb{Q}$ s.t. x
 - We can always find a rational number between two real numbers

- Proof
 - Let $x, y \in \mathbb{R}$, and x < y
 - \circ So y x > 0
 - \circ By the Archimedean property of $\mathbb R$
 - There exists a positive integer n s.t.
 - n(y-x) > 1
 - $\Rightarrow ny nx > 1$
 - $\Rightarrow ny > nx + 1$
 - \circ By the Archimedean property of $\mathbb R$ again
 - There are positive integers m_1, m_2 s.t.
 - $m_1 > nx, m_2 > -nx$
 - i.e. $-m_2 < nx < m_1$
 - So there is an integer m s.t.
 - $-m_2 \le m \le m_1$
 - And more importantly, $m 1 \le nx < m$
 - Combining two parts together, we have
 - $nx < m \le 1 + nx < ny$
 - In particular, nx < m < ny
 - Since n > 0, we can multiply by $\frac{1}{n}$ and get
 - $\frac{1}{n}(nx) < \frac{1}{n}(m) < \frac{1}{n}(ny)$
 - Therefore x < q < y, where $q = \frac{m}{n} \in \mathbb{Q}$

n-th Root of Real Numbers

Monday, February 5, 2018 12:10 PM

Theorem 1.21: n-th Root of Real Numbers

Notation

• For a positive integer *n*

$$x^n \coloneqq \underbrace{x \cdot x \cdot x \cdots x}_{n \text{ times}}$$

 \circ For a negative integer n

$$x^n := \underbrace{\left(\frac{1}{x}\right) \cdot \left(\frac{1}{x}\right) \cdot \left(\frac{1}{x}\right) \cdots \left(\frac{1}{x}\right)}_{-n \text{ times}}$$

Statement

- For every real x > 0, and positive integer n
- There is one and only one positive real number y s.t. $y^n = x$
- In this case, we write $y = x^{\frac{1}{n}}$

• Intuition

• Try this for
$$n = 2$$
 and $x = 2$, so $y = \sqrt{2}$

• Proof (Uniqueness)

- If there were y_1 and y_2 s.t.
- $y_1^n = x, y_2^n = x, \text{ but } y_1 \neq y_2$
- Without loss of generality, assume $y_1 < y_2$
- $\circ \quad \text{Then } y_1^n < y_2^n \text{, so they can't both equal } x$
- \circ So, there is at most one such γ

• Lemma

• If *n* is a positive integer, then

$$b^{n} - a^{n} = (b - a)(b^{n-1} + ab^{n-2} + \dots + a^{n-2}b + a^{n-1})$$

• Moreover, if b > a > 0, then

•
$$b^n - a^n < (b - a) \underbrace{\left(b^{n-1} + b^{n-1} + \dots + b^{n-1} + b^{n-1}\right)}_{n \text{ terms}}$$

•
$$b^n - a^n < (b - a)nb^{n-1}$$

• Proof (Existence)

○ Let
$$E := \{t \in \mathbb{R} | t > 0 \text{ and } t^n < x\}$$

 \circ *E* is not empty

• Let
$$t := \frac{x}{x+1}$$
, then $0 < t < 1$ and $t < x$

• So,
$$0 < t^n < t < x$$

- Thus, $t \in E$
- Therefore *E* is not empty
- o E is bounded above
 - Let $t \in \mathbb{R}$ s. t. t > 1 + x
 - Therefore $t^n > t > 1 + x > x$
 - So $t \notin E$ and E is bounded above by 1 + x
 - By least upper bound property, sup *E* exists
 - Let $y := \sup E$
- We now show that $y^n \not < x$ and $y^n \not > x$
- o Assume $y^n < x$
 - Choose $h \in \mathbb{R}$ s. t.

•
$$0 < h < 1 \text{ and } h < \frac{x - y^n}{n(y + 1)^{n-1}}$$

- Then $hn(y+1)^{n-1} < y^n$
- Use the lemma $b^n a^n < (b a)nb^{n-1}$
- Set a := y, b := y + h

•
$$(y+h)^n - y^n < (y+h-y)n(y+h)^{n-1}$$

$$(y+h)^n - y^n < hn(y+1)^{n-1}$$

- $(y+h)^n < x$
- Since y + h > h and $y + h \in E$
- *y* is not an upper bound of *E*
- This contradicts $y = \sup E$
- Thus, $y^n < x$
- o Assume $y^n > x$

•
$$k = \frac{y^n - x}{ny^{n-1}} = \frac{y^n}{ny^{n-1}} - \frac{x}{ny^{n-1}} < \frac{y^n}{ny^{n-1}} = \frac{y}{n} < y$$

- Thus, 0 < k < y
- Let $t \in \mathbb{R}$ s. t. $t \ge y k$, then
- $y^n t^n \le y^n (y k)^n$
- Use the lemma $b^n a^n < (b a)nb^{n-1}$
- Set a := y, b := y k, then
- $y^n t^n \le y^n (y k)^n < kny^{n-1} = y^n x$
- Therefore, $t^n > x$
- By definition of $E = \{t \in \mathbb{R} | t > 0 \text{ and } t^n < x\}$

- $t \notin E$ and t is greater than everything in E
- Also $t \ge y k$, so y k is an upper bound for E
- But y k < y, which contradicts $y = \sup E$
- Thus, $y^n > x$
- Therefore $y^n = x$
- Corollary: If $a, b \in \mathbb{R}^+$, and $n \in \mathbb{Z}^+$, then $a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} = (ab)^{\frac{1}{n}}$
 - Let $\alpha = a^{\frac{1}{n}}$, $\beta = b^{\frac{1}{n}}$, then
 - $\circ \ \alpha^n \beta^n = ab$
 - $\circ \left(\alpha\beta\right)^n = ab$
 - $\circ \ \operatorname{So} \alpha\beta = (ab)^{\frac{1}{n}}$

Complex Numbers, Euclidean Spaces

Wednesday, February 7, 2018 12:12 PM

Complex Numbers

- Definition
 - If $z \in \mathbb{C}$, then z = a + bi where $a, b \in \mathbb{R}$ and $i^2 = -1$
- Addition, multiplication, subtraction, and division
 - If a + bi, $c + di \in \mathbb{C}$, then

$$\circ$$
 $(a+bi)+(c+di)=(a+c)+(b+d)i$

$$\circ$$
 $(a+bi)-(c+di)=(a-c)+(b-d)i$

$$\circ (a+bi)\cdot (c+di) = (ac-bd) + (ad+bc)i$$

$$\circ \frac{a+bi}{c+di} = \left(\frac{a+bi}{c+di}\right) \left(\frac{c-di}{c-di}\right) = \frac{(a+bi)(c-di)}{c^2+d^2}$$

- Real part and imaginary part
 - \circ For z = a + bi
 - \circ Re(z) = a is the **real part** of z
 - \circ Im(z) = b is the **imaginary part** of z
- · Complex conjugate
 - o $\bar{z} = a bi$ is the **complex conjugate** of z
 - $o z\bar{z} = (a + bi)(a bi) = a^2 + b^2$
- Absolute value
 - $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ is the **absolute value** of z
 - Note
 - For a real number *x*

$$|x| = \sqrt{x^2 + 0^2} = \sqrt{x^2} \ge 0$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

- Complex division
 - If z = a + bi, $w = c + di \in \mathbb{C}$, then

$$\circ \quad \frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Theorem 1.31: Properties of Complex Numbers

- If z and w are complex numbers, then
- $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{z} \cdot \overline{w}$
- $z + \overline{z} = 2 \operatorname{Re}(z)$

- $z \overline{z} = 2i \operatorname{Im}(z)$
- $z\bar{z}$ is real and positive (except when z = 0)

Theorem 1.33: Properties of Complex Numbers

- If z and w are complex numbers, then
 - (1) |z| > 0 unless z = 0 in which case |z| = 0
 - $(2) |\bar{\mathbf{z}}| = |\mathbf{z}|$
 - (3) |zw| = |z||w|
 - Let z = a + bi, w = c + di
 - Then zw = (ac bd) + (ad + bc)i
 - $|zw| = \sqrt{(ac bd)^2 + (ad + bc)^2}$
 - $= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2}$
 - $=\sqrt{(a^2+b^2)(c^2+d^2)}$
 - $= \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$
 - = |z||w|
 - (4) $|\text{Re}(z)| \le |z|$
 - (5) $|z + w| \le |z| + |w|$ (Triangle Inequality)
 - $|z+w|^2 = (z+w)(\overline{z+w})$
 - $= (z+w)(\bar{z}+\overline{w})$
 - $= z\bar{z} + z\overline{w} + \bar{z}w + w\overline{w}$
 - $|z|^2 + |w|^2 + z\overline{w} + \overline{z}w$
 - $= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})$
 - $\leq |z|^2 + |w|^2 + 2|z\overline{w}|$ by (4)
 - = $|z|^2 + |w|^2 + 2|z||\overline{w}|$ by (3)
 - $| = |z|^2 + |w|^2 + 2|z||w|$ by (2)
 - $(|z| + |w|)^2$
 - So $|z + w|^2 \le (|z| + |w|)^2$
 - Thus, $|z + w| \le |z| + |w|$

 $||v+w|| \leq ||v|| + ||w||$

Definition 1.36: Euclidean Spaces

- Inner product
 - $\circ \quad \text{If } \vec{x}, \vec{y} \in \mathbb{R}^n \text{ with }$

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

$$\vec{y} = (y_1, y_2, \dots, y_n)$$

• Then the **inner product** of \vec{x} and \vec{y} is

$$\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$$

- Norm
 - If $\vec{x} \in \mathbb{R}^n$, we define the **norm** of \vec{x} to be $|\vec{x}| = \sqrt{\vec{x} \cdot \vec{x}}$
- · Euclidean spaces
 - The vector space \mathbb{R}^n with inner product and norm is called **Euclidean** *n*-space

Theorem 1.37: Properties of Euclidean Spaces

- Suppose \vec{x} , \vec{y} , $\vec{z} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, then
- $|\vec{x}| \geq 0$
- $|\vec{x}| = 0$ if and only if $\vec{x} = \vec{0}$
- $|\alpha \vec{x}| = |\alpha| \cdot |\vec{x}|$
- $|\vec{x} \cdot \vec{y}| \le |\vec{x}| \cdot |\vec{y}|$ (Schwarz's Inequality)
- $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$ (Triangle Inequality)
- $|\vec{x} \vec{y}| \le |\vec{x} \vec{z}| + |\vec{y} \vec{z}|$ (Triangle Inequality)

Theorem 1.35: Schwarz Inequality

• Statement

$$\circ \left| \sum_{j=1}^n a_j \overline{b_j} \right|^2 \le \sum_{j=1}^n \left| a_j \right|^2 \sum_{j=1}^n \left| b_j \right|^2$$

- Proof
 - $\circ~$ See Theorem 1.35 in Rudin for a proof of Schwarz Inequality for $\mathbb C$
 - For intuition, try proving $(x_1y_2 + x_2y_2)^2 \le (x_1^2 + x_2^2)(y_1^2 + y_2^2)$
- Triangle Inequality
 - In a Euclidean Space, $|\vec{x} \cdot \vec{y}| \ge |\vec{x}| \cdot |\vec{y}|$

- $\circ \quad \text{Thus } \left| \vec{x} + \vec{y} \right| < \left| \vec{x} \right| + \left| \vec{y} \right|$
- Let $\vec{x} := \vec{x} \vec{y}$, $\vec{y} := \vec{y} \vec{z}$, we have $|\vec{x} \vec{z}| < |\vec{x} \vec{y}| + |\vec{y} \vec{z}|$

Function, Cardinality, Equivalence Relation

Monday, February 12, 2018 12

12:08 PM

Definition 2.1 & 2.2: Function

- Given two sets A and B
- A **function** (or **mapping**) is a rule that assigns elements in *A* to elements in *B*
- Notationally, if f is a function from A to B, we write $f: A \rightarrow B$

- Set *A* is called the **domain** of *f*
- Set *B* is called the **codomain** of *f*
- For $E \subset A$, $f(E) = \{b \in B | b = f(e) \text{ for some } e \in E\}$ is the **image** of E under f
- f(A) is called the **range** of f
- If f(A) = B, then we say that f is **onto** or **surjective**
- If $f(a_1) = f(a_2)$ implies $a_1 = a_2$, then f is **one-to-one** or **injective**
- A function that is both one-to-one and onto is said to be **bijective**
- For $E \subset B$, $f^{-1}(E) = \{a \in A | f(a) \in E\}$ is the **inverse image** of *E* under *f*

- Notationally, if $y \in B$, $f^{-1}(y) = f^{-1}(\{y\})$
 - o f^{-1} is at most a single element set for all $y \in B$ if and only if f is injective
 - \circ In this case, f^{-1} can be thought of as a function maps to the single element
- Example
 - $\circ \quad f: \mathbb{R} \to \mathbb{R} \text{ defined by } f(x) = x^2$
 - $\circ \ f^{-1}(\{1\}) = \{1, -1\}$
 - $\circ \ f^{-1}(\{x\in\mathbb{R}|x<0\})=\emptyset$
 - $f^{-1}(\{0\}) = \{0\}$, we can also write $f^{-1}(0) = 0$

Definition 2.3: Cardinality

- If there exists a one-to-one, onto mapping from set *A* to set *B*
- We say that *A* and *B* can be put in **one-to-one correspondence**
- And that *A* and *B* have the same **cardinality** (or **cardinal number**)
- In this case, we write $A \sim B$

Definition 2.3: Equivalence Relation

- One-to-one correspondence is an example of an equivalence relation
- An **equivalence relation** satisfies 3 properties
 - \circ Reflexive: $A \sim A$
 - Symmetric: If $A \sim B$, then $B \sim A$
 - Transitivity: If $A \sim B$, $B \sim C$, then $A \sim C$

Cardinality and Countability, Sequence

Wednesday, February 14, 2018 12:06 PM

Definition 2.4: Cardinality and Countability

- Let $J_n = \{1,2,3,...,n\}$ and $\mathbb{N} = \{1,2,3,...\}$
- For any set *A*, we say
- *A* is **finite** if $A \sim J_n$ for some n (\emptyset is also considered as finite)
- *A* is **infinite** if $A \nsim J_n$ for all n
- *A* is **countable** if $A \sim \mathbb{N}$
- *A* is **uncountable** if *A* is neither finite nor countable
- *A* is **at most coutable** if *A* is finite or countable

Examples 2.5: Countability

- N is countable
 - $\circ \mathbb{N} = \{1, 2, 3, ...\}$
- Z is countable
 - $\circ \mathbb{Z} = \{0,1,-1,2,-2,3,-3,...\}$
 - Define $f: \mathbb{N} \to \mathbb{Z}$ by
 - $\circ f(n) \coloneqq \begin{cases} \frac{n}{2} & n \text{ is even} \\ \frac{1-n}{2} & n \text{ is odd} \end{cases}$
 - o *f* is injective
 - If f(n) = f(m)
 - then $\frac{n}{2} = \frac{m}{2}$ or $\frac{1-n}{2} = \frac{1-m}{2}$
 - Either way, n = m
 - o *f* is surjective
 - Given $k \in \mathbb{Z}$,
 - If k > 0, k = f(2k)
 - If $k \le 0, k = f(-2k + 1)$
 - Thus *f* is bijective
- Q is countable
 - There are "less" rational numbers $q = \frac{m}{n} (m, n \in \mathbb{Z}, n \neq 0)$ than
 - \circ there are ordered pairs of integers (m, n)
 - $\frac{1}{2} = \frac{15}{30}$ but $(1,2) \neq (15,30)$
 - We can also ignore negatives and zeros

- because integers are in 1-1 correspondence with N
- o Idea: Write ordered pairs of integers in a 2 dimension array
- o Putting this all together, we have

Definition 2.7: Sequence

- Definition
 - A **sequence** is a function defined on N
 - \circ Notationally, this is often written $\{x_n\}$
 - Meaning $f(x) = x_n$ for all $n \in \mathbb{N}$
- Example

$$\circ \left\{\frac{1}{n}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$$

Theorem 2.8: Infinite Subset of Countable Set

- Statement
 - Every **infinite subset** of a **countable set** is **countable**
- Intuition
 - Countable sets represent the "smallest" infinity
 - No uncountable set can be a subset of a countable set.
- Proof
 - \circ Let $E \subset A$
 - Suppose *A* is countable and *E* is infinite

- Since *A* is countable, its element will be a sequence
- (order given by the bijective function $f: \mathbb{N} \to A$)
- $\circ \quad \text{Let } n_1 \text{ be the smallest } n \in \mathbb{N} \text{ such that } x_{n_1} \in E$
- Let n_2 be the next smallest $n \in \mathbb{N}$ such that $x_{n_2} \in E$

$$\circ \ \ \mathsf{So} \ E = \left\{ x_{n_k} \right\} = \left\{ x_{n_1}, x_{n_2}, x_{n_3}, \dots \right\}$$

- i.e. *E* is a sequence indexed by $k \in \mathbb{N}$
- Now consider $g: \mathbb{N} \to E$ given by $g(k) = x_{n_k}$
- $\circ \ \ g$ is clearly one-to-one and onto by construction
- Therefore *E* is countable

• Example

o Let
$$A := \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$$
 and $E := \left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots\right\}$

○ Then
$$A = \left\{\frac{1}{n}\right\}$$
, and $E = \left\{\frac{1}{n_k}\right\}$ where $n_k = k^2$ for $k \in \mathbb{N}$

$$\circ \quad \text{Let } f: A \to E \text{ by } f(k) = \frac{1}{k^2}$$

- \circ We can show that f is a bijection
- Thus, *E* is countable

Set Operations, Countable and Uncountable

Friday, February 16, 2018 12:08 PM

Definition 2.9: Set-Theoretic Operations

• Set theoretic union

$$\circ \bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \cdots$$

• Set theoretic intersection

$$\circ \bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap \cdots$$

Indexing set

$$\circ \bigcup_{\alpha \in A} E_{\alpha}$$
, where

- o A is an **indexing set**
- \circ E_{α} is a specific set that depends on A
- Example

○ Let
$$A = \{x \in \mathbb{R} | 0 < x \le 1\}$$

$$\circ \quad \text{Let } E_{\alpha} = \{ x \in \mathbb{R} | 0 < x < a \}$$

• Then
$$\bigcup_{\alpha \in A} E_{\alpha} = (0,1)$$
 and $\bigcap_{\alpha \in A} E_{\alpha} = \emptyset$

Theorem 2.12: Union of Countable Sets

- Statement
 - Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of **countable sets**, then

$$\circ S = \bigcup_{n=1}^{\infty} E_n \text{ is also countable}$$

- Proof
 - Just like the proof that Q is countable

o Go along the diagonal, we have

$$\circ S = \{x_{11}, x_{21}, x_{12}, x_{31}, x_{22}, x_{13} \dots \}$$

Corollary

- Suppose *A* is **at most countable**
- If B_{α} is at most countable $\forall \alpha \in A$
- Then $\bigcup_{\alpha \in A} B_{\alpha}$ is also **at most countable**

Theorem 2.13: Cartesian Product of Countable Sets

- Statement
 - Let A be a countable set
 - Let B_n be the **set of all** n**-tuples** $(a_1, a_2, ... a_n)$ where
 - $a_k \in A \text{ for } k = 1, 2, \dots, n$
 - a_k may not be distinct
 - Then B_n is **countable**
- Proof
 - We proof by induction on *n*
 - \circ Base case: n = 2

- Here, a_i are all the elements of A with possible repetition
- Now assume for n = m where $m \ge 2$
 - The set of *m*-tuples $(a_1, a_2, ... a_m)$ are countable
 - Now we treat the (m + 1)-tuples as ordered pairs
 - $(a_1, a_2, \dots a_{m+1}) = ((a_1, a_2, \dots a_m), a_{m+1})$
 - By n = 2 case, the set of (m + 1)-tuples is still countable

Theorem 2.14: Cantor's Diagonalization Argument

- Statement
 - Let A be the **set of all sequences** whose digits are 0 and 1
 - Then *A* is **uncountable**
- Proof: Cantor's Diagonalization Argument
 - Suppose *A* is countable
 - o Then $A = \{s_1, s_2, s_3, ...\}$ where s_k is a sequence of 0 and 1 for all $k \in \mathbb{N}$
 - $s_1 = \{s_{11}, s_{12}, s_{13}, s_{14}, s_{15} \dots \}$
 - $s_2 = \{s_{21}, s_{22}, s_{23}, s_{24}, s_{25} \dots \}$
 - $s_3 = \{s_{31}, s_{32}, s_{33}, s_{34}, s_{35} \dots \}$
 - :

- where $s_{ij} \in \{0,1\}$ for $i, j \in \mathbb{N}$
- Construct a new sequence $s = \{x_1, x_2, x_3, ...\}$ where

•
$$x_i = \begin{cases} 0 & \text{if } s_{ii} = 1 \\ 1 & \text{if } s_{ii} = 0 \end{cases}$$

- Then $s \neq s_i$, $\forall i \in \mathbb{N}$
- So $S \notin A$, which is a contradiction
- Thus, *A* must be uncountable
- Corollary
 - \circ \mathbb{R} is uncountable

$$s = 10111010011...$$

Metric Space, Interval, Cell, Ball, Convex

Monday, February 19, 2018

12:04 PM

Definition 2.15: Metric Space

- Definition
 - A set *X* of **points** is called a **metric space** if
 - o there exists a metric or distance function $d(p,q): X \times X \to \mathbb{R}$ such that
 - Positivity

$$\Box$$
 $d(p,q) > 0$ if $p,q \in X$ and $p \neq q$

$$d(p,p) = 0$$
 for all $p \in X$

Symmetry

$$d(p,q) = d(q,p)$$
 for all $p, q \in X$

Triangle Inequality

$$d(p,q) \le d(p,r) + d(r,q)$$
 for all $p,q,r \in X$

• Example 1

$$\circ X = \mathbb{R}^k$$

$$\circ d(\vec{p}, \vec{q}) = |\vec{p} - \vec{q}|$$

- \circ If k = 1, this is just standard numerical absolute value
- and *d* is the distance on the number line
- Example 2 (Taxicab metric)

$$\circ X = \mathbb{R}^2$$

$$0 d((p_1, p_2), (q_1, q_2)) = |p_1 - q_1| + |p_2 - q_2| \text{ where } p_1, p_2, q_1, q_2 \in \mathbb{R}$$

- Is this a true metric space?
- o Positivity
 - Clearly $d\left((p_1,p_2),(q_1,q_2)\right) \ge 0$ since it is a sum of absolute values

• Suppose
$$d((p_1, p_2), (q_1, q_2)) = 0$$

$$|p_1 - q_1| + |p_2 - q_2| = 0$$

$$|p_1 - q_1| = -|p_2 - q_2|$$

$$\Box \begin{cases} |p_1 - q_1| = 0 \\ |p_2 - q_2| = 0 \end{cases} \Rightarrow \begin{cases} p_1 = q_1 \\ p_2 = q_2 \end{cases}$$

$$\Box$$
 i.e. $(p_1, p_2) = (q_1, q_2)$

• Suppose
$$(p_1, p_2) = (q_1, q_2)$$

$$\Box d((p_1, p_2), (q_1, q_2)) = |p_1 - q_1| + |p_2 - q_2| = |0| + |0| = 0$$

• Thus
$$d((p_1, p_2), (q_1, q_2)) = 0 \Leftrightarrow (p_1, p_2) = (q_1, q_2)$$

Symmetry

•
$$d(p_1, p_2), (q_1, q_2) = |p_1 - q_1| + |p_2 - q_2|$$

$$= |q_1 - p_1| + |q_2 - p_2| = d((q_1, q_2), (p_1, p_2))$$

o Triangular Inequality

•
$$d((p_1, p_2), (r_1, r_2)) + d((r_1, r_2), (q_1, q_2))$$

$$| = |p_1 - r_1| + |p_2 - r_2| + |r_1 - q_1| + |r_2 - q_2|$$

$$= (|p_1 - r_1| + |r_1 - q_1|) + (|p_2 - r_2| + |r_2 - q_2|)$$

•
$$\geq |p_1-r_2+r_1-q_1|+|p_2-r_2+r_2-q_2|$$
 by Triangle Inequality of $\mathbb R$

$$| = |p_1 - q_1| + |p_2 - q_2|$$

$$\bullet = d\left((p_1, p_2), (q_1, q_2)\right)$$

Definition 2.17: Interval, k-cell, Ball, Convex

- Interval
 - **Segment** (a, b) is $\{x \in \mathbb{R} | a < x < b\}$ (open interval)
 - Interval [a, b] is $\{x \in \mathbb{R} | a \le x \le b\}$ (closed interval)
 - We can also have **half-open intervals**: (a, b] and [a, b)
- k-cell

o If
$$a_i < b_i$$
 for $i = 1, 2, ..., k$

• The set of points
$$\vec{x} = (x_1, x_2, ..., x_k)$$
 in \mathbb{R}^k

- that satisfy $a_i \le x_i \le b_i$ (1 ≤ $i \le k$) is called a *k***-cell**
- Ball
 - o If $\vec{x} \in \mathbb{R}^k$ and r > 0

open interval

open disk

• the **closed ball** with center \vec{x} with radius r is $\{\vec{y} \in \mathbb{R}^k | |\vec{x} - \vec{y}| \le r\}$

closed interval

closed disk

- Convex
 - We call a set $E \subset \mathbb{R}^k$ **convex** if
 - $\circ \lambda \vec{x} + (1 \lambda) \vec{y} \in E, \forall \vec{x}, \vec{y} \in E, 0 < \lambda < 1$
 - i.e. All points along a straight line from \vec{x} to \vec{y} and between \vec{x} and \vec{y} is in \vec{E}

- Example: Balls are convex
 - Given an open ball with center \vec{x} and radius r

○ If
$$\vec{y}$$
, $\vec{z} \in B$, then $|\vec{y} - \vec{x}| < r$ and $|\vec{z} - \vec{x}| < r$

$$\circ |\lambda \vec{z} + (1 - \lambda)\vec{y} - \vec{x}|$$

$$\circ = \left| \lambda \vec{z} + (1 - \lambda) \vec{y} - (\lambda + 1 - \lambda) \vec{x} \right|$$

$$\circ = |\lambda \vec{z} - \lambda \vec{x} + (1 - \lambda)\vec{y} - (1 - \lambda)\vec{x}|$$

$$0 \le |\lambda \vec{z} - \lambda \vec{x}| + |(1 - \lambda)\vec{y} - (1 - \lambda)\vec{x}|$$
 by Triangle Inequality

$$\circ = \lambda |\vec{z} - \vec{x}| + (1 - \lambda) |\vec{y} - \vec{x}|$$

$$\circ$$
 $< \lambda r + (1 - \lambda)r = r$

$$\circ \quad \text{Thus } \left| \lambda \vec{z} + (1 - \lambda) \vec{y} - \vec{x} \right| < r$$

$$\circ \ \text{i.e.} \ \lambda \vec{z} + (1 - \lambda) \vec{y} \in B$$

Definitions in Metric Space

Wednesday, February 21, 2018 12:01 PM

Definitions 2.18: Definitions in Metric Space

- Let *X* be a metric space. All points/elements below are in *X*
- Neighborhood
 - o Definition
 - A **neighborhood** of p is a set $N_r(p)$ consisting of
 - all points q such that d(p,q) < r for some $r \in \mathbb{R}$
 - We call r the radius of $N_r(p)$
 - o Example: \mathbb{R}^2

o Example: Taxicab metric

- Limit point
 - o Definition
 - A point p is a **limit point** of the set $E \subset X$ if
 - every neighborhood of p contains a point $q \in E$ and $p \neq q$
 - \circ Example: \mathbb{R}^2

- Example: $(0,1) \in \mathbb{R}$
 - For $(0,1) \in \mathbb{R}$, the limit points is [0,1]
- · Isolated point
 - o Definition
 - If $p \in E$ and p is not a limit point of E, then
 - *p* is an **isolated point** of *E*
 - \circ Example: \mathbb{Z} in \mathbb{R}
 - Every integers is an isolated point in $\mathbb R$

- Closed set
 - o Definition
 - A set *E* is **closed** if every limit point of *E* is in *E*
 - Example: $[0,1] \in \mathbb{R}$
 - In \mathbb{R} , neighborhood of $p \in \mathbb{R}$ are open intevals cenerted about p
 - All of [0,1] is a limit point since
 - If $x \in [0,1]$
 - \Box The neighborhood about x is (x r, x + r)
 - $(x-r,x+r) \cap [0,1]$ is non-empty
 - $\Box \quad \text{If } x = 0 \text{, then take } q = \min \left(x + \frac{r}{2}, 1 \right)$

 - $\ \ \Box$ So every point in [0,1] is a limit point
 - If $x \notin [0,1]$
 - \Box i.e. x < 0 or x > 1

$$\Box \quad \text{Take } r = \begin{cases} |x| & \text{if } x < 0 \\ |x - 1| & \text{if } x > 1 \end{cases}$$

- $\Box \quad \text{Then } N_r(x) \cap [0,1] = \emptyset$
- \Box So nothing outside of [0,1] is a limit point of [0,1]
- So [0,1] contains all its limit points
- Thus [0,1] is closed
- Interior point
 - o Definition
 - A point *p* is an **interior point** of a set *E* if
 - there exists a neighborhood $N_r(p)$ that is a subset of E
 - \circ Example: \mathbb{R}^2
 - For the closed set *S*
 - The point *x* is an interior point of *S*
 - The point *y* is not an interior point of *S* (on the boundary of *S*)

- · Open set
 - o Definition
 - *E* is an **open set** if every point of *E* is an interior point
 - \circ Example: \mathbb{R}^2
 - U is an open set, since $\forall x \in U, \exists B_{\epsilon}(x) \subset U$

- Example: $(0,1) \in \mathbb{R}$
 - For $x \in (0,1)$
 - Take $r = \min(x, 1 x)$
 - $N_r(x) \subset (0,1)$
 - Thus every point in (0,1) is an interior point
- Complement
 - The **complement** of *E* (denoted as E^c) is $\{p \in X | p \notin E\}$
- Perfect
 - \circ *E* is **perfect** if *E* is closed and every point of *E* is limit point of *E*
- Bounded
 - E is **bounded** if there is a real number M and a point $p \in E$ s.t.
 - $\circ \ d(p,q) < M \text{ for all } p \in E$
- Dense
 - \circ *E* is **dense** in *X* if
 - every point of *X* is a limit point of *E* or a point of *E* (or both)

Neighborhood, Open and Closed, De Morgan's Law

Friday, February 23, 2018

12:06 PM

Theorem 2.19: Every Neighborhood is an Open Set

- Statement
 - Every neighborhood is an open set
- Proof
 - Let *X* be a metric space
 - Choose a neighborhood $N_r(p) \subset X$
 - \circ Let $q \in N_r(p)$
 - Choose $h \in \mathbb{R}$ s.t. d(p,q) = r h
 - \circ Consider the neighborhood $N_h(q)$
 - Let $s \in N_h(q)$, then d(q, s) < h
 - $0 d(p,s) \le d(p,q) + d(q,s) < r h + h = r$
 - o Thus d(p,s) < r
 - i.e. $s \in N_r(p)$
 - $\circ \ \operatorname{So} N_h(q) \subset N_r(p)$
 - \circ Therefore $N_r(p)$ is open

Theorem 2.20: Property of Limit Point

Statement

- If *p* is a limit point of *E*
- Then **every neighborhood** of *p* contains **infinitely many points** of *E*

• Proof

- Suppose the opposite
- Then there exists a set *E* with a limit point *p* s.t.
- The neighborhood of *p* contains only finitely many points of *E*
- \circ Namely $q_1, q_2, ..., q_n$
- $\circ \ \operatorname{Let} r = \min \left(d(p, q_1), d(p, q_2), \dots, d(p, q_n) \right)$
- o By definition, $q_i \notin N_r(p)$ for $1 \le i \le n$
- This contradicts the fact that *p* is a limit point
- So, this neighborhood about *p* must contain infinitely many points

Corollary

o A finite set has no limit points

Theorem 2.22: De Morgan's Law

- Statement
 - \circ Let $\{E_{\alpha}\}$ be a finite or infinite collection of sets, then

$$\circ \left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}\right)^{c}$$

• Proof (*⇒*)

$$\circ \quad \text{Suppose } x \in \left(\bigcup_{\alpha} E_{\alpha}\right)^{c}$$

$$\circ \quad \text{Then } x \notin \bigcup_{\alpha} E_{\alpha}$$

○ So
$$x \notin E_{\alpha}$$
, $\forall \alpha$

○ Thus,
$$x \in (E_{\alpha})^{c}$$
 for all α

$$\circ \quad So, x \in \bigcap_{\alpha} (E_{\alpha})^{c}$$

$$\circ \text{ i.e.} \left(\bigcup_{\alpha} E_{\alpha}\right)^{c} \subset \bigcap_{\alpha} \left(E_{\alpha}\right)^{c}$$

• Proof (**⇐**)

$$\circ \quad \text{Suppose } x \in \bigcap_{\alpha} (E_{\alpha})^{c}$$

○ Then
$$x \in (E_{\alpha})^{c}$$
 for all α

○ So
$$x \notin E_{\alpha}$$
 for all α

$$\circ \quad x \notin \bigcup_{\alpha} E_{\alpha}$$

$$\circ \quad \text{Thus, } x \in \left(\bigcup_{\alpha} E_{\alpha}\right)^{c}$$

$$\circ \text{ i. e. } \bigcap_{\alpha} (E_{\alpha})^{c} \subset \left(\bigcup_{\alpha} E_{\alpha}\right)^{c}$$

Theorem 2.23: Complement of Open/Closed Set

Statement

- A set *E* is **open** if and only if E^c is **closed**
- \circ $\,$ Note: This does not say that open is not closed and closed is not open

• Proof (**⇐**)

- Suppose E^c is closed
- Choose $x \in E$, so $x \notin E^c$
- So, x is not a limit point of E^c
- i.e. There exists a neighborhood $N_r(x)$ that contains no points of E^c
- $\circ \quad \text{So, } N_r(x) \cap E^c = \emptyset$
- Consequently, $N_r(x) \subset E$
- \circ So, x is an interior point of E
- \circ By definition, E is open

- Proof (\Longrightarrow)
 - Suppose *E* is open
 - Let x be a limit point of E^c (if exists)
 - So, every neighborhood of x contains a point in E^c
 - \circ So, x is not an interior point of E
 - E is open, so $x \in E^c$
 - \circ Thus, E^c contains its limit points and is closed by definition
- Corollary
 - A set *E* is **closed** if and only if E^c is **open**

Examples 2.21: Closed, Open, Perfect and Bounded

• Let $X = \mathbb{R}^2$

Subset	Closed	Open	Perfect	Bounded
$\{\vec{x} \in \mathbb{R}^2 \big \big \vec{x} \big < 1\}$	×	\checkmark	×	✓
$\{\vec{x} \in \mathbb{R}^2 \big \big \vec{x} \big \le 1\}$	√	×	√	√
A nonempty finite set	✓	×	×	✓
\mathbb{Z}	√	×	×	×
$\{1/n n \in \mathbb{N}\}$	×	×	×	√
\mathbb{R}^2	√	√	✓	×
(a, b)	×	?	×	✓

• Note: (a, b) is open as a subset of \mathbb{R} , but not as a subtset of \mathbb{R}^2

Open and Closed, Closure

Monday, February 26, 2018 12:

12:06 PM

Theorem 2.24: Intersection and Union of Open/Closed Sets

- (a) For **any** collection $\{G_n\}$ of **open** sets, $\bigcup_{\alpha} G_{\alpha}$ is **open**
 - Suppose G_{α} is open for all α
 - \circ Let $G = \bigcup_{\alpha} G_{\alpha}$
 - If $x \in G$, then $x \in G_{\alpha}$ for some α
 - \circ Since G_{α} is open, there is a neighborhood about x in G_{α}
 - And consequently, the neighborhood about *x* is also in *G*
 - \circ Thus *G* is open
- (b) For **any** collection $\{F_n\}$ of **closed** sets, $\bigcap_{\alpha} F_{\alpha}$ is **closed**
 - Suppose F_{α} is closed for all α
 - \circ Then F_{α}^{c} is open by Theorem 2.23
 - \circ So $\bigcup F_{\alpha}^{c}$ is open by (a)
 - $\circ \left(\bigcap_{\alpha} F_{\alpha}\right)^{c} = \bigcup_{\alpha} F_{\alpha}^{c} \text{ , by De Morgan's Law}$
 - \circ Thus, $\left(\bigcap_{\alpha} F_{\alpha}\right)^{c}$ is open
 - Therefore $\bigcap_{\alpha} F_{\alpha}$ is closed by Theorem 2.23
- (c) For any **finite** collection, $G_1, G_2, ..., G_n$ of **open** sets, $\bigcap_{i=1}^n G_i$ is also **open**
 - \circ Suppose G_1, G_2, \dots, G_n is open

$$\circ \quad \text{Let } x \in H = \bigcap_{i=1}^{n} G_{i}$$

- So, $x \in G_i$ for $1 \le i \le n$
- o By definition, since each G_i is open
- x is contained in a neighborhood $N_{r_i}(x) \subset G_i$
- $\circ \operatorname{Let} r = \min(r_1, r_2, \dots, r_n)$

- \circ $N_r(x) \subset G_i$ for $1 \le i \le n$
- So, $N_r(x) \in H$
- Thus, $H = \bigcap_{i=1}^{n} G_i$ is open
- (d) For any **finite** collection, $F_1, F_2, ..., F_n$ of **closed** sets, $\bigcup_{i=1}^n F_i$ is also **closed**
 - Suppose $F_1, F_2, ..., F_n$ is closed
 - Then F_i^c is open by Theorem 2.23
 - So $\bigcap_{i=1}^{n} F_i^c$ is open by (c)
 - $\circ \left(\bigcup_{i=1}^{n} F_{i}\right)^{c} = \bigcap_{i=1}^{n} F_{i}^{c} \text{ , by De Morgan's Law}$
 - Thus, $\left(\bigcup_{i=1}^{n} F_i\right)^c$ is open
 - Therefore $\bigcup_{i=1}^{n} F_i$ is closed by Theorem 2.23
 - Note

$$\circ \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

$$\circ \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 is open $\forall n \in \mathbb{N}$, while $\{0\}$ is closed

Definition 2.26: Closure

- Let *X* be a metric space
- If $E \subset X$ and E' denotes the set of limit points of E in X
- Then the **closure** of *E* is defined to be $\overline{E} = E \cup E'$

Theorem 2.27: Properties of Closure

- If X is a metric space and $E \subset X$, then
- \bar{E} is closed
 - $\circ \quad \text{Let } p \in \overline{E}^c$
 - Then *p* is neither a point of *E* nor a limit point of *E*
 - $\circ~$ So there exists a neighborhood N about p that contains no points of E
 - $\circ \quad \mathsf{So}, N \subset \bar{E}^c$
 - $\circ~$ i.e. every point of $\bar{E}^{\,c}$ is an interior point
 - Thus \bar{E}^c is open

- \circ Therefore \overline{E} is closed
- $E = \bar{E} \Leftrightarrow E$ is closed
 - o If $E = \overline{E}$, then E is closed
 - If *E* is closed, *E* contains its limit points, so $E' \subset E$ and $E = \overline{E}$
- $\bar{E} \subset F$ for every closed set $F \subset X$ s.t. $E \subset F$
 - Suppose F is closed and $E \subset F$
 - \circ *F* is closed \Rightarrow $F' \subset F$
 - $\circ \quad E \subset F \Rightarrow E' \subset F' \subset F$
 - Thus $\overline{E} = E \cup E' \subset F$
- Intuition: \overline{E} is the smallest closed set in X containing E

Theorem 2.28: Closure and Least Upper Bound Property of $\mathbb R$

- Statement
 - If $E \neq \emptyset$, $E \subset \mathbb{R}$, and E is bouned above, then $\sup E \in \overline{E}$
 - Hence $\sup E \in E$ if E is closed
- Proof
 - \circ Let $y = \sup E$
 - \circ If $y \in E$
 - Clearly $y \in \bar{E}$
 - \circ If $y \notin E$
 - Let *h* > 0
 - Let $x \in (y h, y)$
 - Suppose $\exists x \in E$, then y h is an upper bound for E
 - But this contradicts the fact that $y = \sup E$
 - So there must be some $x \in E$ with y h < x < y
 - Thus, for any neighborhood about y, $\exists x \in E$ in the neighborhood
 - So *y* is a limit point of *E*
 - i.e. $y \in E' \subset \bar{E}$

Convergence and Divergence, Range, Boundedness

Wednesday, February 28, 2018 12:07 PM

Definition 3.1: Convergence and Divergence

- Definition
 - A sequence $\{p_n\}$ in a metric space X converges to a point $p \in X$ if
 - Given any $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $d(p, p_n) < \varepsilon, \forall n \ge N$
 - o If $\{p_n\}$ converges to p, we write
 - $p_n \to p$
 - $\lim_{n\to\infty}p_n=p$
 - $\lim p_n = p$
 - \circ If $\{p_n\}$ does not converge, it is said to **diverge**
- Intuition
 - \circ ε is small
 - *N* is a "point of no return" beyond which sequence is within ε of p

Range

- Given a sequence $\{p_n\}$
- The set of points p_n $(n \in \mathbb{N})$ is called the **range** of the sequence
- Range could be infinite, but it is always at most countable
- Since we can always construct a function $f: \mathbb{N} \to \{p_n\}$, where $f(n) = p_n$

Boundedness

• A sequence $\{p_n\}$ is said to be **bounded** if its range is bounded

Examples of Limit, Range and Boundedness

• Consider the following sequences of complex numbers

$\{s_n\}$	Limit	Range	Bounded
$s_n = \frac{1}{n}$	0	Infinite	Yes
$s_n = n^2$	Divergent	Infinite	No
$s_n = 1 + \frac{(-1)^n}{n}$	1	Infinite	Yes
$s_n = i^n$	Divergent	$\{\pm 1, \pm i\}$	Yes
$s_n = 1$	1	{1}	Yes

- Proof: $\lim_{n\to\infty} \frac{1}{n} = 0$
 - \circ Let $\varepsilon > 0$
 - By Archimedean Property, we can choose $N \in \mathbb{N}$ s.t. $N > \frac{1}{\varepsilon}$
 - $\circ \quad \forall n \ge N, n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n} < \varepsilon$
 - $\circ \text{ i. e. } d\left(\frac{1}{n}, 0\right) = \left|\frac{1}{n}\right| < \varepsilon, \forall n \ge N$
 - $\circ \quad \text{Therefore } \lim_{n \to \infty} \frac{1}{n} = 0$

Important Properties of Convergent Sequences

Friday, March 2, 2018 12:06 PM

Theorem 3.2: Important Properties of Convergent Sequences

- Let $\{p_n\}$ be a sequence in a metric space X
- $p_n \rightarrow p \in X \Leftrightarrow$ any **neighborhood** of p contains p_n for **all but finitely many** n
 - \circ Suppose $\{p_n\}$ converges to p
 - Let *B* be a neighborhood of *p* with radius ε
 - $p_n \to p \Rightarrow \exists N \in \mathbb{N} \text{ s. t. } d(p_n, p) < \varepsilon, \forall n \ge N$
 - So, $p_n \in B$, $\forall n \ge N$
 - p_1, \dots, p_{n-1} may not be in B, but there are only finitely many of these
 - \circ Suppose every neighborhood of p contains all but finitely many p_n
 - Let $\varepsilon > 0$ be given
 - $B := \{q \in X | d(p,q) < \varepsilon\}$ is a neighborhood of p
 - By assumption, all but finitely points in $\{p_n\}$ are in B
 - Choose $N \in \mathbb{N}$ s.t. $N > i, \forall p_i \notin B$
 - Then $d(p_n, p) < \varepsilon, \forall n \ge N$
 - So, $\lim_{n\to\infty} p_n = p$
- Given $p \in X$ and $p' \in X$. If $\{p_n\}$ converges to p and to p', then p = p'
 - Let $\varepsilon > 0$ be given
 - $\{p_n\}$ converges to $p \Rightarrow \exists N \in \mathbb{N} \text{ s. t. } d(p_n, p) < \frac{\varepsilon}{2}, \forall n \geq N_1$
 - $\{p_n\}$ converges to $p' \Rightarrow \exists N' \in N \text{ s. t. } d(p_n, p') < \frac{\varepsilon}{2}, \forall n \geq N_2$
 - Let $N = \max(N_1, n_2)$, then
 - $d(p, p') \le d(p_n, p) + d(p_n, p') < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \forall n \ge N$
 - Since $\varepsilon > 0$ is arbitrary, d(p, p') = 0
 - \circ Therefore p = p'
- If $\{p_n\}$ converges, then $\{p_n\}$ is bounded
 - o Since $\{p_n\}$ converges to some p
 - Let $\varepsilon = 1$, then $\exists N \in \mathbb{N}$ s.t. $d(p_n, p) < 1$
 - $\circ \text{ Let } q = \max(1, d(p_1, p), d(p_2, p), ..., d(p_{N-1}, p))$
 - Then $d(p, p_n) < q, \forall n \in \mathbb{N}$
 - \circ By definition, $\{p_n\}$ is bounded
- If $E \subset X$, and $p \in E'$, then there **exists a sequence** $\{p_n\}$ in E s.t. $p_n \to p$

- \circ Since p is a limit point of E
- Every neighborhood of *p* contains $q \neq p$, and $q \in E$
- Consequently, $\forall n \in N, \exists p_n \in E \text{ s. t. } d(p_n, p) < \frac{1}{n}$
- Let ε > 0 be given
- By Archimedean property, $\exists N \in \mathbb{N} \text{ s.t.} \frac{1}{N} < \varepsilon$
- $\circ \quad \text{So for } n \ge N, \frac{1}{n} < \varepsilon \Rightarrow d(p_n, p) < \frac{1}{n} < \varepsilon$
- \circ Therefore $p_n \to p$

Algebraic Limit Theorem

Monday, March 5, 2018

12:10 PM

Theorem 3.3: Algebraic Limit Theorem

- Suppose $\{s_n\}$, $\{t_n\}$ are complex sequence, and $\lim_{n \to \infty} s_n = s$, $\lim_{n \to \infty} t_n = t$, then
- $\lim_{n\to\infty} s_n + t_n = s + t$
 - \circ Given $\varepsilon > 0$
 - Let $N = \max(N_1, N_2)$, then for $n \ge N$
 - $|s_n + t_n (s+t)| = |(s_n s) + (t_n t)| \le |s_n s| + |t_n t| < \varepsilon$
 - $\circ \quad \text{Therefore } \lim_{n \to \infty} s_n + t_n = s + t$
- $\lim_{n\to\infty} c + s_n = c + s$, $\forall c \in \mathbb{C}$
 - Given $\varepsilon > 0$
 - $\circ \lim_{n \to \infty} s_n = s \Rightarrow \exists N \in \mathbb{N} \text{ s. t. } |s_n s| < \varepsilon \text{ for } n \ge N$
 - $\circ |So, |c + s_n (c + s)| = |s_n s| < \varepsilon$
 - $\circ \quad \text{Therefore } \lim_{n \to \infty} c + s_n = c + s$
- $\lim_{n\to\infty} cs_n = cs, \forall c \in \mathbb{C}$
 - \circ Given $\varepsilon > 0$
 - \circ If c=0
 - $|cs_n cs| = 0 < \varepsilon$
 - \circ If $c \neq 0$
 - $\lim_{n \to \infty} s_n = s \Rightarrow \exists N \in \mathbb{N} \text{ s. t. } \left| s_n s \right| < \frac{\varepsilon}{|c|} \text{ for } n \ge N$
 - So $|cs_n cs| = |c||s_n s| < |c|\frac{\varepsilon}{|c|} = \varepsilon$
 - $\circ \quad \text{Therefore } \lim_{n \to \infty} cs_n = cs$
- $\lim_{n\to\infty} s_n t_n = st$
 - Standard approach
 - $s_n t_n st = s_n t_n st_n + st_n st = t_n (s_n s) + s(t_n t)$
 - o Rudin's approach
 - $s_n t_n st = (s_n s)(t_n t) + t(s_n s) + s(t_n t)$
 - \circ Given $\varepsilon > 0$

■
$$\exists N_1 \in \mathbb{N} \text{ s.t. } |s_n - s| < \sqrt{\varepsilon} \text{ for } n \ge N_1$$

■
$$\exists N_2 \in \mathbb{N} \text{ s.t. } |t_n - t| < \sqrt{\varepsilon} \text{ for } n \ge N_2$$

• Let
$$N = \max(N_1, N_2)$$
, then

•
$$|(s_n - s)(t_n - t)| < \varepsilon \text{ for } n \ge N$$

$$\bullet \Rightarrow \lim_{n \to \infty} (s_n - s)(t_n - t) = 0$$

$$\circ \lim_{n\to\infty} s_n t_n$$

$$= \lim_{n \to \infty} [(s_n - s)(t_n - t) + t(s_n - s) + s(t_n - t) + st]$$

$$\bullet = \lim_{n \to \infty} (s_n - s)(t_n - t) + t \lim_{n \to \infty} (s_n - s) + s \lim_{n \to \infty} (t_n - t) + st$$

$$= 0 + 0 + 0 + st$$

$$= st$$

$$\circ \quad \text{Therefore } \lim_{n \to \infty} s_n t_n = st$$

•
$$\lim_{n\to\infty}\frac{1}{s_n}=\frac{1}{s}\left(s_n\neq 0, \forall n\in\mathbb{N}, \text{ and } s\neq 0\right)$$

$$\circ \lim_{n \to \infty} s_n = s \Rightarrow \exists N' \in \mathbb{N} \text{ s. t. } |s_n - s| < \frac{|s|}{2} \text{ for } n \ge N'$$

○ By the Triangle Inequality,
$$|s| - |s_n| \le |s_n - s|$$
, $\forall n \ge N'$

$$\circ \ \Rightarrow \left| s_n \right| \geq \left| s \right| - \left| s_n - s \right| > \left| s \right| - \frac{\left| s \right|}{2} = \frac{\left| s \right|}{2}, \forall n \geq N'$$

○ Given
$$\varepsilon > 0$$
, $\exists N > N'$ s.t. $\left| s_n - s \right| < \frac{1}{2} |s|^2 \varepsilon$ for $n \ge N$

$$\circ \quad \text{Therefore } \lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s}$$

Sequence Convergence in \mathbb{R}^n , Compact Set

Wednesday, March 7, 2018 12:15 PM

Theorem 3.4: Convergence of Sequence in \mathbb{R}^n

- Statement (a)
 - Suppose $\overrightarrow{x_n} = (\alpha_{1,n}, \alpha_{2,n}, ..., \alpha_{k,n}) \in \mathbb{R}^k$ where $n \in \mathbb{N}$, then
 - $\circ \ \left\{\overrightarrow{x_n}\right\} \text{ converges to } \left(\alpha_1,\alpha_2,\ldots,\alpha_k\right) \Longleftrightarrow \lim_{n\to\infty}\alpha_{j,n} = \alpha_j \ \left(1\leq j\leq k\right)$
- Proof (a)
 - \circ Assume $\overrightarrow{x_n} \to \overrightarrow{x}$
 - Given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $|\overrightarrow{x_n} \overrightarrow{x}| < \varepsilon$ for $n \ge N$
 - Thus, $\left|\alpha_{j,n} \alpha_j\right| \le \left|\overrightarrow{x_n} \overrightarrow{x}\right|$ for $n \ge N$, $1 \le j \le k$
 - Therefore $\lim_{n\to\infty} \alpha_{j,n} = \alpha_j$ for $1 \le j \le k$
 - $\circ \ \ \text{Assume} \ \lim_{n\to\infty} \alpha_{j,n} = \alpha_j \text{ for } 1 \le j \le k$
 - Given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $\left| \alpha_{j,n} \alpha_j \right| < \frac{\varepsilon}{\sqrt{k}}$ for $n \ge N$

$$|\overrightarrow{x_n} - \overrightarrow{x}| = \left| \sqrt{\sum_{i=1}^k |\alpha_{j,n} - \alpha_n|^2} \right| = \sqrt{\sum_{i=1}^k |\alpha_{j,n} - \alpha_n|^2} < \sqrt{\sum_{i=1}^k \frac{\varepsilon^2}{k}} = \varepsilon$$

- Therefore $\overrightarrow{x_n} \rightarrow \overrightarrow{x}$
- Statement (b)
 - o Suppose
 - $\{\overrightarrow{x_n}\}$ and $\{\overrightarrow{y_n}\}$ are sequences in \mathbb{R}^k , $\{\beta_n\}$ is a sequence in \mathbb{R}
 - $\blacksquare \quad \overrightarrow{x_n} \to \overrightarrow{x}, \overrightarrow{y_n} \to \overrightarrow{y}, \beta_n \to \beta$
 - o Then
- Proof (b)
 - This follows from (a) and Theorem 3.3 (Algebraic Limit Theorem)

Definition 2.31: Open Cover

- An **open cover** of a set *E* in a metric *X* is
- a collection of open sets $\{G_{\alpha}\}$ in X s. t. $E \subset \bigcup_{\alpha} G_{\alpha}$

Definition 2.32: Compact Sets

• Definition

- A set *K* in a metric space *X* is **compact** if
- \circ every open cover of K has a finite subcover
- Intuition for \mathbb{R}^k : Closed and bounded

Open cover

Finite subcover

• Example 1

$$\circ \quad \text{Let } E = (0,1), X = \mathbb{R}$$

 \circ *E* is a open cover of itself, but *E* is not compact

○ Let
$$G_{\alpha} = \left(\frac{\alpha}{2}, 1\right)$$
 for $\alpha \in (0,1)$, then E has $\{G_n\}$ as an open cover

 \circ We cannot take a finite collection of these G_{α} and still have an open cover

o So it has no finite subcover

• Therefore E = (0,1) is not compact

• Example 2

$$\circ$$
 Let $K = [0,1], X = \mathbb{R}$

 $\circ \quad \mathsf{Consider}\left\{G_{\alpha}\right\} \cup \left\{G_{0}\right\} \cup \left\{G_{1}\right\}, \mathsf{where}$

•
$$G_{\alpha} = \left(\frac{\alpha}{2}, 1\right)$$
 for $\alpha \in (0,1)$

•
$$G_0 = (-\varepsilon, \varepsilon)$$

•
$$G_1 = (1 - \varepsilon, 1 + \varepsilon)$$
 for some $\varepsilon > 0$

 $\circ \quad \text{Then} \left\{ G_{\alpha} \right\} \cup \left\{ G_{0} \right\} \cup \left\{ G_{1} \right\} \text{ is an open cover of } [0,1]$

• It has finite subcover
$$\{G_0, G_1, G_{\varepsilon}\}$$
 where $G_{\varepsilon} = \left(\frac{\varepsilon}{2}, 1\right)$

○ Therefore K = [0,1] is compact

Compact Subset, Cantor's Intersection Theorem

Monday, March 12, 2018 12:08 PM

Theorem 2.34: Compact Sets are Closed

- Statement
 - Compact subsets of metric spaces are closed
- Proof
 - Let *K* be a compact subset of a metric space *X*
 - \circ We shall prove that the complement of K is open
 - Let $p \in K^c$, $q \in K$

• Let
$$V_q = N_r(p)$$
, $W_q = N_s(q)$ where $r, s < \frac{1}{2}d(p,q)$

- Since K is compact, $\exists q_1, q_2, ... q_n \in K$ s.t.
- $\circ \ \ K \subset W_{q_1} \cup W_{q_2} \cup \cdots \cup W_{q_n} = W$
- $\circ \quad \text{Let } V = V_{q_1} \cap V_{q_2} \cap \dots \cap V_{q_n}$
- \circ Then V is a neighborhood of p that does not intersect W
- $V \subset K^c \Rightarrow p$ is an interior point of K^c
- So K^c is open and therefore K is closed

Theorem 2.35: Closed Subsets of Compact Sets are Compact

- Statement
 - Closed subsets of compact sets are compact
- Proof
 - Let *X* be a metric space
 - Suppose $F \subset K \subset X$, where F is closed, and K is compact
 - Let $\{V_{\alpha}\}$ be an open cover of F
 - o Consider $\{V_{\alpha}\} \cup \{F^c\}$, where F^c is open
 - Then $\{V_{\alpha}\} \cup \{F^c\}$ is an open cover of K
 - Since K is compact, K has a finite subcover Φ
 - If $F^c \in \Phi$, then $\Phi \setminus \{F^c\}$ is still finite and covers F
 - So we have a finite subcover of $\{V_{\alpha}\}$
 - Therefore *F* is compact

Corollary

○ If F is closed and K is compact, then $F \cap K$ is compact

• Proof

- \circ *K* compact \Rightarrow *K* is closed
- We know F is closed, so $F \cap K$ is closed
- \circ $F \cap K \subset K$, and K is compact
- So $F \cap K$ is compact

Theorem 2.36: Cantor's Intersection Theorem

• Statement

- If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X s.t.
- \circ The intersection of every **finite subcollection** of $\{K_\alpha\}$ is **nonempty**
- Then $\bigcap_{\alpha} K_{\alpha}$ is **nonempty**

• Proof

- Fix $K_1 \in \{K_\alpha\}$ and let $G_\alpha = K_\alpha^c$, $\forall \alpha$
- o Assume no point of K_1 belongs to every K_α
- Then $\{G_{\alpha}\}$ is an open cover of K_1
- $\circ \ \ \text{Since} \ \textit{K}_1 \ \text{is compact,} \ \textit{K}_1 \subset \textit{G}_{\alpha_1} \cap \textit{G}_{\alpha_2} \cap \cdots \cap \textit{G}_{\alpha_n}$
- Where $\alpha_1, \alpha_2, ..., \alpha_n$ is a finite collection of indices
- $\circ \quad \text{Then } K_1 \cap G_{\alpha_2} \cap \cdots \cap G_{\alpha_n} = \emptyset$

- \circ This is a contradiction, so no such set K_1 exists
- o The result follows
- Corollary
 - If $\{K_n\}$ is a sequence of nonempty compact sets s.t. $K_n \supset K_{n+1}$, $\forall n \in \mathbb{N}$
 - \circ Then $\bigcap_{n=1}^{\infty} K_n$ is nonempty

Theorem 2.37: Infinite Subset of Compact Set

- Statement
 - If *E* is an **infinite subset** of a compact set *K*
 - \circ Then *E* has a **limit point** in *K*
- Proof
 - \circ If no point of K were a limit point of E
 - Then $\forall q \in K$, $\exists N(q)$ s.t. no point of E other than q
 - o i.e. N(q) contains at most one point of E (namely, q, if $q \in E$)
 - So no finite sub-collection of $\{N(q)\}$ can cover E, and thus not K
 - \circ This is a contradiction, so E has a limit point in K

Nested Intervals Theorem, Compactness of k-cell

Wednesday, March 14, 2018 12:06 PM

Theorem 2.38: Nested Intervals Theorem

- Statement
 - If $\{I_n\}$ is a **sequence of closed intervals** in \mathbb{R} s.t. $I_n \supset I_{n+1}$, $\forall n \in \mathbb{N}$
 - Then $\bigcap_{n=1}^{\infty} I_n$ is **nonempty**
- Intuition

- Proof
 - \circ Let $I_n := [a_n, b_n]$
 - \circ Let $E \coloneqq \{a_n\}_{n \in \mathbb{N}}$
 - E is nonempty
 - *E* is bounded above by b_1 since $b_1 \ge a_n$, $\forall n \in \mathbb{N}$
 - So sup *E* exists
 - \circ Let $x := \sup E$
 - $\circ \ \, \forall m,n \in \mathbb{N}, a_n \leq a_{m+n} \leq b_{m+n} \leq b_m$
 - $a_n \le b_m \Rightarrow x \le b_m, \forall m \in \mathbb{N}$
 - $x = \sup E \Rightarrow a_m \le x, \forall m \in \mathbb{N}$
 - $\circ \quad \mathsf{So}, x \in [a_m, b_m], \forall m \in \mathbb{N}$
 - $\circ \quad \text{Therefore } x \in \bigcap_{n=1}^{\infty} I_n$

Theorem 2.39: Nested k-cell

- Statement
 - \circ Let k be a positive integer
 - If $\{I_n\}$ is a **sequence of** k**-cells** s.t. $I_n \supset I_{n+1}$, $\forall n \in \mathbb{N}$

• Then
$$\bigcap_{n=1}^{\infty} I_n$$
 is **nonempty**

- Proof
 - Let I_n consists of all points $\vec{x} = (x_1, x_2, ..., x_k)$ s.t.
 - $a_{n,j} \le x_j \le b_{n,j}$, where $1 \le j \le k, n = 1,2,3,...$
 - $\circ \quad \text{Let } I_{n,j} = \left[a_{n,j}, b_{n,j} \right]$
 - \circ For each j, $\left\{I_{n,j}\right\}$ satisfies the hypothesis of Theorem 2.38
 - $\circ \quad \text{Therefore } \exists x_j^* \in \bigcap_{n=1}^{\infty} I_{n,j} \text{, for } 1 \leq j \leq k$
 - $\circ \operatorname{Let} \overrightarrow{x^*} = \left(x_1^*, x_2^*, \dots, x_k^*\right)$
 - $\circ \quad \text{By construction, } \overrightarrow{x^*} \in \bigcap_{n=1}^{\infty} I_n$

Theorem 2.40: Compactness of k-cell

- Statement
 - Every **k-cell** is **compact**
- Proof

$$\circ \ \ \operatorname{Let} I = \left\{ \left(x_1, x_2, \dots, x_k\right) \in \mathbb{R}^k \,\middle|\, a_j \leq x_j \leq b_j, 1 \leq j \leq k \right\} \text{be a k-cell}$$

$$\circ \text{ Let } \delta = \sqrt{\sum_{j=1}^{k} (b_j - a_j)^2}, \text{ then } |\vec{x} - \vec{y}| \le \delta, \forall \vec{x}, \vec{y} \in I$$

- o Suppose $\{G_{\alpha}\}$ is an open cover of I with no finite subcover
- \circ Build sequence $\{I_n\}$

• Let
$$c_j = \frac{a_j + b_j}{2}$$

- Consider intervals $[a_j, c_j]$ and $[c_j, b_j]$
- Those intervals describes 2^k k-cells Q_i whose union is I
- Since the number of Q_i is finite, and $\{G_\alpha\}$ has no finite subcover
- $\exists Q_i$ not covered by a finite subcover of $\{G_\alpha\}$; call this I_1
- Repeat this process on I_1 to obtain I_2 , I_3 , ...
- We can build a sequence $\{I_n\}$
- \circ $\{I_n\}$ is a sequence of k-cells s.t.
 - $\bullet \quad I\supset I_1\supset I_2\supset\cdots$
 - I_n is not covered by any finite sub-collection of $\{G_\alpha\}$
 - If \vec{x} , $\vec{y} \in I_n$, then $|\vec{x} \vec{y}| \le \frac{\delta}{2^n}$

- By Theorem 2.38, $\exists \vec{x}^* \in I_n$, $\forall n \in \mathbb{N}$
- Then $\overrightarrow{x^*} \in G_\alpha$, for some G_α
 - G_{α} is open
 - i.e. $\exists r > 0$ s.t. $\left| \vec{y} \overrightarrow{x^*} \right| < r \Rightarrow \vec{y} \in G_{\alpha}$
 - By Archimedean Property, $\exists n \in \mathbb{N} \text{ s.t. } \frac{\delta}{2^n} < r$
 - In this case, $I_n \subset G_\alpha$, which is impossible, since
 - I_n is not covered by any finite sub-collection of $\{G_\alpha\}$
 - So no such open cover $\{G_{\alpha}\}$ exists
- \circ So every open cover of *I* have a finite subcover
- \circ Therefore *I* is compact

Heine-Borel, Weierstrass, Subsequence

Friday, March 16, 2018 12:07 PM

Theorem 2.41: The Heine-Borel Theorem

- For a set $E \subset \mathbb{R}^k$, the following properties are equivalent
 - (a) *E* is **closed** and **bounded**
 - (b) E is compact
 - (c) Every **infinite subset** of *E* has a **limit point** in *E*
- Proof $(a) \Rightarrow (b)$
 - If (a) holds, then $E \subset I$ for some k-cell
 - o (b) follow from
 - Theorem 2.40 (*I* is compact)
 - Theorem 2.35 (Closed subsets of compact sets are compact)
- Proof $(b) \Rightarrow (c)$
 - See Theorem 2.37
- Proof $(c) \Rightarrow (a)$
 - \circ Suppose *E* is not bounded
 - $\exists x_n \in E \text{ s.t. } |\overrightarrow{x_n}| > n, \forall n \in \mathbb{N}$
 - $\{\overrightarrow{x_n}\}$ is an infinite subset of E with no limit points
 - This is a contradiction, so *E* must be bounded
 - Suppose *E* is not closed
 - $\exists \overrightarrow{x_0} \in \mathbb{R}^k$ that is a limit point of E but not in E
 - For $n \in \mathbb{N}$, $\exists \overrightarrow{x_n} \in E$ s. t. $\left| \overrightarrow{x_n} \overrightarrow{x_0} \right| < \frac{1}{n}$
 - Let $S \coloneqq \{\overrightarrow{x_n}\}_{n \in \mathbb{N}}$ be a infinite subset of E
 - By construction, S has $\overrightarrow{x_0}$ as a limit point
 - We want to show that $\overrightarrow{x_0}$ is the only limit point of *S*
 - $\Box \quad \text{Let } \vec{y} \in \mathbb{R}^k \text{ and } \vec{y} \neq \overrightarrow{x_0}$
 - □ By triangle inequality,
 - $|\overrightarrow{x_n} \overrightarrow{y}| \ge |\overrightarrow{x_0} \overrightarrow{y}| |\overrightarrow{x_n} \overrightarrow{x_0}| \ge |\overrightarrow{x_0} \overrightarrow{y}| \frac{1}{n} > \frac{1}{2} |\overrightarrow{x_0} \overrightarrow{y}|$
 - \Box For all but finitely many n
 - \Box Take the neighborhood of \vec{y} with radius of $\frac{1}{2} |\vec{x_0} \vec{y}|$,
 - \Box There are only finitely many points of *S* in it
 - \Box By Theorem 2.20, \vec{y} cannot be a limit point of *S*
 - \Box Since \vec{y} was arbitrary, $\overrightarrow{x_0}$ is the only limit point of S

- By (c), S has a limit point in E i.e. $\overrightarrow{x_0} \in E$
- This is a contradiction, so *E* has to be closed
- Therefore *E* is closed and bounded

Theorem 2.42: The Weierstrass Theorem

- Statement
 - Every **bounded infinite subset** E of \mathbb{R}^k has a **limit point** in \mathbb{R}^k
- Proof
 - E is bounded, so $E \subset I \subset \mathbb{R}^k$ for some k-cell I
 - By Theorem 2.40, *I* is compact
 - \circ By Theorem 2.37, *E* has a limit point in *I*
 - Hence, E has a limit point in \mathbb{R}^k

Definition 3.5: Subsequences

- Definition
 - \circ Given a sequence $\{p_n\}$
 - Consider a sequence $\{n_k\} \subset \mathbb{N}$ with $n_1 < n_2 < n_3 < \cdots$
 - \circ Then the sequence $\left\{p_{n_i}\right\}$ is a **subsequence** of $\left\{p_n\right\}$
 - \circ If $\{p_{n_i}\}$ converges, its limit is called a **subsequential limit** of $\{p_n\}$
- Example

o Let
$$\{p_n\} = \frac{1}{n} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \}$$

o One subsequence is
$$\left\{1, \frac{1}{4}, \frac{1}{6}, \frac{1}{7}, \frac{1}{38}, \frac{1}{101}, \frac{1}{135}, \dots\right\}$$

- o But $\left\{ \frac{1}{19}, \frac{1}{18}, \frac{1}{2}, \frac{1}{237}, \frac{1}{12}, \frac{1}{59}, \frac{1}{32}, \dots \right\}$ is not a subsequence
- Note
 - o A subsequential limit might exist for a sequence in the absence of a limit
 - $\circ \ \{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p

Theorem 3.6: Properties of Subsequence

- Statement (a)
 - o If $\{p_n\}$ is a sequence in a compact metric space X
 - Then **some subsequence** of $\{p_n\}$ **converges** to a point of X
- Proof (a)
 - Let *E* be the range of $\{p_n\}$
 - If *E* is finite
 - $\exists p \in E \text{ and a sequence } \{n_i\} \subset \mathbb{N} \text{ with } n_1 < n_2 < n_3 < \cdots \text{ s.t. }$

•
$$p_{n_1} = p_{n_2} = p_{n_3} = \dots = p$$

- \circ If *E* is infinite
 - By Theorem 2.37, E has a limit point $p \in X$
 - By Theorem 2.20, inductively choose n_i s. t. $d\left(p,p_{n_i}\right) < \frac{1}{i}$, $\forall i \in \mathbb{N}$
 - It follows that $\{p_{n_i}\}$ converges to p
- Statement (b)
 - \circ Every **bounded sequences** in \mathbb{R}^k contains a **convergent subsequence**
- Proof (b)
 - \circ By Theorem 2.41, every bounded subset of \mathbb{R}^k is in a compact subset of \mathbb{R}^k
 - o Result follows by (a)

Cauchy Sequence, Diameter

Monday, March 19, 2018 13

12:19 PM

Definition 3.8: Cauchy Sequence

- A sequence $\{p_n\}$ in a metric space X is said to be **Cauchy sequence**
- If $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $d(p_n, p_m) < \varepsilon, \forall n, m \ge N$

Definition 3.9: Diameter

- Let *E* be a nonempty subset of metric space *X*
- Let *S* be set of all real numbers of the form d(p,q) with $p,q \in E$
- Then diam $S := \sup S$ is called the **diameter** of E (possibly ∞)
- If $\{p_n\}$ is a sequence in X and $E = \{p_N, p_{N+1}, ...\}$
- Then $\{p_n\}$ is a **Cauchy sequence** if and only if $\lim_{N \to \infty} \operatorname{diam} E_N = \mathbf{0}$

Theorem 3.10: Diameter and Closure

- Statement
 - If \overline{E} is the closure of a set E in a metric space X, then $\operatorname{diam} \overline{E} = \operatorname{diam} E$
- Proof
 - diam $E \leq \text{diam } \bar{E}$
 - This is obvious since $E \subset \overline{E}$
 - \circ diam $\bar{E} \leq \text{diam } E$
 - Let $p, q \in \bar{E}$
 - Let $\varepsilon > 0$, then $\exists p', q' \in E$ s. t. $d(p, p') < \frac{\varepsilon}{2}$, $d(q, q') < \frac{\varepsilon}{2}$
 - $d(p,q) \leq \operatorname{diam} E$
 - $\ \ \Box \ \ d\big(p,q\big) \leq d\big(p,p'\big) + d\big(p',q'\big) + d\big(q',q\big)$
 - $\Box < \frac{\varepsilon}{2} + d(p', q') + \frac{\varepsilon}{2}$

$$\Box = \varepsilon + d(p', q')$$

$$\Box \leq \varepsilon + \operatorname{diam} E$$

- \Box Since $\varepsilon > 0$ was arbitrary, $d(p,q) \leq \text{diam } E$
- So diam $\overline{E} \leq \text{diam } E$
- Therefore diam $\bar{E} = \text{diam } E$

Theorem 3.10: Nested Compact Set

- Statement
 - \circ If K_n is a sequence of compact sets in X s.t.
 - $\circ \quad K_n \supset K_{n+1}, \forall n \text{ and } \lim_{n \to \infty} \operatorname{diam} K_n = 0$
 - Then $\bigcap_{n=1}^{\infty} K_n$ consists of **exactly one point**
- Proof

$$\circ \quad \text{Let } K = \bigcap_{n=1}^{\infty} K_n$$

- By Theorem 2.36, *K* is not empty
- If K contains more than one point, diam K > 0
- But $K_n \supset K$, $\forall n \in \mathbb{N}$, then
- $\circ \ \operatorname{diam} K_n \geq \operatorname{diam} K > 0 \Rightarrow \lim_{n \to \infty} K_n \geq \operatorname{diam} K > 0$
- \circ This contradicts $\lim_{n\to\infty} \operatorname{diam} K_n = 0$
- There can only be one point in K

Cauchy Sequence, Complete Metric Space, Monotonic

Wednesday, March 21, 2018

12:07 PM

Theorem 3.11: Cauchy Sequence and Convergence

- Statement (a)
 - In any metric space *X*, every **convergent** sequence is a **Cauchy sequence**
- Proof (a)
 - Suppose $p_n \rightarrow p$
 - Let $\varepsilon > 0$, then $\exists N \in \mathbb{N}$ s. t. $d(p, p_n) < \frac{\varepsilon}{2}$, $\forall n \ge N$
 - $\circ d(p_n, p_m) \le d(p, p_n) + d(p, p_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \forall n, m \ge N$
 - \circ So $\{p_n\}$ is a Cauchy sequence
- Statement (b)
 - If *X* is a **compact** metric space and $\{p_n\}$ is a **Cauchy sequence**
 - Then $\{p_n\}$ **converges** to some point of X
- Proof (b)
 - \circ Let $\{p_n\}$ be a Cauchy sequenece in compact metric space X
 - For $N \in \mathbb{N}$, let $E_N = \{p_N, p_{N+1}, ...\}$
 - By Theorem 3.10, $\lim_{N\to\infty} \operatorname{diam} \overline{E_N} = \lim_{N\to\infty} \operatorname{diam} E_N = 0$
 - o By Theorem 2.35, $\overline{E_N}$ as closed subset of X is compact
 - Since $E_{N+1} \subset E_N$, $\overline{E_{N+1}} \subset \overline{E_N}$, $\forall N \in \mathbb{N}$
 - By Theorem 3.10 (b), $\exists ! p \in X \text{ s.t. } p \in \overline{E_N}, \forall N \in \mathbb{N}$
 - Let $\varepsilon > 0$ be given, $\exists N_0 \in \mathbb{N}$ s.t. diam $\overline{E_N} < \varepsilon, \forall N \ge N_0$
 - Since $p \in \overline{E_N}$, $d(p,q) < \varepsilon$, $\forall q \in E_N = \{p_N, p_{N+1}, ...\} \subset \overline{E_N}$
 - $\circ \quad \text{In other word, } d\big(p,p_n\big) < \varepsilon \text{ for } n \geq N_0$
 - $\circ \quad \operatorname{So} \lim_{n \to \infty} p_n = p$
- Statement (c)
 - o In \mathbb{R}^k , every Cauchy sequence converges
- Proof (c)
 - Let $\{\overrightarrow{x_n}\}$ be a Cauchy sequence in \mathbb{R}^k
 - $\circ \operatorname{Let} E_N = \left\{ \overrightarrow{x_N}, \overrightarrow{x_{N+1}}, \dots \right\}$
 - For some $N \in \mathbb{N}$, diam $E_N < 1$
 - Then the range of $\{\overrightarrow{x_n}\}$ is $\{\overrightarrow{x_1}, ..., \overrightarrow{x_{N-1}}\} \cup E_N$
 - o By Theorem 2.41, every bounded subset of \mathbb{R}^k has compact closure in \mathbb{R}^k

o (c) follows from (b)

Definition 3.12: Complete Metric Space

- Definition
 - A metric space *X* is said to be complete if
 - \circ every Cauchy sequence converges in X
- Examples
 - \circ \mathbb{R}^k is complete
 - Compact metric space *X* is complete
 - $\circ \mathbb{Q}$ is not complete (convergence may lie outside of \mathbb{Q})

Definition 3.13: Monotonic Sequence

- A sequence $\{s_n\}$ of real numbers is said to be
- monotonically increasing if $s_n \leq s_{n+1}$, $\forall n \in \mathbb{N}$
- monotonically decreasing if $s_n \ge s_{n+1}$, $\forall n \in \mathbb{N}$
- **monotonic** if $\{s_n\}$ is either monotonically increasing or decreasing

Theorem 3.14: Monotone Convergence Theorem

- Statement
 - o If $\{s_n\}$ is **monotonic**, then $\{s_n\}$ **converges** if and only if it is **bounded**
- Proof
 - o By Theorem 3.2 (c), converge implies boundedness
 - \circ Without loss of generality, suppose $\{s_n\}$ is monotonically increasing
 - Let $E = \text{range } \{s_n\}$, and $s = \sup E$, then $s_n \le s$, $\forall n \in \mathbb{N}$
 - $\circ \ \ \text{Given } \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } s \varepsilon < s_n \leq s, \forall n \geq N$
 - Since $s \varepsilon$ is not an upper bound of E, and $\{s_n\}$ is increasing
 - $\circ \quad s s_n < \varepsilon, \forall n \ge N \Rightarrow \lim_{n \to \infty} s_n = s$

Upper and Lower Limits

Friday, March 23, 2018

12:11 PM

Definition 3.15: Sequences Approaching Infinity

- Let $\{s_n\}$ be a sequence of real numbers s.t.
- $\forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ s.t. } s_n \geq M, \forall n \geq N$
- Then we write $s_n \to +\infty$
- Similarly if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ s.t. $s_n \leq M$, $\forall n \geq N$
- Then we write $s_n \to -\infty$

Definition 3.16: Upper and Lower Limits

- Definition
 - Let $\{s_n\}$ be a sequence of real numbers
 - \circ Let *E* be the set of *x* (in the extended real number system) s.t.
 - o $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$
 - *E* contains **all subsequential limits** of $\{s_n\}$ plus possibly $+\infty$, $-\infty$
 - o $\limsup_{n\to\infty} s_n = s^* = \sup E$ is called the **upper limit** of $\{s_n\}$
 - $\circ \liminf_{n\to\infty} s_n = s_* = \inf E \text{ is called the } \mathbf{lower \ limit} \ of \ \big\{ s_n \big\}$
- Example 1

$$\circ s_n = \frac{(-1)^n}{1 + \frac{1}{n}} = \left\{ -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \dots \right\}$$

$$\circ \lim \sup_{n \to \infty} s_n = \sup\{-1,1\} = 1$$

- $\circ \lim_{n\to\infty} \inf s_n = \inf\{-1,1\} = -1$
- Example 2

$$\circ \lim_{n \to \infty} s_n = s \Rightarrow \limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s$$

- All subsequential limits of a convergent sequence
- converge to the same value as the sequence

$$\circ \lim \sup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s \Rightarrow \lim_{n \to \infty} s_n = s$$

- \Rightarrow sup $E = \inf E$
- $\blacksquare \Rightarrow E = \{s\}$
- \Rightarrow All subsequential limits = s
- $\Rightarrow \lim_{n\to\infty} s_n = s$

Theorem 3.17: Properties of Upper Limits

- Let $\{s_n\}$ be a sequence of real numbers, then
- $s^* \in E$
 - When $s^* = +\infty$
 - E is not bounded above, so $\{s_n\}$ is not bounded above
 - There is a subsequence $\{s_{n_k}\}$ s.t. $s_{n_k} \to \infty$
 - So $s^* = +\infty \in E$
 - When $s^* \in \mathbb{R}$
 - *E* is bounded above
 - And at least one subsequential limit exists i.e. $E \neq \emptyset$
 - By Theorem 3.7, *E* is closed i.e. $E = \bar{E}$
 - By Theorem 2.28, $s^* = \sup E \in \overline{E}$
 - Therefore $s^* \in E$
 - When $s^* = -\infty$
 - Then $E = \{-\infty\}$
 - $s_n \to -\infty$ and $s^* = -\infty \in E$
- If $x > s^*$, then $\exists N \in \mathbb{N}$ s. t. $s_n < x$ for $n \ge N$
 - $\circ \quad \text{If } \exists x>s^* \text{ with } s_n\geq x \text{ for infinitely many } n\in \mathbb{N}$
 - Then $\exists y \in E \text{ s.t. } y \ge x > s^*$
 - This contradicts the definition of s^*
- Moreover *s** is the **only number** with these properties
 - Suppose $p, q \in E, p \neq q$ s.t. the property above holds for p, q
 - Without loss of generality, suppose p < q
 - Choose x s.t. p < x < q
 - Since *p* satisfies the property above
 - $\exists N \in \mathbb{N} \text{ s.t. } s_n < x, \forall n \geq N$
 - So no subsequence of $\{s_n\}$ can converge to q
 - This contradicts the existence of *q*
 - o Therefore only one number can have these properties

Some Special Sequences

Monday, April 2, 2018 12:11 PM

Theorem 3.20: Some Special Sequences

- Lemma (The Squeeze Theorem)
 - Given $0 \le x_n \le s_n$, for $n \ge N$ where $N \in \mathbb{N}$ is some fixed number
 - If $s_n \to 0$, then $x_n \to 0$
 - o (Proof on homework)
- If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$
 - $\circ \quad \text{For } n \geq N \text{, we need } \left| \frac{1}{n^p} 0 \right| < \varepsilon \Rightarrow n > \frac{1}{\varepsilon^{1/p}}$
 - Given ε > 0
 - Using Archimedean Property, take $N > \left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}$
 - $\circ \text{ So, for } n \ge N, n > \left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}} \Rightarrow n^p > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n^p} < \varepsilon \Rightarrow \left|\frac{1}{n^p} 0\right| < \varepsilon$
 - $\circ \quad \text{Therefore } \lim_{n \to \infty} \frac{1}{n^p} = 0$
- If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$
 - \circ When p = 1
 - We are done, since $\lim_{n\to\infty} 1 = 1$
 - \circ When p > 1
 - Then p 1 > 0
 - Let $x_n = \sqrt[n]{p} 1$, then $x_n > 0$
 - $p = (x_n + 1)^n \ge 1^n + \binom{n}{n-1} 1^{n-1} x_n^1 = 1 + nx_n$
 - $\Rightarrow p-1 \ge nx_n$
 - $\Rightarrow \frac{p-1}{n} \ge x_n > 0$
 - By the Squeeze Theorem, $x_n \to 0$
 - i. e. $\lim_{n\to\infty} \sqrt[n]{p} 1 = 0$
 - So $\lim_{n\to\infty} \sqrt[n]{p} = 1$
 - When p < 1
 - Then $\frac{1}{p} > 1$
 - So, $\lim_{n\to\infty} \sqrt[n]{1/p} = 1$

• Therefore
$$\lim_{n\to\infty} \sqrt[n]{p} = \frac{1}{1} = 1$$

•
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

$$\circ \quad \text{Let } x_n = \sqrt[n]{n} - 1 \ge 0$$

$$o n = (x_n + 1)^n \ge {n \choose n-2} 1^{n-2} x_n^2 = \frac{n!}{(n-2)! \, 2!} x_n^2 = \frac{n(n-1)}{2} x_n^2$$

$$\circ \Rightarrow \frac{2}{n-1} \ge x_n^2$$

$$\circ \Rightarrow \sqrt{\frac{2}{n-1}} \ge x_n > 0 \text{ for } n > 1$$

$$\circ$$
 By the Squeeze Theorem, $x_n = \lim_{n \to \infty} \sqrt[n]{n} - 1 \to 0$

$$\circ \quad \text{i. e. } \lim_{n \to \infty} \sqrt[n]{n} = 1$$

• If
$$p > 0$$
, $\alpha \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^{\alpha}}{\left(1 + p\right)^n} = 0$

○ Let $k \in \mathbb{N}$ s.t. $k > \alpha$ by Archimedean Property

o For
$$n > 2k$$
, $(1+p)^n > \binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k > \frac{n^k p^k}{2^k k!}$

$$\circ \quad \text{Because } n > 2k \Rightarrow \frac{n}{2} > k \Rightarrow n - k > \frac{n}{2} \Rightarrow n - k + 1 > \frac{n}{2}$$

$$\circ \text{ So, } 0 < \frac{n^{\alpha}}{(1+p)^{\alpha}} < \frac{2^{k}k!}{n^{k}p^{k}} \cdot n^{\alpha} = \frac{2^{k}k!}{p^{k}} \cdot n^{\alpha-k}$$

$$\circ \text{ Since } a - k < 0, n^{a-k} \to 0 \Rightarrow \frac{2^k k!}{p^k} \cdot n^{\alpha - k} \to 0$$

o By the Squeeze Theorem,
$$\frac{n^{\alpha}}{(1+p)^{\alpha}} \to 0$$

$$\circ \text{ i. e. } \lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$$

• If |x| < 1, then $\lim_{n \to \infty} x^n = 0$

$$\circ$$
 Let $p = \frac{1}{|x|} - 1 > 0$

• Take
$$\alpha = 0$$
 in the limit above, we get $\lim_{n \to \infty} \frac{1}{(1+p)^n} = 0$

$$\circ \text{ So } \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{|x|} - 1\right)^n} = \lim_{n \to \infty} |x|^n = 0$$

$$\circ \quad \text{Then } \lim_{n \to \infty} x^n = 0$$

Series, Cauchy Criterion for Series, Comparison Test

Wednesday, April 4, 2018

12:09 PM

Definition 3.31: Series

- Given a sequence $\{a_n\}$
- We associate a **sequence of partial sums** $\{s_n\}$ where
- $s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$
- $\sum_{k=1}^{\infty} a_k$ is called an **infinite series**, or simply series
- If $\{s_n\}$ diverges, the series is said to diverge
- If $\{s_n\}$ converges to s, the series is said to converge, and write $\sum_{k=1}^{\infty} a_k = s$
- *s* is called the **sum of the series**
- But it is technically the limit of a sequence of sums

Theorem 3.22: Cauchy Criterion for Series

• Statement

$$\circ \sum_{n=1}^{\infty} a_n \text{ converges} \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s. t.} \left| \sum_{k=n}^{m} a_k \right| < \varepsilon, \forall m \ge n \ge N$$

- Proof
 - This is Theorem 3.11 applied to $\{s_n\}$

Theorem 3.23: Series and Limit of Sequence

- Statement
 - In the setting of Theorem 3.22, take m = n
 - $\circ \quad \text{We have } |a_n| < \varepsilon \text{ for } n \ge N$

$$\circ \quad \text{If } \sum_{n=1}^{\infty} a_n \text{ converges, then } \lim_{n \to \infty} a_n = 0$$

Note

○ If
$$a_n \to 0$$
, the series $\sum_{n=1}^{\infty} a_n$ might not converge

• Example:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges

$$\circ \ 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots$$

• Therefore
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges

Theorem 3.24: Convergence of Monotone Series

- Statement
 - A series of **nonnegative** real numbers **converges** if and only if
 - o its partial sum form a bounded sequence
- Proof
 - See Theorem 3.14 (Monotone Convergence Theorem)

Theorem 3.25: Comparison Test

• If $|a_n| < c_n$ for $n \ge N_0 \in \mathbb{N}$ and $\sum_{n=1}^{\infty} c_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges

$$\circ$$
 By the Cauchy Criterion, $\left|\sum_{k=n}^m a_k\right| \le \sum_{k=n}^m |a_k| \le \sum_{k=n}^m c_k < \varepsilon$

$$\circ \text{ Thus } \sum_{n=1}^{\infty} a_n \text{ converges}$$

• If $a_n \ge d_n \ge 0$ for $n \ge N_0 \in \mathbb{N}$ and $\sum_{n=1}^{\infty} d_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

$$\circ$$
 If $\sum_{n=1}^{\infty} a_n$ converges, then so must $\sum_{n=1}^{\infty} d_n$

• This is a contradiction, so
$$\sum_{n=1}^{\infty} a_n$$
 diverges

Theorem 3.26: Convergence of Geometric Series

• Statement

$$\circ \quad \text{If } \mathbf{0} < x < \mathbf{1}, \text{then } \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

- \circ If x > 1, the series diverges
- Note

$$\circ \begin{cases} S = 1 + x + x^2 + \dots \\ xS = x + x^2 + \dots \end{cases} \Rightarrow S - xS = 1 \Rightarrow S = \frac{1}{1 - x}$$

- This only works if we know this series converges
- Proof

$$\circ$$
 If $0 < x < 1$, we have

$$\circ \begin{cases} s_n = 1 + x + x^2 + \dots + x^n \\ xs_n = x + x^2 + \dots + x^n + x^{n+1} \end{cases}$$

$$\circ \Rightarrow s_n - x s_n = 1 - x^{n+1}$$

$$\circ \Rightarrow s_n = \frac{1 - x^{n+1}}{1 - x}$$

$$\circ \quad \text{Since } 0 < x < 1, \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}$$

• Note if
$$x = 1$$
, $\sum_{n=1}^{\infty} x^n = 1 + 1 + \cdots$ which diverges

Convergence Tests for Series

Friday, April 6, 2018 12:06 PM

Theorem 3.27: Cauchy Condensation Test

- Statement
 - Suppose $a_1 \ge a_2 \ge \cdots \ge 0$, then

- Proof
 - o By Theorem 3.24, we just need to look at boundness of partial sums
 - o Let
 - $\bullet \quad s_n = a_1 + a_2 + \dots + a_n$
 - $t_k = a_1 + 2a_2 + \dots + 2^k a_{2^k}$
 - \circ For $n \leq 2^k$
 - $s_n \le a_1 + (a_2 + a_3) + \dots + (a_{2^k} + \dots + a_{2^{k+1}-1})$
 - $\blacksquare \le a_1 + 2a_2 + \dots + 2^k a_{2^k} = t^k$
 - \circ For $n \ge 2^k$
 - $s_n \ge a_1 + (a_2 + a_3) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$
 - $\bullet \geq \frac{1}{2}a_1 + a_2 + \dots + 2^{k-1}a_{2^k} = \frac{1}{2}t^k$
 - \circ For $n=2^k$
 - $\bullet \quad s_n \leq t_k \leq 2s_n \Rightarrow s_{2^k} \leq t_k \leq 2s_{2^k}$
 - So $\{s_n\}$ and $\{t_k\}$ are both bounded or unbounded

Theorem 3.28: Convergence of *p*-Series

- Statement
 - $\circ \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1 \text{ and diverges if } p \le 1$
- Proof
 - \circ If $p \leq 0$
 - Theorem 3.23 says if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$
 - In this case $\lim_{n\to\infty} \frac{1}{n^p} \neq 0$, so series diverges
 - \circ If p > 0
 - $\frac{1}{n^p} \ge \frac{1}{(n+1)^p} \text{ and } \frac{1}{n^p} \ge 0$

By Cauchy Condensation Test,

•
$$\lim_{n\to\infty} \frac{1}{n^p}$$
 converges $\iff \sum_{n=1}^{\infty} 2^k \frac{1}{\left(2^k\right)^p}$ converges

$$\sum_{n=1}^{\infty} 2^k \frac{1}{(2^k)^p} = \sum_{n=1}^{\infty} (2^{1-p})^k$$
 which is a geometric series

- By Theorem 3.26, this converges if $2^{1-p} < 1 \Leftrightarrow p > 1$
- Otherwise, $2^{1-p} > 1$, and this diverges

Theorem 3.33: Root Test

• Given
$$\sum_{n=1}^{\infty} a_n$$
, put $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$, then

• If
$$\alpha < 1$$
, $\sum_{n=1}^{\infty} a_n$ converges

- Theorem 3.17(b) says if $x > s^*$, then $\exists N \in \mathbb{N}$ s.t. $s_n < x$ for $n \ge N$
- So let $\beta \in (\alpha, 1)$ and $N \in \mathbb{N}$ s.t. $\forall n \ge N$, $\sqrt[n]{|a_n|} < \beta$ i. e. $|a_n| < \beta^n$

$$0 < \beta < 1$$
, so $\sum_{n=1}^{\infty} \beta^n$ converges

• Thus,
$$\sum_{n=1}^{\infty} a_n$$
 converges by comparison test

• If
$$\alpha > 1$$
, $\sum_{n=1}^{\infty} a_n$ diverges

$$\circ$$
 By Theorem 3.17, there exists a sequence $\{n_k\}$ s.t. $\sqrt[n_k]{\left|a_{n_k}\right|} \to \alpha$

$$\circ$$
 So $|a_n| > 1$ for infinitely many n , i.e. $a_n \nrightarrow 0$

• By Theorem 3.23,
$$\sum_{n=1}^{\infty} a_n$$
 diverges

• If $\alpha = 1$, this test gives no information

$$\circ \quad \text{For } \sum_{n=1}^{\infty} \frac{1}{n}, \limsup_{n \to \infty} \sqrt[n]{n^{-1}} = \lim_{n \to \infty} \sqrt[n]{n^{-1}} = 1, \text{ but the series diverges}$$

$$\circ \quad \text{For } \sum_{n=1}^{\infty} \frac{1}{n^2}, \limsup_{n \to \infty} \sqrt[n]{n^{-2}} = \lim_{n \to \infty} \frac{1}{\left(\sqrt[n]{n}\right)^2} = 1, \text{ but the series converges}$$

Theorem 3.34: Ratio Test

Statement

$$\circ \sum_{n=1}^{\infty} a_n \text{ converges if } \limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

$$\circ \sum_{n=1}^{\infty} a_n \text{ diverges if } \left| \frac{a_{n+1}}{a_n} \right| \ge 1, \forall n \ge n_0 \text{ for some fixed } n_0 \in \mathbb{N}$$

• Proof

$$\circ \quad \text{If } \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

○ We can find
$$\beta > 1$$
, $N \in \mathbb{N}$ s. t. $\left| \frac{a_{n+1}}{a_n} \right| < \beta$, $\forall n \ge N$

o In particular

$$\bullet |a_{N+1}| < \beta |a_N|$$

$$|a_{N+2}| < \beta |a_{N+1}| < \beta^2 |a_N|$$

•

$$|a_{N+p}| < \beta^p |a_N|$$

$$\circ$$
 So, $|a_n| < |a_N| \beta^{-N} \beta^n$, $\forall n \ge N$

$$\circ \beta < 1$$
, so $\sum_{n=1}^{\infty} \beta^n$ converges

$$\circ \text{ So } \sum_{n=1}^{\infty} \underbrace{|a_N|\beta^{-N}}_{\text{constant}} \beta^n \text{ also converges}$$

• Therefore
$$\sum_{n=1}^{\infty} a_n$$
 converges by comparison test

o On the other hand, if
$$\left|a_{n+1}\right| \geq \left|a_n\right|, \forall n \geq n_0 \in \mathbb{N}$$

$$\circ$$
 $\;$ Then $a_n \not\rightarrow 0$, so series divreges by Theorem 3.23

Note

o For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, $\lim_{n \to \infty} \frac{1/n}{1/(n+1)} = 1$

o For
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
, $\lim_{n \to \infty} \frac{1/n^2}{1/(n+1)^2} = 1$

$$\circ \quad \text{So } \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1 \text{ is not enough to conclude anything}$$

Power Series, Absolute Convergence, Rearrangement

Monday, April 9, 2018 12:10 PM

Definition 3.38: Power Series

• Given a sequence $\{c_n\}$ of complex numbers

• The series
$$\sum_{n=1}^{\infty} c_n z^n$$
 is a **power series**

Theorem 3.39: Convergence of Power Series

• Statement

• Given the power sires
$$\sum_{n=1}^{\infty} c_n z^n$$

$$\circ \operatorname{Put} \alpha \coloneqq \limsup_{n \to \infty} \sqrt[n]{|c_n|}$$

$$\circ \operatorname{Let} R := \frac{1}{\alpha} \left(\operatorname{If} \alpha = +\infty, R = 0; \operatorname{If} \alpha = 0, R = +\infty \right)$$

• Then
$$\sum_{n=1}^{\infty} c_n z^n$$
 converges if $|z| < R$ and diverges if $|z| > R$

Proof

 \circ Let $a_n = c_n z^n$ and apply the root test

$$\circ \lim \sup_{n \to \infty} \sqrt[n]{|a_n|} = |z| \lim \sup_{n \to \infty} \sqrt[n]{|c_n|} = \frac{|z|}{R}$$

• Note: *R* is called the **radius of convergence** of the power series

Examples

$$\circ \sum_{n=1}^{\infty} n^n z^n \text{ has } R = 0$$

$$\circ \sum_{n=0}^{\infty} \frac{z^n}{n!} \text{ has } R = +\infty$$

$$\sum_{n=0}^{\infty} z^n \text{ has } R = 1. \text{ If } |z| = 1 \text{, then the series diverges}$$

$$\circ \sum_{n=1}^{\infty} \frac{z^n}{n} \text{ has } R = 1, \text{ diverges if } z = 1, \text{ converges for all other } z \text{ with } |z| = 1$$

Theorem 3.43: Alternating Series Test

Statement

- Suppose we have a real sequence $\{c_n\}$ s.t.
 - $|c_1| \ge |c_2| \ge |c_3| \ge \cdots$
 - $c_{2m-1} \ge 0, c_{2m} \le 0, \forall m \in \mathbb{N}$
- $\circ \quad \text{Then } \sum_{n=1}^{\infty} c_n \text{ converges}$
- · Proof: HW
- Example: alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \dots$$
 converges to ln 2

Absolute Convergence

- The series Σa_n is said to **converge absolutely** if the series $\Sigma |a_n|$ converges
- If Σa_n converges but $\Sigma |a_n|$ diverges
- We way that Σa_n converges nonabsolutely or conditionally

Theorem 3.45: Property of Absolute Convergence

- Statement
 - ο If Σa_n converges absolutely, then Σa_n converges
- Proof

$$\circ \left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{n=k}^{\infty} |a_k|$$

o The result follows by Cauchy Criterion

Definition 3.52: Rearrangement

- Let $\{k_n\}$ be a sequence in which **every natural number appears exactly once**
- Let $a_n'=a_{k_n}$, then $\Sigma a_n'$ is called a **rearrangement** of Σa_n

Theorem 3.54: Riemann Series Theorem

- Let Σa_n be a series of real number which **converges nonabsolutely**
- Let $-\infty \le \alpha \le \beta \le +\infty$
- Then there **exists a rearrangement** $\Sigma a'_n$ s.t.
- $\liminf_{n\to\infty} s'_n = \alpha, \limsup_{n\to\infty} s'_n = \beta$

Theorem 3.55: Rearrangement and Absolute Convergence

- Statement
 - \circ If Σa_n is a series of complex numbers which **converges absolutely**
 - Then every **rearrangement** of Σa_n **converges to the same sum**

• Proof

- \circ Let $\Sigma a_n'$ be a rearrangement of Σa_n with partial sum s_n'
- By the Cauchy Criterion, given $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t.

$$\sum_{i=n}^{m} |a_i| < \varepsilon, \forall m, n \ge N$$

- \circ Choose p s.t. 1,2, ... , N are all contained in the set $\left\{k_1,k_2,\ldots,k_p\right\}$
- $\circ \ \ \$ Where k_1,\dots,k_p are the indices of the rearranged series
- \circ Then if n > p, a_1 , ..., a_N will be cancelled in the difference $s_n s_n'$
- $\circ \quad \text{So, } \left|s_n s_n'\right| \leq \varepsilon \Rightarrow \left\{s_n'\right\} \text{ converges to the same value as } \left\{s_n\right\}$

Limit of Functions

Wednesday, April 11, 2018

Definition 4.1: Limit of Functions

- Definition
 - Let X, Y be metric spaces, and $E \subset X$
 - Suppose $f: E \rightarrow Y$ and p is a limit point of E

12:15 PM

- If $\exists q \in Y$ s.t.
 - $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}$
 - $0 < d_X(x,p) < \delta \Rightarrow d_Y(f(x),q) < \varepsilon$
- Then, we write $f(x) \to q$ as $x \to p$, or $\lim_{x \to p} f(x) = q$
- Note
 - $\circ 0 < d_X(x,p) < \delta$ is the deleted neighborhood about p of radius δ
 - \circ d_X and d_Y refer to the distances in X and Y, respectively
- Relationship with sequence
 - o Theorem 4.2 relates this type of limit to the limit of a sequence
 - Consequently, if *f* has a limit at *p*, then its limit is unique

Definition 4.3: Algebra of Functions

- If $f: E \to \mathbb{R}^k$, $g: E \to \mathbb{R}^k$, then we define
- (f+g)(x) = f(x) + g(x)
- (f-g)(x) = f(x) g(x)
- (fg)(x) = f(x)g(x)
- $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ where $g(x) \neq 0$ on E

Theorem 4.4: Algebraic Limit Theorem of Functions

- Let X be a metric space, and $E \subset X$
- Suppose *p* be a limit point of *E*
- Let *f* , *g* be **complex functions** on *E* where
 - $\circ \lim_{x\to p} f(x) = A \text{ and } \lim_{x\to p} g(x) = B$
- Then
 - $\circ \lim_{x\to p} (f+g)(x) = A+B$
 - $\circ \lim_{x\to n} (f-g)(x) = A-B$
 - $\circ \lim_{x\to n} (fg)(x) = AB$
 - $\circ \lim_{x \to p} \left(\frac{f}{g} \right)(x) = \frac{A}{B} \text{ where } B \neq 0$

Continuous Function and Open Set

Monday, April 16, 2018 12:09 PM

Definition 4.5: Continuous Function

- Definition
 - Suppose X, Y are metric spaces, $E \subset X, p \in E$, and $f: E \to Y$
 - \circ Then f is **continuous** at p if
 - For every $\varepsilon > 0$, there exists $\delta > 0$ s.t.
 - $x \in E, d_X(x, p) < \delta \Rightarrow d_Y(f(x), f(p)) < \varepsilon$
 - If f is continuous at every point $p \in E$, then f is **continuous on** E
- Note
 - **f** must be defined at **p** to be continous at **p** (as opposed to limit)
 - Every function is continuous at isolated point

Theorem 4.6: Continuity and Limits

- In the context of Definition 4.5, if **p** is also a limit point of **E**, then
- f is **continious** at p if and only if $\lim_{x\to p} f(x) = f(p)$

Theorem 4.7: Composition of Continuous Function

- Statement
 - Suppose X, Y, Z are metric spaces, $E \subset X, f: E \to Y, g: f(E) \to Z$, and
 - $h: E \to Z$ defined by $h(x) = g(f(x)), \forall x \in E$
 - If **f** is continuous at $p \in E$, and **g** is continuous at f(p)
 - Then *h* is continuous at *p*
- Note
 - o h is called the composition of f and g and is written as $g \circ f$
- Proof
 - Let $\varepsilon > 0$ be given
 - Since $g: f(E) \to Z$ is continuous at f(p), $\exists \eta > 0$ s.t.
 - If $y \in f(E)$ and $d_Y(y, f(p)) < \eta$, then $d_Z(g(y), g(f(p))) < \varepsilon$
 - Since $f: E \to Y$ is continuous at p, $\exists \delta > 0$ s.t.
 - If $x \in E$ and $d_X(x,p) < \delta$, then $d_Y(f(x),f(p)) < \eta$
 - Consequently, if $d_X(x, p) < \delta$, and $x \in E$, then
 - $d_Z(g(f(x)), g(f(p))) = d_Z(h(x), h(p)) < \varepsilon$
 - So, h is continuous at p by definition

Theorem 4.8: Characterization of Continuity

- Statement
 - Given metric spaces *X*, *Y*
 - o $f: X \to Y$ is **continuous** if and only if
 - $f^{-1}(V)$ is open in X for every open set $V \subset Y$
- Proof (\Longrightarrow)
 - Suppose f is continuous on X, and $V \subset Y$ is open
 - We want to show that all points of $f^{-1}(V)$ are interior points
 - Suppose $p \in X$, and $f(p) \in V$, then $p \in f^{-1}(V) \subset X$
 - Since *V* is open
 - There exists a neighborhood of f(p) that is a subset of V
 - In other word, $\exists \varepsilon > 0$ s.t. $d_Y(y, f(p)) < \varepsilon \Rightarrow y \in V$
 - Since *f* is continuous at *p*
 - $\exists \delta > 0 \text{ s.t. } d_X(x,p) < \delta \Rightarrow d_Y(f(x),f(p)) < \varepsilon$
 - Suppose $d_X(x,p) < \delta$
 - By the continuity of f, $d_Y(f(x), f(p)) < \varepsilon$
 - Then $f(x) \in V$, since V is open
 - Thus, $x \in f^{-1}(V)$
 - This shows that p is an interior point of $f^{-1}(V)$
 - Therefore $f^{-1}(V)$ is open in X
- Proof (**⇐**)
 - Suppose $f^{-1}(V)$ is open in X for every open set $V \subset Y$
 - Let $p \in X$ and fix $\varepsilon > 0$
 - Let $V := \{ y \in Y | d_Y(y, f(p)) < \varepsilon \}$ be the ε neighborhood of f(p)
 - Since V is open, $f^{-1}(V)$ is also open by assumption
 - Thus, $\exists \delta > 0$ s.t. $d_X(p, x) < \delta \Rightarrow x \in f^{-1}(V)$
 - But if $x \in f^{-1}(V)$, then $f(x) \in V$, and so $d_Y(f(x), f(p)) < \varepsilon$
 - So, $f: X \to Y$ is continuous at p
 - Since $p \in X$ was arbitrary, f is continuous on X
- Corollary
 - Given metric spaces *X*, *Y*
 - o $f: X \to Y$ is **continuous** on X if and only if
 - o $f^{-1}(V)$ is closed in *X* for every closed set *V* in *Y*
- Proof

- $\circ \;\;$ A set is closed if and only if its complement is open
- Also, $f^{-1}(E^c) = [f^{-1}(E)]^c$, for every $E \subset Y$

Continuity and Compactness, Extreme Value Theorem

Wednesday, April 18, 2018 12:06 PM

Definition 4.13: Boundedness

- A mapping $f: E \to \mathbb{R}^k$ is **bounded** if
- There is a real number M s.t. $|f(x)| \le M$, $\forall x \in E$

Theorem 4.14: Continuous Functions Preserve Compactness

- Statement
 - Let *X*, *Y* be metric spaces, *X* compact
 - If $f: X \to Y$ is **continuous**, then f(X) is also compact
- Proof
 - Let $\{V_{\alpha}\}$ be an open cover of f(X)
 - o f is continuous, so each of the sets $f^{-1}(V_{\alpha})$ is open by Theorem 4.8
 - $\{f^{-1}(V_\alpha)\}$ is an open cover of X, and X is compact
 - So there is a finite set of indices $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ s.t.

$$\bullet \quad X \subset f^{-1}\left(V_{\alpha_1}\right) \cup f^{-1}\left(V_{\alpha_2}\right) \cup \cdots \cup f^{-1}\left(V_{\alpha_n}\right)$$

- Since $f(f^{-1}(E)) \subset E, \forall E \subset Y$
 - $f(X) \subset V_{\alpha_1} \cup V_{\alpha_2} \cup \cdots \cup V_{\alpha_n}$
- This is a finite subcover of $f^{-1}(X)$

Theorem 4.15: Applying Theorem 4.14 to \mathbb{R}^k

- Statement
 - Let *X* be a **compact** metric space
 - \circ If $f: X \to \mathbb{R}^k$ is **continuous**, then f(X) is **closed** and **bounded**
 - Thus, *f* is **bounded**
- Proof
 - o See Theorem 4.14 and Theorem 2.41

Theorem 4.16: Extreme Value Theorem

- Statement
 - \circ Let f be a **continuous real function** on a **compact metric space** X

$$\circ$$
 Let $M := \sup_{p \in X} f(p)$, and $m := \inf_{p \in X} f(p)$

- Then $\exists p, q \in X \text{ s.t. } f(p) = M \text{ and } f(q) = m$
- o Equivalently, $\exists p, q \in X \text{ s.t. } f(q) \leq f(x) \leq f(p), \forall x \in X$
- Proof

- By Theorem 4.15, f(X) is closed and bounded
- \circ So f(x) contains M and m by Theorem 2.28

Theorem 4.17: Inverse of Continuous Bijection is Continuous

• Statement

- Let *X*, *Y* be metric spaces, *X* compact
- Suppose $f: X \to Y$ is **continuous** and **bijictive**
- Define $f^{-1}: Y \to X$ by $f^{-1}(f(x)) = x, \forall x \in X$
- Then f^{-1} is also **continuous** and **bijective**

• Proof

- By Theorem 4.8, it suffices to show f(V) is open in Y for all open sets $V \subset X$
- \circ Fix an open set V in X
- \circ *V* is open in compact metric space *X*
- So V^c is closed and compact by Theorem 2.35
- \circ Therefore, $f(V^c)$ is a compact subset of Y by Theorem 4.14
- So $f(V^c)$ is closed in Y by Theorem 2.34
- o f is 1-1 and onto, so $f(V) = (f(V^c))^c$
- \circ Therefore f(V) is open

Uniform Continuity and Compactness

Friday, April 20, 2018 12:10 PM

Definition 4.18: Uniform Continuity

- Let X, Y be metric spaces, $f: X \to Y$
- *f* is **uniformly continuous** on *X* if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t.
- If $p,q\in X$ and $d_X(p,q)<\delta$, then $d_Yig(f(p),f(q)ig)<arepsilon$

Theorem 4.19: Uniform Continuity and Compactness

- Statement
 - Let *X*, *Y* be metric spaces, *X* compact
 - \circ If $f: X \to Y$ is **continuous**, then f is also **uniformly continuous**
- Proof
 - Let $\varepsilon > 0$ be given
 - Since f is continuous, $\forall p \in X, \exists \phi(p)$ s.t.
 - If $q \in X$, and $d_X(p,q) < \phi(p)$, then $d_Y(f(p),f(q)) < \frac{\varepsilon}{2}$
 - $\circ \ \operatorname{Let} J(p) \coloneqq \left\{ q \in X \middle| d_X(p,q) < \frac{1}{2}\phi(p) \right\}$
 - $p \in J(p), \forall p \in X$, so $\{J(p)\}$ is an open cover of X
 - Since X is compact, $\{J(p)\}$ has a finite subcover
 - So there exists finite set of points $p_1, ..., p_n \in X$ s.t.
 - $X \subset J(p_1) \cup \cdots \cup J(p_n)$
 - $\circ \ \operatorname{Let} \delta = \frac{1}{2} \min \{ \phi(p_1), \dots, \phi(p_n) \} > 0$
 - Let $p, q \in X$ s.t. $d_X(p, q) < \delta$
 - Since $X \subset J(p_1) \cup \cdots \cup J(p_n)$,
 - $\exists m \in \{1,2,...,n\}$ s.t. $p \in J(p_m)$
 - o Hence.
 - $d_X(p,p_m) < \frac{1}{2}\phi(p_m) < \phi(p_m)$
 - $d_X(q, p_m) \le d_X(p, q) + d_X(p, p_m) < \delta + \frac{1}{2}\phi(p_m) \le \phi(p_m)$
 - By the triangle inequality and definition of $\phi(p)$,
 - $d_Y(f(p), f(q)) \le d_Y(f(p), f(p_m)) + d_Y(f(p_m), f(q)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$
 - Therefore *f* is uniformly continuous

Theorem 4.20: Continuous Mapping from Noncompact Set

- Definition
 - Let *E* be **noncompact** set in \mathbb{R}
 - Then there exists a continuous function *f* on *E* s.t.
 - (a) f is **not bounded**
 - (b) *f* is bounded but **has no maximum**
 - (c) *E* is bounded, but *f* is not uniformly continuous
- Proof: If *E* is bounded
 - Since *E* is noncompact, *E* must be not closed
 - So there exists a limit point $x_0 \in E$ s.t. $x_0 \notin E$

$$\circ f(x) \coloneqq \frac{1}{x - x_0} \text{ establishes } (c)$$

- *f* is continuous by Theorem 4.9
- *f* is clearly unbounded
- *f* is not uniformly continuous
 - \Box Let $\varepsilon > 0$ and $\delta > 0$ be arbitrary
 - □ Choose $x \in E$ s.t. $|x x_0| < \delta$
 - \Box Taking *t* close to x_0
 - \Box We can make $|f(t) f(x)| > \varepsilon$, but $|t x| < \delta$
 - \Box Since $\delta > 0$ is arbitrary

$$\circ g(x) \coloneqq \frac{1}{1 + (x - x_0)^2} \text{ establishes } (b)$$

- *g* is continuous by Theorem 4.9
- g is bounded, since 0 < g(x) < 1
- g has no maximum, since $\sup_{x \in E} g(x) = 1$, but g(x) < 1
- Proof: If *E* is not bounded
 - \circ f(x) := x establishes (a)
 - $o h(x) \coloneqq \frac{x^2}{1+x^2} \text{ establishes } (b)$

Example 4.21: Inverse Mapping and Noncompact Set

- Let $X = [0,2\pi)$
- Let $f: X \to Y$ given by $f(t) = (\cos t, \sin t)$
- Then *f* is continuous, and bijective
- But f^{-1} is not continuous at f(0) = (1,0)

Connected Set, Intermediate Value Theorem

Monday, April 23, 2018 12:10 PM

Definition 2.45: Connected Set

- Let X be a metric space, and $A, B \subset X$
- *A* and *B* are **separated** if
 - $\circ A \cup \overline{B} = \emptyset$ and $\overline{A} \cup B = \emptyset$
 - \circ i.e. No point of *A* lies in the closure of *B* and vice versa
- $E \subset X$ is **connected** if
 - *E* is **not** a union of **two nonempty separated sets**

Theorem 2.47: Connected Subset of R

- Statement
 - $E \subset \mathbb{R}$ is **connected** if and only if *E* has the following property
 - If $x, y \in E$ and x < z < y, then $z \in E$
- Proof (\Longrightarrow)
 - By way of contrapositive, suppose $\exists x, y \in E$, and $z \in (x, y)$ s.t. $z \notin E$
 - Let $A_z = E \cap (-\infty, z)$ and $B_z = E \cap (z, +\infty)$
 - Then A_z and B_z are separated and $E = A_z \cup B_z$
 - Therefore *E* is not connected
- Proof (**⇐**)
 - \circ By way of contrapositive, suppose *E* is not connected
 - Then there are nonempty separated sets A and B s.t. $E = A \cup B$
 - Let $x \in A$, $y \in B$. Without loss of generality, assume x < y
 - Let $z := \sup(A \cap [x, y])$. Then by Theorem 2.28, $z \in \bar{A}$
 - By definition of E, $z \notin B$. So, $x \le z < y$
 - \circ If $z \notin A$
 - $x \in A$ and $z \notin A$
 - \blacksquare \Rightarrow x < z < y
 - $\Rightarrow z \notin E$
 - \circ If $z \in A$
 - Since A and B are separated, $z \notin \overline{B}$
 - So $\exists z_1$ s.t. $z < z_1 < y$ and $z_1 \notin B$
 - Then $x < z_1 < y$, so $z_1 \notin E$

Theorem 4.22: Continuous Mapping of Connected Set

Statement

- Let *X*, *Y* be metric spaces
- Let $f: X \to Y$ be a **continuous mapping**
- If $E \subset X$ is connected then $f(E) \subset Y$ is also connected

Proof

- \circ Suppose, by way of contradiction, that f(E) is not connected
- i.e. $f(E) = A \cup B$, where $A, B \subset Y$ are nonempty and separated
- Let $G := E \cap f^{-1}(A)$ and $H := E \cap f^{-1}(B)$
- Then $E = G \cup H$, where $G, H \neq \emptyset$
- Since $A \subset \overline{A}$, we have $G \subset f^{-1}(\overline{A})$
- Since f is continuous and \bar{A} is closed, $f^{-1}(\bar{A})$ is also closed
- Therefore $\bar{G} \subset f^{-1}(\bar{A})$, and hence $f(\bar{G}) \subset \bar{A}$
- Since f(H) = B and $\bar{A} \cap B = \emptyset$, we have $\bar{G} \cap H = \emptyset$
- \circ Similarly, $G \cap \overline{H} = \emptyset$
- So, *G* and *H* are separated
- \circ This is a contradiction, therefore f(E) is connected

Theorem 4.23: Intermediate Value Theorem

- Statement
 - Let $f: \mathbb{R} \to \mathbb{R}$ be **continuous** on [a, b]
 - If f(a) < f(b) and if c statisfies f(a) < c < f(b)
 - Then $\exists x \in (a, b)$ s.t. f(x) = c
- Proof
 - By Theorem 2.47, [a, b] is connected
 - o By Theorem 4.22, f([a,b]) is a connected subset of \mathbb{R}
 - o By Theorem 2.47, the result follows

Derivative, Chain Rule, Local Extrema

Wednesday, April 25, 2018 12:19 PM

Definition 5.1: Derivative

- Let *f* be defined (and real-valued) on [*a*, *b*]
- $\forall x \in [a, b], \text{let } \phi(t) = \frac{f(t) f(x)}{t x} \ (a < t < b, t \neq x)$
- Define $f'(x) = \lim_{t \to x} \phi(t)$, provided that this limit exists
- f' is called the **derivative** of f
- If f' is defined at point x, f is **differentiable** at x
- If f' is defined $\forall x \in E \subset [a, b]$, then f is differentiable on E

Theorem 5.2: Differentiability Implies Continuity

- Statement
 - Let *f* be defined on [*a*, *b*]
 - If f is **differentiable** at $x \in [a, b]$ then f is **continuous** at x
- Proof

$$\circ \lim_{t \to x} (f(t) - f(x)) = \lim_{t \to x} \left(\frac{f(t) - f(x)}{t - x} (t - x) \right) = \lim_{t \to x} (f'(x)(t - x)) = 0$$

$$\circ \ \ \operatorname{So} \ \lim_{t \to x} f(t) = f(x)$$

Theorem 5.5: Chain Rule

- Statement
 - Given
 - f is **continuous** on [a, b], and f'(x) **exists** at $x \in [a, b]$
 - g is defined on $I \supset \operatorname{im}(f)$, and g is differentiable at f(x)
 - o If h(t) = g(f(t)) ($a \le t \le b$), then
 - *h* is differentiable at *x*, and $h'(x) = g'(f(x)) \cdot f'(x)$
- Proof
 - \circ Let y = f(x)
 - By the definition of derivative

•
$$f(t) - f(x) = (t - x)(f'(x) + u(t))$$
, where $t \in [a, b]$, $\lim_{t \to x} u(t) = 0$

•
$$g(s) - g(y) = (s - y)(g'(y) + v(s))$$
, where $s \in I$, $\lim_{s \to y} v(s) = 0$

- \circ Let s = f(t), then
 - h(t) h(x)
 - = g(f(t)) g(f(x))

$$= (f(t) - f(x))(g'(y) + v(s))$$

$$= (t-x)(f'(x)+u(t))(g'(y)+v(s))$$

 \circ If $t \neq x$, then

$$\bullet \frac{h(t) - h(x)}{t - x} = (f'(x) + u(t))(g'(y) + v(s))$$

- \circ As $t \to x$
 - $u(t) \rightarrow 0$, and $v(s) \rightarrow 0$
 - So $s = f(t) \rightarrow f(x) = y$ by continuity
- $\circ \text{ Therefore } h'(x) = \lim_{t \to x} \frac{h(t) h(x)}{t x} = f'(x)g'(y) = g'(f(x))f'(x)$

Definition 5.7: Local Maximum and Local Minimum

- Let *X* be a metric space, $f: X \to \mathbb{R}$
- f has a **local maximum** at $p \in X$ if $\exists \delta > 0$ s.t.

○
$$f(q) \le f(p)$$
, $\forall q \in X$ s.t. $d(p,q) < \delta$

- f has a **local minimum** at $p \in X$ if $\exists \delta > 0$ s.t.
 - $\circ f(q) \ge f(p), \forall q \in X \text{ s.t. } d(p,q) < \delta$

Theorem 5.8: Local Extrema and Derivative

- Statement
 - \circ Let f be defined on [a, b]
 - If f has a local maximum (or minimum) at $x \in (a, b)$
 - Then f'(x) = 0 if it exists
- Proof
 - \circ By Definition 5.7, choose δ , then

•
$$a < x - \delta < x < x + \delta < b$$

○ Suppose $x - \delta < t < x$

$$f(t) - f(x) \over t - x \ge 0$$

- Let $t \to x$ (with t < x), then $f'(x) \ge 0$
- Suppose $x < t < x + \delta$

$$f(t) - f(x) \over t - x \le 0$$

- Let $t \to x$ (with t > x), then $f'(x) \le 0$
- $\circ \quad \text{Therefore } f'(x) = 0$

Mean Value Theorem, Monotonicity, Taylor's Theorem

Friday, April 27, 2018 12:07 PM

Theorem 5.9: Extended Mean Value Theorem

- Statement
 - o Given
 - f and g are **continuous** real-valued functions on [a,b]
 - f, g are **differentiable** on (a, b)
 - Then there is a point $x \in (a, b)$ at which
 - [f(b) f(a)]g'(x) = [g(b) g(a)]f'(x)
- Proof
 - $\circ \text{ Let } h(t) \coloneqq \big[f(b) f(a) \big] g(t) \big[g(b) g(a) \big] f(t), \ (a \le t \le b)$
 - Then h is continuous on [a, b] and differentiable on (a, b)
 - We want to show that h'(x) = 0 for some $x \in (a, b)$
 - By definition of h, we have h(a) = f(b)g(a) f(a)g(b) = h(b)
 - If *h* is constant
 - h'(x) = 0 on all of (a, b), and we are done
 - If *h* is not constant
 - $\exists t \in (a, b) \text{ s.t. } h(t) > h(a) = h(b) \text{ or } h(t) < h(a) = h(b)$
 - By Theorem 4.16, $\exists x \in (a, b)$ s.t.
 - h(x) is either a global maximum or a global minimum
 - By Theorem 5.8, h'(x) = 0

Theorem 5.10: Mean Value Theorem

- Statement
 - \circ Let $f:[a,b] \to \mathbb{R}$
 - If f is continuous on [a, b] and differentiable on (a, b)
 - Then $\exists x \in (a, b)$ s.t. f(b) f(a) = (b a)f'(x)
- Proof
 - Let g(x) = x in Theorem 5.9

Theorem 5.11: Derivative and Monotonicity

- Suppose *f* is differentiable on (*a*, *b*)
- If $f'(x) \ge 0$, $\forall x \in (a, b)$, then f is monotonically increasing
- If f'(x) = 0, $\forall x \in (a, b)$, then f is **constant**
- If $f'(x) \le 0$, $\forall x \in (a, b)$, then f is monotonically decreasing

Theorem 5.15: Taylor's Theorem

• Statement

- Suppose
 - f is a real-valued function on [a, b]
 - Fix a positive integer n
 - $f^{(n-1)}$ is continuous on (a, b)
 - $f^{(n)}(t)$ exists $\forall t \in (a, b)$
- Let α , β ∈ [a, b], where $\alpha \neq \beta$

$$Oefine P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k$$

○ Then $\exists x$ between α and β s.t.

$$\circ f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n$$

- Note
 - When n = 1, this is the Meal Value Theorem
- Proof
 - Without loss of generality, suppose $\alpha < \beta$
 - Define $M \in \mathbb{R}$ by

•
$$f(\beta) = P(\beta) + M(\beta - \alpha)^n$$

- o Then we want to show that
 - $n! M = f^{(n)}(x)$ for some $x \in [\alpha, \beta]$
- Define difference function *g* by

•
$$g(t) = f(t) - P(t) - M(t - \alpha)^n$$
, where $\alpha \le t \le b$

- Then $g(\beta) = 0$ by our choice of M
- Taking derivative n times on both side, we get
- $g^{(n)}(t) = f^{(n)}(t) n! M$, where $a \le t \le b$
- Note that P(t) disappears, since its degree is n-1
- Now we only need to show $g^{(n)}(x) = 0$ for some $x \in [\alpha, \beta]$

•
$$P^{(k)}(\alpha) = f^{(k)}(\alpha)$$
, for $0 \le k \le n - 1$, by definition of P

• Therefore,
$$g(\alpha) = g'(\alpha) = \dots = g^{(n-1)}(\alpha) = 0$$

- Also, $g(\beta) = 0$, by definition of M
- By the Mean Value Theorem, $g'(x_1) = 0$ for some $x_1 \in [\alpha, \beta]$
- $g'(\alpha) = 0$, so $g''(x_2) = 0$ for some $x_2 \in [\alpha, x_1]$
- After n steps, $g^{(n)}(x_n) = 0$ for some $x_n \in [\alpha, x_{n-1}]$
- So, $x_n \in [\alpha, \beta]$

Riemann-Stieltjes Integral, Refinement

Monday, April 30, 2018 12:12 PM

Definition 6.1: Riemann Integral

- Partition
 - \circ A **partition** *P* of a closed interval [a, b] is a **finite** set of points
 - $\{x_0, x_1, ..., x_n\}$ where $a = x_0 \le x_1 \le ... \le x_{n-1} \le x_n = b$
- Let f be a bounded real function on [a, b], for each partition P of [a, b]
 - o Define M_i and m_i to be

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$

- $\bullet \quad m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$
- Define the **upper sum** and **lower sum** to be

$$U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i$$

$$L(P,f) = \sum_{i=1}^{n} m_i \Delta x_i$$

- where $\Delta x_i = x_i x_{i-1}$
- o Define the **upper and lower Reimann integral** to be

• If
$$\int_a^b f dx = \int_a^b f dx$$
, then

- We say that f is Riemann-integrable on [a, b], and write $f \in \mathcal{R}$
- Their common value is denoted by $\int_a^b f dx$ or $\int_a^b f(x) dx$
- Well-definedness of upper and lower Riemann integral
 - Since f is bounded, $\exists m, M \in \mathbb{R}$ s.t.

•
$$m \le f(x) \le M (a \le x \le b)$$

 \circ Therefore for every partition *P* of [a, b]

•
$$m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)$$

$$\circ$$
 So $\int_a^b f dx$ and $\int_a^b f dx$ are always defined

Definition 6.2: Riemann-Stieltjes Integral

- Let α be a monotonically increasing function on [a, b]
- Let *f* be a real-valued function bouned on [*a*, *b*]
- For each partition *P* of [*a*, *b*], define

$$\circ M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$

$$\circ m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

$$\circ \ \Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$$

$$\circ U(P,f,\alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i$$

$$\circ L(P,f,\alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i$$

$$\circ \ \overline{\int_a^b} f dx = \inf_{All \, P} U(P, f, \alpha)$$

$$\circ \int_a^b f dx = \sup_{All P} L(P, f, \alpha)$$

• If
$$\int_{a}^{b} f dx = \int_{a}^{b} f dx$$

• We denote the common value by
$$\int_a^b f d\alpha$$
 or $\int_a^b f(x) d\alpha(x)$

- This is the **Riemann-Stieltjes integral** of f with respect to α over [a, b]
- We say f is integrable with respect to α with on [a,b], and write $f \in \mathcal{R}(\alpha)$
- Note
 - When $\alpha(x) = x$, this is just Riemann integral

Definition 6.3: Refinement and Common Refinement

- We say that the partition P^* is a **refinement** of P if $P^* \supset P$
- Given two partitions P_1 and P_2 , their **common refinement** is $P_1 \cup P_2$

Theorem 6.4: Properties of Refinement

- If P^* is a refinement of P, then
- $L(P, f, \alpha) \leq L(P^*, f, \alpha)$
- $U(P^*, f, \alpha) \leq U(P, f, \alpha)$

Theorem 6.5: Properties of Common Refinement

Statement

$$\circ \ \overline{\int_a^b} f dx \le \underline{\int_a^b} f dx$$

- Proof Outline
 - o Given 2 partitions P_1 and P_2
 - \circ Let P^* be the common refinement
 - Then $L(P_1, f, \alpha) \le L(P^*, f, \alpha) \le U(P^*, f, \alpha) \le U(P_2, f, \alpha)$

Theorem 6.6

- Statement
 - ∘ $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if
 - \lor $\forall \varepsilon > 0$, there exists a partition P s.t. $U(P, f, \alpha) L(P, f, \alpha) < \varepsilon$
- Proof Outline

$$\circ \ \forall P, L(P, f, \alpha) \leq \underbrace{\int_{a}^{b} f dx} \leq \overline{\int_{a}^{b} f dx} \leq U(P, f, \alpha)$$

$$\circ (\Leftarrow) \text{ If } U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

• Then
$$0 \le \overline{\int_a^b} f dx - \int_a^b f dx < \varepsilon$$

- $\circ \ \ (\Longrightarrow) \text{ If } f \in \mathcal{R}(\alpha)$
 - Then $\exists P_1, P_2$ s.t.

$$\Box U(P_1,f,\alpha) - \int_a^b f d\alpha < \frac{\varepsilon}{2}$$

$$\Box \int_{a}^{b} f d\alpha - L(P_{1}, f, \alpha) < \frac{\varepsilon}{2}$$

• Consider their common refinement *P*

• By Theorem 6.4, $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$

Theorem 6.8

• If f is **continuous** on [a, b], then $f \in \mathcal{R}(\alpha)$ on [a, b]

Theorem 6.9

- If f is **monotonic** on [a, b], and α is **continuous** on [a, b]
- Then $\mathbf{f} \in \mathcal{R}(\alpha)$ on [a, b]

Theorem 6.10

- If f is **bounded** on [a, b] with **finitely many points of discontiunity**
- And α is **continuous** on these points, then $f \in \mathcal{R}(\alpha)$

Fundamental Theorem of Calculus

May 2, 2018 12:11 PM

Final Exam

- Thursday, May 10, 7:45 9:45 AM, @ Social Science 6102
- 5 or 6 questions
 - ~1 question from Exam 1 / Quiz
 - ~1 question from Exam 2
 - ~1 question on absolute convergence and/or power series
 - ~1 question on continuity
 - ~1 question on derivatives and/or integrals
 - o Nothing from Chapter 7

Theorem 6.20: Fundamental Theorem of Calculus (Part I)

- Statement
 - \circ Let $f \in \mathcal{R}$ on [a, b]
 - Define $F(x) = \int_{a}^{x} f(t)dt$ for $x \in [a, b]$, then
 - F is continuous on [a, b]
 - o Furthermore, if f is continuous at $x_0 \in [a, b]$, then
 - F is differentiable at x_0 , and
 - $F'(x_0) = f(x_0)$
- Proof: *F* is continuous on [*a*, *b*]
 - Since $f \in \mathcal{R}$, f is bounded, so $\exists M \in \mathbb{R}$ s.t.
 - $|f(t)| \le M, \forall a \le t \le b$
 - If $a \le x < y \le b$, then

$$|F(y) - F(x)| = \left| \int_{y}^{x} f(t)dt \right| \le M(x - y)$$

- \circ Given $\varepsilon > 0$
 - $|F(y) F(x)| < \varepsilon \text{ provided } |y x| < \frac{\varepsilon}{M}$
- So this shows **uniform continuity** of *F*
- Proof: $F'(x_0) = f(x_0)$
 - Suppose f is continuous at x_0
 - Given $\varepsilon > 0$, $\exists \delta > 0$ s.t.
 - $|f(x) f(x_0)| < \varepsilon$ whenever $|x x_0| < \delta$ for $a \le x \le b$
 - If $x_0 \delta < s \le x_0 \le t < x_0 + \delta$ where $a \le s < t \le b$, then

$$\left| \frac{F(t) - F(s)}{t - s} - f(x_0) \right|$$

$$= \left| \left(\frac{1}{t - s} \int_s^t f(x) dx \right) - f(x_0) \right|$$

$$= \left| \left(\frac{1}{t - s} \int_s^t f(x) dx \right) - \left(\frac{1}{t - s} \int_s^t f(x_0) dx \right) \right|$$

$$= \left| \frac{1}{t - s} \int_s^t \left(f(x) - f(x_0) \right) dx \right|$$

$$< \left| \frac{1}{t - s} (t - s) \varepsilon \right| = \varepsilon$$

 \circ Consequently, $F'(x_0) = f(x_0)$

Theorem 6.21: Fundamental Theorem of Calculus (Part II)

- Statement
 - Let $f \in \mathcal{R}$ on [a, b]
 - If there exists a **differentiable function** F on [a, b] s.t. F' = f

$$\circ \text{ Then } \int_a^b f(x)dx = F(b) - F(a)$$

- Proof
 - Let ε > 0 be given
 - Choose a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] s.t.

•
$$U(P,f) - L(P,f) < \varepsilon$$

o Apply the Meal Value Theorem, $\exists t_i \in [x_{i-1}, x_i]$ s.t.

•
$$F(x_i) - F(x_{i-1}) = f(t_i) \Delta x_i$$
 where $1 \le i \le n$

• Thus, $\sum_{i=1}^{n} f(t_i) \Delta x_i$ forms a telescoping series

$$\sum_{i=1}^{n} f(t_i) \Delta x_i = F(x_n) - F(x_{n-1}) + F(x_{n-1}) + \dots - F(x_0)$$

$$= F(b) + (F(x_{n-1}) - F(x_{n-1})) + \dots + (F(x_1) - F(x_1)) - F(a)$$

- $\bullet = F(b) F(a)$
- o Combining the obvious inequalities below

•
$$L(P,f) \le \sum_{i=1}^{n} f(t_i) \Delta x_i \le U(P,f)$$

•
$$L(P,f) \le \int_a^b f dx \le U(P,f)$$

We get

$$\Rightarrow \left| F(b) - F(a) - \int_a^b f dx \right| < \varepsilon$$

$$\circ \text{ Therefore, } \int_{a}^{b} f(x)dx = F(b) - F(a)$$

Sequence of Functions, Uniform Convergence

May 4, 2018 12:10 PM

Definition 7.1: Limit of Sequence of Functions

- Suppose $\{f_n\}$ is a **sequence of functions** defined on a set E
- Suppose the **sequence of numbers** $\{f_n(x)\}$ **converges** $\forall x \in E$
- We can then defined f by $f(x) = \lim_{n \to \infty} f_n(x)$, $\forall x \in E$

Example 7.2: Double Sequence

- Let $s_{m,n} = \frac{m}{m+n}$, $(m, n \in \mathbb{N})$
- Fix $n \in \mathbb{N}$
 - $\circ \lim_{m\to\infty} s_{m,n}=1$
 - $\circ \lim_{n\to\infty} \lim_{m\to\infty} s_{m,n} = 1$
- Fix $m \in \mathbb{N}$
 - $\circ \lim_{n\to\infty} s_{m,n}=0$
 - $\circ \lim_{m\to\infty} \lim_{n\to\infty} s_{m,n} = 0$

Example 7.3: Convergent Series of Continuous Functions

- Let $f_n(x) = \frac{x^2}{(1+x^2)^n}$, $(x \in \mathbb{R}, n \in \mathbb{Z}_{\geq 0})$
- Let $f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}$
- When x = 0
 - $f_n(0) = 0$, so f(0) = 0
- When $x \neq 0$
 - \circ f(x) is a convergent geometric series with sum

$$f(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n} = \frac{x^2}{1 - \left(\frac{1}{1+x^2}\right)^n} = 1 + x^2$$

- Therefore, $f(x) = \begin{cases} 0 & \text{for } x = 0 \\ 1 + x^2 & \text{for } x \neq 0 \end{cases}$
- So convergent series of continuous functions may be discontinuous

Example 7.5: Changing the Order of Limit and Derivative

• Let
$$f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$$
, $(x \in \mathbb{R}, n \in \mathbb{N})$

• Let
$$f(x) = \lim_{n \to \infty} f_n(x) = 0$$

• Then f'(x) = 0, but $f'_n(x) = \sqrt{n}\cos(nx) \to \infty \neq 0$

Example 7.6: Changing the Order of Limit and Integral

• Let $f_n(x) = nx(1-x^2)^n$, $(x \in [0,1], n \in \mathbb{N})$, then

•
$$\lim_{n \to \infty} \left(\int_0^1 f_n(x) dx \right) = \lim_{n \to \infty} \left(\int_0^1 nx (1 - x^2)^n dx \right) = \lim_{n \to \infty} \frac{n}{2n + 2} = \frac{1}{2}$$

•
$$\int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) dx = \int_0^1 \left(\lim_{n \to \infty} nx (1 - x^2)^n \right) dx = \int_0^1 0 dx = 0$$

Definition 7.7: Uniform Convergence

- A sequence of function $\{f_n\}_{n\in\mathbb{N}}$ **converges uniformly** on E to a function f if
- $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if $n \ge N$, then $|f_n(x) f(x)| < \varepsilon, \forall x \in E$

Theorem 7.11: Interchange of Limits

- Suppose $f_n \to f$ on a set E **uniformly** on a metric space
- Let x be a limit point of E and suppose that $\lim_{t\to x}f_n(t)=A_n$, $(n\in\mathbb{N})$
- Then $\{A_n\}$ converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$
- i.e. $\lim_{t\to x}\lim_{n\to\infty}f_n(t)=\lim_{n\to\infty}\lim_{t\to x}f_n(t)$

Theorem 7.12: Uniform Convergence Implies Continuity

- If $\{f_n\}$ is a sequence of **continuous functions** on E, and $f_n \to f$ **uniformly** on E
- Then *f* is **continuous** on *E*

Definition 7.14: Space of Bounded Continuous Functions

- Let *X* be a metric space
- Let $\mathcal{C}(X)$ be the set of **all continuous bounded functions** $f: X \to \mathbb{C}$
- If $f \in \mathcal{C}(X)$, define the supremum norm $||f|| := \sup_{x \in X} |f(x)|$
- ||f g|| is a distance function that makes C(X) a metric space

Example 2.44: Cantor Set

• Define a sequence of compact sets E_n

$$\circ E_0 = [0,1]$$

$$\circ E_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$\circ E_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

• The set $P := \bigcap_{n=1}^{\infty} E_n$ is called the **Cantor Set**

Example 4.27: Discontinuous Function

• Let
$$f(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

• Then f(x) is discontinuous at all $x \in \mathbb{R}$

• Let
$$g(x) := \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

• Then g(x) is discontinuous everywhere except x = 0