Definitions

Tuesday, May 8, 2018 12:23 AM

Notations
e ":="means "equals, by definition"
o Z:=1{0,%+1,42,+3,...} the set of integers
e Q:= {% |a,b EZDb# 0} the set of rational numbers
e R :=the set of all real numbers
e C:={a+ bila,b € R,i? = —1} the set of complex numbers
e Zs, = {a € Z|a = 0} the set of non-negative integers
e S\ {x}:={s€eS|s+x}
e Denote a function f fromasetAtoasetBby f:4 - B
* Denote the image of f by im(f) := {b € B|3a € As.t. f(a) = b}
Injective, Surjective and Bijective
e Letf:A — B be a function, then
» fisinjectiveifVa,a’ € A,a+a' = f(a) # f(a')
e fissurjectiveif Vb € B,3a € As.t. f(a) = b (i.e.im(f) = B)
* fisbijective if f is both injective and surjective
Divides
e Ifx,y€Zandx + 0
e Wesay x divides y and write x|y, if3g € Zs.t.xq = y
Cartesian Product
e If A and B are sets, then the Cartesian product of A and B is
e AXB:={(a,b)la €A beB}
Relations
e ArelationonasetAisasubsetRofA X A
e We write a~a'if (a,a’) €R
Equivalence Relations
e Arelation R on A is an equivalence relation if R is
» Reflexive
o Ifa € 4,thena~a
o ie.(a,a) ER
e Symmetric

o Ifa~a’ thena'~a
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o i.e.(a,a’)ER > (a,a) ER
e Transitive
o Ifa~a',a’'~a",then a~a"

o ielIf(a,a) € Rand (a’,a"") € R,then (a,a’’) ER

Greatest Common Divisor

e Leta,b € Z, where eithera # 0orb # 0
e A greatest common divisor of a and b is a positive integer d s.t.
o d|laandd|b
o Ife €Zs.t e|laande|bthene|d
» We write the greatest common divisor of a and b, if it exists, as (a, b)

e Asaconvention (0,0) :=0

Equivalence Class
e Let X be a set, and let ~ be an equivalence relation on X
e Ifx € X, then the equivalence class represented by x is the set
e [x]={x"€eX|x~x"}cX
Integers Modulo n
o Letn € Zy,
e The relation on Z given by a~b < n|(a — b) is an equivalence relation
e The set of equivalence classes under ~ is denoted as Z/nZ
e We call this set integers modulo n (or integers mod n)
e We can check that there are n elements in Z/n7Z

e We use a to denote the equivalence class in Z/nZ
e ThenZ/nZ =1{0,1,2,...,n—1}
Group
e IfG is a set equipped with a binary operation
o GXG-G
°© (gh)-g-h
e that satisfies
o Associativity: Vg,h,k € G,g-(h-k) =(g-h) - k
o Identity:31 €GstVgeG,1l-g=g-1=g
o Inverses:Vg € G,3g teGstggt=9g"1g=1
e Then we say G is a group under this operation
Abelian Group
e Wesayagroup G is abelian, ifab = ba,Va,b € G

Order of Group Element
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e IfGisagroup,andg € G

e The order of g is the smallest positive integer ns.t. g* = 1
e Ifnisthe order of g, write |g| = n

 If no such integer exists, write |g| = o

e ie.|g| = inf{n € Zs,lg™ = 1}
Symmetric Group

e Letn € Z. be fixed

Let S, = {bijective functions {1, ...,n} - {1, ...,n}}

(i.e. S, is the set of all permutations of {1, ..., n})

We call this group symmetric group of degree n

Cycle
e Letn € Z- be fixed
e Letay,..,a; €{1,..,n}
e The element of S,, given by
o g~ apq forl<i<t—1
o ara
o jwjifj¢{ay,..a.}
e isdenoted by (a4, ay, ..., a;) and is called a cycle of length t
Disjoint Cycles
e Two cycles (ay, ...a;) and (by, ..., by) are disjoint if
e {aj,..a;}n{by, ... b} =0
Homomorphism
e LetG, H be groups
e Afunction f: G = H is a homomorphism if
° f(9192) = f(91)f(92), V91,92 € G
e One says f "respects”, or "preserves" the group operation
Isomorphism
e LetG, H be groups
* Ahomomorphisma: G — H is aisomorphism if
e there is a homomorphism f: H = G s.t.
o af =idy,and
o Ba=idg

e In this case, we say G and H are isomorphic

Subgroup
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e LetG beagroup,andletH C G

e Hisasubgroup if
o H # @ (nonempty)
o Ifh,h’ € H,then hh' € H (closed under the operation)
o Ifh € H,then h™! € H (closed under inverse)

e If H isa subgroup of G, we write H < G

Regular n-gon

e Aregular n — gon is a polygon with all sides and angles equal

Symmetry
e A symmetry of a regular n-gon is a way of
» picking up a copy of it
* moving itaround in 3d
= setting it back down

* so that it exactly covers the original

Dihedral Groups

e D,, = {symmetries of the n-gon} is called n-th dihedral groups

Cyclic Group
e Agroup G iscyclicifige Gst.(g)=G

Least Common Multiple
e Leta,b € Z where one of a, b is nonzero.
e Aleast common multiple of a and b is a positive integer m s.t.
o a|mandb|m
o Ifa|m’'and b|m’, then m|m'’
* We denote the least common multiple of a and b by [a, b]

¢ Define [0,0] :=0
Subgroups Generated by Subsets of a Group

e LetGbeagroupand A C G
e The subgroup generated by 4 is
» the intersection of every subgroup of G containing A
. (4)= ﬂ H
AcH
Finitely Generated Group
e Agroup G is finitely generated if
e There is a finite subset A of G s.t. (4) = G
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Coset

e IfGisagroup,H <G,andg €G

e gH :={gh|h € H}is called a left coset

e Hg :={hg|h € H} is called a right coset

* Anelement of a coset is called a representative of the coset
Normal Subgroup

e LetG beagroup, N <G

e N isanormal subgroup if gng™' € N,vn € N,Vg € G

e In other words, N is closed under conjugation

e If N < Gisnormal, wewrite N 2 G
Quotient Group

e LetG beagroup, N 2G

e The set of left costs of N is a group under the operation
" (91N)(g2N) = 9192N
e This group is denoted as G/N (say "G mod N")
e We call this group quotient group or factor group
Index of a Subgroup
e IfGisagroup,and H < G, then
e The index of H is the number of distinct left cosets of H in G
e Denote the index by [G: H]
Product of Subgroups
e LetGbeagroupand H,K <G
» Define HK = {hk|h € H,k € K}
Transposition
» Fixn to be a positive integer
e A2 —cycle (ij)in S, is a transposition
Sign of Permutation € (Transposition Definition)
e Lete:S, - Z/2Z

o 0 o isaproduct of even number of transposition
1 o isaproduct of odd number of transposition

Sign of Permutation €’ (Auxiliary Polynomial Definition)
e Lete’:S, - Z/2Z

N 0 o(A)=A
1 o(Ad)=-A
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» ¢'(o) is the sign of g, often denoted as sgn
e gisevenife’'(c) =0
e gisoddife’(0) =1

Alternating Group

e The alternative group, denoted as 4,, is the kernel of €

e Thatis, A, contains of all even permutations in S,

Group Action
e Anaction of G on X isa function G X X = X, (g,x) » gx s.t.
o lgx=x,¥x€X

o g(hx) = (gh)x,Vg,h € G,x € X
Orbit and Stabilizer

e Suppose a group G acts on a set X

e Letx€ X

e The orbit of x, denoted orb(x),is{g - x|g € G} € X

e The stabilizer of x, denoted stab(x),is{g € Glg- x =x} < G
Centralizer

e Let G be agroup, and let G act on itself by conjugation

e Ifh € G,thenstab(h) = {g € G|ghg™ = h} = {g € G|gh = hg}

» This set s called the centralizer of h, denoted as C; (h)

e (. (h) is the set of elements in G that commute with the element h

Center

. U C;(h) = Z(G) is called the center of G
heG

e 7(G) is the set of elements that commute with every element of G

Normalizer

e Let X be the set of subgroups of a group G

LetGactsonX by g-H = gHg™!
If H < G, then

o stab(H) ={g € GlgHg™ = H} = {g € G|gH = Hg}
This set is called the normalizer of H in G, denoted N (H)

N; (H) is the set of elements in G that commute with the set H
Note: N;(H) =G <= H=2G

Conjugacy Class
e If G isagroup, G acts on itself by conjugation: g - h = ghg™!

e The orbits under this action are called conjugacy classes
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* Denote a conjugate class represented by some element g € G by conj(g)

Partition
e A partition of n € Z- is a way of writing n as a sum of positive integers
e Example: 3 has 3 partitions: 3,2+ 1,1+ 1+ 1
Ring
* Aringisaset R equipped with two operations + and - s.t.
e (R,+) isan abelian group

e -.jsassociative

Jl1eRstl-r=r=r-1

Distributive property:
o Va,b,c €ER
oa-(b+c)=a-b+a-c
o (a+bh)-c=a-c+b-c
Zero-Divisor and Unit
e LetRbearing
e Anonzero elementr € R is called a zero-divisor if
o 3se R\ {0}strs=0orsr=0
e Assumel # 0,u € R is called a unit if

o I ERstuv=1=vu
Group of Unites
e R*:={u € Rluisaunit}
Field

e A communitive ring R is called a field if

e Every nonzero element of R is a unit

¢ i.e. Every nonzero element of R have a multiplicative inverse
Product Ring

e Let Ry, R, berings

e The productring R; X R, has the following ring structure

e For addition, it's just the product as groups

e For multiplication, (ry,1,)(r{,13) = (ry11,7>1,) with identity (1R1, 1R2)
Integral Domain

* A communicative ring R is an integral domain (or just domain) if

e R contains no zero-divisors

Subring
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* A subring of aring R is a additive subgroup S of R s.t.
e Sisclosed under multiplication

e Scontains 1

Polynomials over a ring
e Let R be a commutative ring
e A polynomial over R is the sum
O Apx™+ an_1x™ 1+ -+ a;x + ay, where
o xisavariable,and a; € R
Degree
o Iff =apx™+ ap_1x™ 1+ -+ a;x + a, is a polynomial over R
» The degree of f, denoted deg(g), is sup{n = 0|a,, # 0}
* Note: deg(0) = —oo
Leading Term and Leading Coefficient
o Ifdeg(f)=n=0
e Theleading term of f is a,x™

e The leading coefficient of f is a,,

Polynomial ring

e Let R[x] := {Polynomials over a commutative ring R}
e Then R[x] is a commutative ring with

¢ ordinary addition and multiplication of polynomials

|deal

e Let] beasubsetofringR,and letr € R

Define rl := {rx|x € I}
I is aleftideal of R if

o [ isan additive subgroup of R

o rl=I1Vr€eR

Right ideal is defined similarly

e [isanidealif[ is both aleft and right ideal
Principal Ideal

e Let R isa commutative ring, and let r € R, then

e (r) := {ar|a € R} is called the principal ideal generated by r
Quotient Ring

e LetR bearing

e If] C Risan ideal, then the quotient group R/I is a ring with multiplication

s r+ D'+ D =rr"+1
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e Conversely, if
» ]| C Risan additive subgroup
» R/]isaring with multiplication defined above

e Then] isanideal

Ideal Generated by Subset
e Let R be a commutative ring
e If Aisasubsetof R, then the ideal generated by A is
e (A) ={na;+-+na,n€Zs, 1 €ER,a; EA} SR
o If A is finite, then we write (4) as (a4, ..., a,)
Maximal Ideal

e Anideal M in aring R is maximal if

e M # R, and the only ideals containing M are M and R

Prime Ideal
e Let R be a commutative ring
e Anideal P & R is prime if
e abeR,andabeEP=>a€Porb€eP
Euclidean Domain
e LetR be adomain
e AnormonR isafunction N:R = Zs s.t. N(0) =0
e Riscalled a Euclidean domain if R is equipped with a norm N s.t.
e Va,b € Rwithb # 0,3q,r €ER s.t.
o a=gqb+r,and
o eitherr =0or N(r) < N(b)
Principal Ideal Domain

¢ A domain in which every ideal is principal is called a principal ideal domain
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Propositions

Wednesday, April 4, 2018 2:18 PM

Proposition 1: Well-ordering of Z
e Every nonempty set S of Z.( has a unique minimum element

e IIMmeESstm<s,VsES
Proposition 2: The Division Algorithm

e Leta,b € Z, whereb >0

e Then3lq,re€Zsta=qgb+r,and0<r<b
Proposition 3: Uniqueness of Greatest Common Divisor

e Leta,b € Z whereeithera# 0orb # 0

e Suppose3d,d’ € Zs s.t.

(1) dandd’bothdivide a and b
(2) Ife € Zs.t.e|aande|b,thene|d and e|d’

e Thend =d’
Proposition 4: Lemma for Euclidean Algorithm

e Supposea,b € Z, whereb # 0

e Chooseq,r€Zst.a=qgb+r,and0 <r < |b|

e If (b,r) exists, then (a, b) exists and (a, b) = (b,1)
Proposition 5: (a,0) = |a|

e (q,0)=lal,YVa€eZ
Proposition 6: Existence of GCD

e Ifa,b € Z, then (a, b) exists
Proposition 7: Bézout's Identity

e Ifa,b € Z then3dx,y € Zs.t.(a,b) = ax + by
Proposition 8: Equivalence Classes Partition the Set

e Let X be a set with equivalence relationship ~

e Ifx,x’ € X, then [x] and [x'] are either equal or disjoint

Proposition 9: Addition and Multiplication in Z/nZ
e Letn € Z-y,and letaq,a,, by, b, € Z
e Ifa; = by,anda, = b, in Z/nZ

i Then aq + a, = b1 + bz, and a|a, = b1b2

Corollary 10: Integers Modulo n
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e Forn € Z.(, Z/nZ is a group under the operation
o Z/MZLXZ/nZ - Z/nT
o) (ﬁ, l_J) ~»a+b
e We will denote this operation by +
e Soatb=a+b
Proposition 11: (Z/nZ)*
e (Z/nZ)* is a group with operation given by multiplication

Proposition 12: Properties of Group

Let G be a group, then G has the following properties

The identity of G is unique

Each g € G has a unique inverse

The Generalized Associative Law

(ghy t=h"1lg7lvg,heG

Proposition 13: Cancellation Law
e LetG beagroup,andleta,b,u,v €G
e Ifau =av,thenu =v
e Ifua =va,thenu=v
Corollary 14: Cancellation Law and Identity
e LetG beagroup,andletg,h € G
e Ifgh=g,thenh=1
e Ifgh=1,thenh=g1
Proposition 15: Order of Symmetric Group
o S| =n!
Proposition 16: Isomorphism Preserves Commutativity
e Letf:G — H be an isomorphism
e ( is abelian if and only if H is abelian
Proposition 16: Injective Homomorphism Preserves Order
e Letf:G — H be an injective homomorphism
e ThenVvg € G,|g| = |f(9)I
Proposition 17: The Subgroup Criterion
* Asubset H of a group G is a subgroup iff
e H+¥QandVx,y€E Hxy 1€ H
Proposition 18: Isomorphism of Cyclic Group
e Let G bea cyclic group
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e If|G| =n < o, thenG = Z/nZ
e If|G| =oo,thenG =Z

Proposition 19: Order of g¢

n
e IfG =(g)iscyclic,and |G| = n < oo, then |g?| = @n

Theorem 20: Subgroup of Cyclic Group is Cyclic
e LetG = (g) be a cyclic group
e Then every subgroup of G is cyclic
e More precisely, if H < G, then either H = {1} or H = (gd), where
= d is the smallest positive integer s.t. g% € H
Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order
e Let G = (g) be a finite cyclic group of order n

e For all positive integers a dividing n, 3! subgroup H < G of order a
n
e Moreover, this subgroup is (gd), where d = 2
Proposition 21: Construction of (A)
e IfACG,then(4) = {aflagz ...afl"|n € Zsg,a; E A, €€ {il}}

Proposition 22: Properties of Coset

Let G beagroupand H < G

Ifg.,9, € G, theng,H = g,H  g;'g9, €H

The relation ~ on G given by g, ~g, iff g; € g,H is an equivalence relation

In particular, left/right cosets are either equal or disjoint

Proposition 23
e Let N be a subgroup of a group G
e N2(GiffgN =Ng,VgeG
Proposition 24: Quotient Group
e IfGisagroup,and N 2 G, then
e the set of left costs of N, denoted as G/N (say "G mod N")
e isagroup under the operation (g;N)(g,N) = g19,N
e We call this group quotient group or factor group
Theorem 25: Lagrange's Theorem
e If G is finite group,and H < G, then |G| = |H| - [G: H]
¢ In particular, |H|||G|
Corollary 26: Group of Prime Order is Cyclic
e If G isagroup, and |G| is prime, then G is cyclic, hence, G = Z/pZ
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Corollary 27: gl¢l = 1
e If G is a finite group, and g € G, then g!¢l =1

Corollary 28: The Fundamental Theorem of Cyclic Groups
e If G is a finite cyclic group, then there is a bijection

» {positive divisors of |G|} <> {subgroups of G}

Proposition 29: Order of Product of Subgroups

|H| - K]
|[HNK|

e If H,K are finite subgroups of a group G, then |HK| =

Proposition 30: Permutable Subgroups
e IfH,K < G,then HK < G iff HK = KH

Corollary 31: Product of Subgroup and Normal Subgroup
e IfH,K < G, and either H or K isnormal in G, then HK < G
Theorem 32: The First Isomorphism Theorem
e Iff:G — His ahomomorphism, then f induces an isomorphism
o fG/kerfi)lm(f)
o flgkerf)=f(g)
Corollary 33: Order of Kernel and Image
e [G:ker f] = |im f]|
Theorem 34: The Second Isomorphism Theorem
e LetA,B <G,andassumeB 2 G
e ThenAnB=Aand 4B/p =4/, o
Theorem 35: The Third Isomorphism Theorem
e LetG beagroup,and H,K 2 G,where H < K
e ThenK/H < G/H,and G/H/K/H = G/K
Proposition 36: Criterion for Defining Homomorphism on Quotient
e LetG,H begroups,and N 2 G
e Ahomomorphisma: G — H induces a homomorphism

o a:G/N — H given by gN - a(g)
e Ifand onlyif N < kera

Theorem 37: The Correspondence Theorem

e Let G beagroup, andlet N 2 G, then there is a bijection

F
e {subgroups of G/N} F;’{subgroups of G containing N}
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Proposition 38: Transposition Decomposition of Permutation
e Every g € S, can be written as a product of transposition
Proposition 39: €’ is a Group Homomorphism
e ¢'isagroup homomorphism
Proposition 40: Sign of Transposition
e Letn €Z
e IfT € S, is transposition, then e’'(7) = 1
Corollary 41: Equivalence of Two Definitions of Sign
e ciswell-defined,and € = ¢’
Corollary 42: Surjectivity of €
e Ifn > 2, then € is surjective
Proposition 43: Subgroup of Index 2 is Normal
e IfGisagroup,H < G,and [G:H] =2,thenH 2 G
Proposition 44: Conjugate Cycle
e If(ay..a;),(aq" ...a;") aret-cyclesin S,
e Then3o € S, st.o(a; ..a)o™t = (a;" ...a.")
Theorem 45: A, Have No Subgroup of Order 6
e A, have no subgroup of order 6
Proposition 46: Stabilizer is a Subgroup
e IfG actson X, and x € X, then stab(x) < G
Proposition 47: Orbits Equivalence

e LetGactonasetX

e The relation x~x"iff 3g € G s.t. gx = x' is an equivalence relation on X
Proposition 48: Orbit-Stabilizer Theorem

e IfG actson X, and x € X, then |orb(x)| = [G: stab(x)]

Proposition 49: Permutation Representation of Group Action
* Let G be a group acting on a finite set X = {x, ..., x,,}
e Then each g € G determines a permutation g, € S, by
o gu(D)=j& g x=x
Proposition 49: Induced Homomorphism of Group Action

e The map ®:G — §,,given by g - o, is a homomorphism

Theorem 50: Cayley's Theorem
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e Every finite group is isomorphic to a subgroup of the symmetric group

Theorem 51: The Class Equation
e Let G be a finite group

e Letgy,..gr € G\ Z(G) be representatives of the conjugacy classes of G
r
+ Then |G| = 1Z(6)] + ) [G: C(gD)]
i=1

Corollary 52: Center of p-Group is Non-Trivial

e Ifpisaprime, and P is a group of order p* (a > 1), then |Z(P)| > 1
Corollary 53: Group of Order Prime Squared is Abelian

e Ifpisaprime, and P is a group of order p?, then P is abelian.

e Infact, either P = Z/p?Z or P = Z/pZ X Z/pT.
Theorem 54: Cauchy's Theorem

e If G is a finite group, and p is a prime divisor of |G|, then 3H < G of order p
Lemma 55: Recognizing Direct Products

* Let G be a group with normal subgroups Ny, N,

e Themap N; X N, 56 given by (n4,n,) = nyn, is an isomorphism

e ifandonlyif N;N, = G and N; N N, = {1}
Lemma 56: Coprime Decomposition of Finite Abelian Group

e Let G be a finite abelian group of order mn, where (m,n) = 1

e IfM={x€eGx™=1},N ={x € G|x™ = 1}, then

e M,N <G andthemapa:M X N — G given by (g, h) = gh is an isomorphism

e Moreover,ifm,n # 1, then M and N are nontrivial
Corollary 57: p-Group Decomposition of Finite Abelian Group

e Let G be a finite abelian group, and p be a prime divisor of |G|
e Choosem € Z.ys.t. |G| =p™nandp tn
e ThenG = P X T,where P, T <G, |P|=p™ andp t |T|

Lemma 58: Prime Decomposition of Abelian p-Group

e If G is an abelian group of order p™, where p is a prime
e Leta € G has maximal order among all the elements of G

e ThenG = AX Q,whereA={(a),Q <G

Theorem 59: Fundamental Theorem of Finite Abelian Groups

e Every finite abelian group G is a product of cyclic groups

Corollary 60: Number of Finite Abelian Groups of Order n
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e Ifn= pfl -~ pom, where p; are distinct primes

¢ Then the number of finite abelian groups of order n is

m

. 1_[ number of partitions of e;

i=1
Proposition 61: Properties of Ring

e Let R be aring, then

e D)a=0=a0,Va€eR

e (—a)b =a(-b) =—(ab),Ya,b ER

e (—a)(=b) =ab,Va,b ER

e The multiplicative identity 1 is unique

e —a=(-1aVa€eR
Proposition 62: Criterion for Trivial Ring

e AringR is trivial (i.e. have only one element) iff 1 = 0

Proposition 63: One-Sided Zero Divisor and Unit

e Let R be aring, then

e reR,seR\{0},andsr =03t € R\ {0}st.rt =0

e ye€R,andadveRstuv=1#»3IweRst.wu=1
Proposition 64: Units and Zero-Divisors of Z /nZ

e Letn>0

e Every nonzero elementin Z/nZ is either a unit or a zero-divisor
Proposition 65: Criterion for Product Ring to be Domain

e IfR; and R, are rings, then R; X R, is a domain iff

e one of the R, or R, is a domain, and the other is trivial
Proposition 66: Finite Domain is a Field

e Afinite domain R is a field

Proposition 67: Polynomial Rings over a Domain
Let R be a domain

Letp,q € R[x] \ {0}, then

deg(pq) = deg(p) + deg(q)

(RIx])* = R*

R[x] is a domain

Proposition 68: Ideal Containing 1 is the Whole Ring

e [fIS Risanideal,then/ =R 1€]

Proposition 69: Quotient Ring

Page 16



Let R be aring

If I € R is an ideal, then the quotient group R/I is a ring with multiplication

o (r+DUr'+D=rr"+1

Conversely, if
o J C R isan additive subgroup

o R/] is aring with multiplication defined above

Then J is an ideal

Theorem 70: The First Isomorphism Theorem for Rings
e Iff:R — Sisaring homomorphism, then there is an induced isomorphism
e f:R/ker f —» im(f), givenby r + ker f = f(r)
Proposition 71: Criterion for Maximal Ideal
e If R isacommutative ring, and M € R is an ideal
e Then M is maximal & R/M is a field
Proposition 72: Prime ldeas of Z
* The prime ideals of Z are ideals of the form (n), where n is prime orn = 0
Proposition 73: Criterion for Prime |deal
e LetR be a commutative ring, P € R an ideal, then
e Pisprime < R/P isadomain
e In particular, R is a domain & 0 ideal is prime

Corollary 74: Maximal Ideal is Prime

e IfRisacommutative ring,and M € R is maximal, then M is prime

Proposition 75: Euclidean Domain is a Principal Ideal Domain
e Everyideal in a Euclidean domain R is principal
e More precisely, if | € R is an ideal, then I = (d), where

¢ disan element of ] with minimum norm
Theorem 76: Polynomial Division

e LetF be afield

e Then F[x] is a Euclidean domain

» More specifically, if a, b € F[x] where b # 0, then
e 3lq,r EF[x]st.a=bg+randdegr < degh
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Notations, Divides, Equivalence Relations

Wednesday, January 24, 2018 9:46 AM

Notations
e ":="means "equals, by definition"

o Z:=1{0,%+1,42,+3,...} the set of integers
e Q:= {% |a,b €ZDb+ 0} the set of rational numbers

e R :=the set of all real numbers

e C:={a+ bila,b € R,i? = —1} the set of complex numbers

e Zs, = {a € Z|a = 0} the set of non-negative integers

e S\ {x}:={s€eS|s+x}

e Denote a function f fromasetAtoasetBby f:4 - B

* Denote the image of f by im(f) := {b € B|3a € As.t. f(a) = b}

Injective, Surjective and Bijective
e Definition
o Letf:A — B be afunction, then
o fisinjectiveifVa,a’' € A,a #a' = f(a) # f(a")
o fissurjectiveif Vb € B,3a € As.t.f(a) = b (i.e.im(f) = B)
o fisbijective if f is both injective and surjective
e Example 1
o Forf:Z —-17Z,f(a) =2a
o f isinjective
* Leta,a’ €Z
" Suppose f(a) = f(a)
" = 2a=2d
" 2a—-2a'=0
" 22(a—a)=0
" 25a—-a =0
" sa=a
= Therefore f is injective
o f isnotsurjective
= Because the image of f does not contain any odd integers
* im(f) = {even integer} # Z
e Example 2

o Letf:Q — Qbegivenby f(a) = 2a
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o f isinjective
= leta,a’ € Z, then
* fla)=f@)>2a=2a">a=a

o f issurjective

b
= Letb € Q,then EEQ

R
2 2
= Therefore f is surjective
o f is bijective
= Because f is both injective and surjective
Divides
e Definition
o Ifx,y€Zandx #0
o We say x divides y and write x|y, if3g € Zs.t. xq = y
e Examples
o Vx € Z\{0},x|0, sincex-0 =10
o Vx€Z1|x,sincel -x =x

o Vx €Z —1|x,since (—1) - (—x) =«

Equivalence Relations

e Cartesian Product

o If A and B are sets, then the Cartesian product of A and B is

o AxB:={(a,b)|la €A, b € B}
e Relations
o ArelationonasetAisasubsetR ofA X A
o We write a~a'if (a,a’) € R
e Equivalence Relations
o Arelation R on 4 is an equivalence relation if R is
o Reflexive
= Ifa € 4,thena~a
= je.(aq,a) ER
o Symmetric
* Ifa~d',thena’'~a
» je.(aq,a) €ER=>(ad,a) ER
o Transitive
= Ifa~a',a’'~a", then a~a"

* je.If(a,a’) € Rand (a’,a’") € R,then (a,a”’) ER
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Example 1
o Let Rbe arelation on set 4 such that R := {(a,a)|a € A}

o Then R is an equivalence relation (a~a' & a = a’)

o Reflexive
= Ifa € A then(a,a) € R by definition
o Symmetric
» [fa~a',thena =a’
= Thusa’' = a, hencea’~a
o Transitive
= Ifa~a',a’'~a''thena =a'anda = a"
* Thusa = a'”,hence a~a"
Example 2

o Letn be apositive integer
o R :={(a,b) € Zx Z|n|(a — b)}is an equivalence relation
o Reflexive
* n|(a—a),Va € Z, since n|0
= [tfollowsthata~a,Va € Z
o Symmetric
* Leta,b€EZ
= Suppose a~b,thenn|(a — b)
» Chooseq €Zstng=a—b
» Thenn(—q)=—-(a—b)=b—a
* Thus,n|(b —a),and so b~a
o Transitive
= Supposea, b, c € Z, and we have a~b, b~c
* Thenn|(a —b)andn|(b —c)
* Chooseq,q' €Zstnqg=a—b,nqg' =b—c
* Thenn(gq+q)=(@a—-b)+(b—-c)=a—-c

Thus, n|(a — ¢), and so a~c
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Induction, Well-Ordering of Z

Friday, January 26, 2018 10:05 AM

Induction

- - nn+1)
e Prove Zl = — n=1

i=1
e Base case

i
1x2
o Whenn =1, i=1= >

i=1

e [nduction step

o Forn>1
k
o kk+1)
o Assumers.t.lSk<n,zl=T
i=1
n n-1
n—1)n nn+1
o Then2i= Zi +n=( ) +n= ( )
, , 2 2
=1 =1

Proposition 1: Well-Ordering of Z

e Statement
o Every nonempty subset S of Z., has a unique minimum element
o Thatis,A'me Sst.m<s,VseS
* Proof (Existence)
o Assume S is finite
= We argue by induction on |S]|
= Base case
o When |S| = 1, this is clear
» Inductive step
Assume |S| > 1
o Choosex € S,then |S\ {x}| =S| -1

O

0 By induction S \ {x} has a minimum value: call it m
o Case 1: x < m, then x is a minimum value of S
o Case 2: m < x,then m is a minimum value of S
o When S is infinite
= Choosex €S
= LetS' :={s €S|s <x}
* Then|S'| < x+ 1 < wie. S isfinite

Page 21



* So we can choose a minimum element of S’: call it m
= Lets€S
o IfseS’  thenm<s
o Ifs¢S, thenm<x<s
» In either case,m < s, so mis a minimum element of S
o This proves existence
¢ Proof (Uniqueness)
o Suppose m and m’ are both minimum elements of S
o m<m/,andm' <m
o Thus,m=m'

o This proves uniqueness
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Division Algorithm, Greatest Common Divisor

Monday, January 29, 2018 9:47 AM

Proposition 2: The Division Algorithm
e Statement
o Leta,b € Z whereb >0
o Then3dlq,reZst.a=qb+r,and0<r<b
e Proof (Existence)
o LetS:={a—bq|lq€Za—bqg=0}CZsy

o Sisnotempty
a
= Letq€Zs.t.q SE

» Thenbg <a
* 50<a-bgq

" ijeea—bqg€ES

o

Thus, S contains a unique minimum element: call it r

o

Choose q € Zs.t.
" a—bg=r

" S>a=bqg+r

O

We still need to showthat0 <r < b
= Sincer € S,weknow 0 <r
= Sowe just need to show thatr < b
» Ifr>b,thena—b(g+1)=a—-bqg—b=r—>b=>0
» Thena —b(qg+ 1) € §,and itislessthanr
= This is impossible, since r is the minimum element of S
= Thus,r<b
o Therefore we've proven the existence of g and r
¢ Proof (Uniqueness)
o Supposedq,q’,r,r' €ZLs.t.
" a=bhq+r,where0 <r<bh
" a=bq' +r',where0<r'<b
o We mustshowthatq = q'andr =r’
o Supposer =1’
» Without loss of generality, assume r’ > r
» ThenO0<7r'—r=(a—bq')—(a—bq) =b(q—q")
= Thus, b|(r' —7r),but0<r' —r <71’ <bh.

» This is impossible, thus r = r’
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o Wehavebq+r=bq'+r=q=q"

o Therefore we've proven the uniqueness of g and r
e Note we can prove the following stronger statement

o Ifa,b €Z,andb # 0,then3!q,r € Zs.t.

o a=bgq+rand0 <r < |b|
¢ Proof (Existence)

o Assumeb <0

o

Chooseq,r € Zst.a=(—b)g+r,and0 <r < —b

o

Thena = b(—q) +r,and 0 < r < |b|

o

This proves existence
¢ Proof (Uniqueness)
o Assumeb <0
o Supposedq,q’,r, v EZLs.t.
" a=bq+r,where0<r<b
" a=bq' +r',where0<r'<b

o Then

* a=(-b)(—q)+r,where0 <r <|b|=-b

* a=(=b)(—q)+r',where0 <7r' < |b| =—b
o Since —b > 0, our previous result implies —q = —q'
o Thereforeq = q'andr =r’

Greatest Common Divisor
e Leta,b € Z, where eithera # 0orb # 0
e A greatest common divisor of a and b is a positive integer d s.t.
o dlaandd|b
o Ife €Zs.t.elaand e|b then e|d
e We write the greatest common divisor of a and b, if it exists, as (a, b)

e Asaconvention (0,0) :=0

Proposition 3: Uniqueness of Greatest Common Divisor
e Statement
o Leta,b € Z, where eithera # Oorb # 0
o Suppose 3d,d’ € Zs s.t.
(1) dandd’ both divide a and b
(2) Ife € Zs.t.elaande|b,thene|d and e|d’
o Thend =d’
e Proof

o Combining properties (1) and (2), we have d|d' and d’|d
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o Chooseq,q' € Zst.dgq=d andd'q' =d

o By substitution, we get dqq’ = d

o Thenqq'=1=>q=q =+1

o Ifg=q' =-1,thend = —d' <0.

o This is impossible since d and d’ are both positive

o Thereforeq =q' =1andd =d’

Proposition 4: Lemma for Euclidean Algorithm
e Statement
o Supposea,b € Z, where b # 0
o Chooseq,r €Zst.a=qb+1r,and0 <r < |b|
o If (b,r) exists, then (a, b) exists and (a, b) = (b, 1)

e Proof
o Setd:= (b,1)
o d|aandd|b

» Chooseqqi,q; €EZst.dqy =banddqg, =7
» Thena=qgb+r =qq;d+q,d =d(qq; + q2),sod|a
* And we already know d|b, since (b, 7)|b

o Ife € Zs.t elaande|b,thene|d
» Lete €Zs.t.elaande|b
*= Chooseqs,qs EZst.eqz =aandeq, =Db
"a=qgb+r
" >a—qgb=r
" eqz—qeqyu=r
" >elqz—qqu) =T
* Thuse|r
» Sincee|bandd = (b,7)
= We can conclude that e|d

o By Proposition 3, (a,b) = (b,7)

Proposition 5: (a,0) = |a]
e Statement
o (a0)=|al,VaeZ
e Proof

o Ifa=0

» This is true by our convention

o Ifa#0

= Certainly |a||a, and |a||0
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» Ife € Zs.t.e|laand e|0, then e||a|
= Therefore (a,0) = |a|
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Euclidean Algorithm, Bézout's Identity

Wednesday, January 31, 2018 9:56 AM

Proposition 6: Existence of GCD
e Statement
o Ifa,b € Z, then (a, b) exists
e Proof

o By Proposition 5, we may assume that b # 0

o Chooseq,r € Zst.a = bq +r,where0 <r < |b|

o We argue by induction on r

o Base case
= Supposer = 0,thena = bq
= We have |b||a and |b||b
= Ife € Zs.t. e|laand e|b, then e||b|
» Therefore (a, b) exists, and equals |b|

o Inductive hypothesis
» Ifa,b’€Zst.b’+0,anda’ =b'q' +r',where0 <r' <r
* Then (a’, b") exists

o Inductive step
= Supposer >0
* Chooseq',r" €Zst.b=q'r+r',where0<r' <r
» By inductive hypothesis, (b, r) exists
» By Proposition 4, (a, b) exists, and equals (b, 1)

The Euclidean Algorithm
e [nput
o a,b € Zwith|b| < |al
e Qutput
o (a,b)
e Algorithm
(0) Ifb =0, output |a|
Else, proceed to step (1)
(1) Sinceb # 0,wecanfindq,r € Zs.t.a = bq+r,where 0 <r < |b|
(2) Ifr =0, output|b|
Otherwise, repeat step (1) with b and r playing the roles of a and b
* Note

o The algorithm terminates
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o Since the remainder decreases at each application of step (1)
o By Proposition 4, the output will be (a, b)
e Example: use the Euclidean Algorithm to compute (4148,2057)
o Takea = 4148,b = 2057
o 4148 = 2057 x 2 + 34

~——— ——

S~—— N N Naad

a b q r
0 34=17%x2+0
N N Ll L
b q r

o Herer = 0, so the algorithm terminates

o Thus, (4148,2057) = 17

Proposition 7: Bézout's Identity
e Statement
o Ifa,b €Z then3x,y € Zs.t. (a,b) = ax + by
e Note
o x,y need not to be unique
e Proof
o Ifa=b=0
= Wecantakex =y =0
= [n fact, any pair of (x, y) works
o Ifa=0o0rb=0
= Without loss of generality, assume b = 0
= Then(a,b) =lal=ta+b
= Wecantakex =+1,y=1
o Ifa#0andb #0
= Without loss of generality, assume |a| > |b|
» Chooseq,r € Zst.a =qb + r,where 0 <r < |b|
= We argue by induction on r
= Base case
o Whenr =0
o (a,b)=|b|=0-a+(£1) b
0 Sowecantakex =0,y = 1
= Inductive step
o Supposer >0
o Chooseq',r' €Zst.b =q'r+r',where0 <r' <r

o Byinduction,3x’,y’ € Zs.t. (b,r) = bx' + ry’

O

Thus, by Proposition 4
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o (a,b)=(0b,r)=bx"+ry =bx"+ (a—bq)y' =ay’ +b(x'—qy’)
0 Sowecantakex =y'andy = x' —qy’
» Example: Express (4148,2057) as 4148x + 2057y where x,y € Z
o Recall when we computed (4148,2057), we had
= 4148 = 2057 x 2+ 34
= 2057 =34x60+17
= 34=17%x2+0
o Let'snow find x,y € Zs.t. (4148,2057) = 17 = 4148x + 2057y
o Start with the second to last equation, and "back-fill"
= 17 = 2057 — 34 x 60
= =2057 — (4148 — 2 x 2057) x 60
= = 4148 x (—60) + 2057 x 121
o Thereforex = —60,y = 121
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Equivalence Class, Z /nZ, Group

Friday, February 2, 2018 10:06 AM

Homework 1 (a): Injective Function Has a Left Inverse
e Let A and B be two nonempty sets
e Let f: A - B be ainjective function
e Prove that f has a left inverse
e Since f isinjective, Vb € im(f),3la € As.t.f(a) = b
e Define g: B — A in the following way
o Chooseay € A
o Ifb €im(f)
* Choosea € As.t.f(a)=»b
» Define g(b) = a
o Ifb & im(f)
= Define g(b) = a,
e Checkthat g is a left inverse
o fa€A(gof)@=g(f@)=a
o Thus,geof =idy
Example of The Euclidean Algorithm
e Leta=97,b=20
e Use the Euclidean Algorithm to find (a, b)
o 97=20x4+17
o 20=17x1+3
o 17=3%x5+42
o 3=2x1+1
Therefore (a,b) = 1

o

e Findx,y € Zs.t.(a,b) = ax + by

o (a,b)=1=3-2x1

o =3-(17-3x5)x1

o =3Xx6—-17x%x1
=(20-17x1)x6—-17
o =20x6—-17x%x7
=20x6—(97—-20%x4)x7
=97 x (=7) + 20 x 34

o

o

o

o Sowecantakex = -7,y = 34
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Equivalence Class
e Let X be a set, and let ~ be an equivalence relation on X
e Ifx € X, then the equivalence class represented by x is the set
e [x]={x"€eX|x~x}cX
Proposition 8: Equivalence Classes Partition the Set
e Statement
o Let X be a set with equivalence relationship ~
o Ifx,x" € X, then [x] and [x] are either equal or disjoint

e Proof

o

Suppose Iy € [x] N [x']

O

[t suffices to show thatif z € X, then x~z < x'~z
o0 x~z=>x'~z
= Suppose x~z
" = z~x (Symmetry)
* = z~y (Transitivity)
" = y~z (Symmetry)
» = x'~z (Transitivity)
o0 x~z&x'~z
* Suppose x'~z
* = z~x" (Symmetry)
» = z~y (Transitivity)
" = y~z (Symmetry)
*» = x~z (Transitivity)
Integers Modulo n
e Letn €Z
* The relation on Z given by a~b < n|(a — b) is an equivalence relation
e The set of equivalence classes under ~ is denoted as Z/nZ
e We call this set integers modulo n (or integers mod n)
e We can check that there are n elements in Z/nZ
e We use a to denote the equivalence class in Z/nZ
e ThenZ/nZ =1{0,1,2,...,n— 1}
Group
e Definition
o IfG is a set equipped with a binary operation
" GXG->G
" (g g-h
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o that satisfies
= Associativity: Vg, h,k€G,g-(h-k)=(g-h) -k
* Identity:31 €Gst.VgeG,1-g=g-1=g¢g
* Inverses:Vg € G,3g ' e€Gst.ggl=g"1g=1

o Then we say G is a group under this operation

e 7Z,Q,R,Care groups with operation +

o Ifa,b € Z,thena + b € Z (Similarly for Q, R, C)

o + is certainly associative in all 4 sets

o 0isthe identity in each case

o Ifa € Z (or Q R, C), then the inverse of a is —a
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Examples of Groups, Well-definedness, Z/nZ

Monday, February 5, 2018 9:55 AM

Examples of Groups
e [sZ agroup under multiplication?
o No, because there is no inverses for 2
o Letx € Z\ {£1}, then the multiplicative inverse of x is not an integer
e Are Q, R, C groups under multiplication?
o No, because 0 still has no multiplicative inverse
e Multiplicative group of Q, R, C
o LetQ* =Q\ {0}and R*,C* similarly
o Then Q*, R*,C* are groups with operation given by multiplication
o We argue this for Q*; the same proof works for R* and C*
o Multiplication is an operation on Q*
* Ifa,b € Q%, thenab € Q*
o Associativity
= Thisis clear
o Identity
* 1€ QX isthe identity
o Inverses
" VYVa € Q*’Zli € Q* is the inverse of a
e [sZ agroup with operation given by subtraction?
o No, because subtraction is not associative
o (1-2)—-3=-4
o 1-(2-3)=2
e General Linear Group
o Letn €Z
o GL,(R) := {invertible n X n matrices with entries in R}
o GL,(R) is a group under matrix multiplication
o Matrix multiplication is an operation on GL,, (R)
» IfA,B € GL,(R)
* Then, AB € GL,(R), since (AB)™! = B~1471
o Associativity
= Thisis clear

o Identity
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* Then X n identity matrix I,, is the identity
o Inverses

* IfA € GL,(R),its inverseis A~!
o Note

= Whenn > 1, the operation in GL, (R) is not commutative

Abelian Group

e Wesay a group G is abelian, if ab = ba,Va,b € G
Proposition 9: Addition and Multiplication in Z/nZ

e Statement
o Letn € Zsgy, andletay,a,, b;,b, €EZ
o Ifa; = by,and a; = b, in Z/nZ
o Thena; +a, = b; + b,,and a;a, = b, b,
e Proof:a; +a, =b; + b,
o Choosecy,c; EZs.t.cyn =ay —byand cyn = a, — b,
o Then(c; +cy)n=a; —b; +a, — b, = (a; +a,) — (by +by)
o Thus,n |((a1 +a,)— (b, + bz))
o So,a; +a; =by +b,
e Proof:a;a, = b, b,
o Choosecy,cy; EZst.cyn=ay —b;andcyn =a, — b,
o Then
" a,a; — bib;
" =aya; + (a1b; —aib;) — by b,
* =a(a; — by) + (a; — by)b,
" =q,cn+byoqn
* = (a;c2 + bycy)n
o Thus, n|(a;c; + bycy)
o So,@1@; = b,b;
Well-definedness
e Example
o Say we want to "define" a map
» f1Z)27 > T
* f@=a
o Note that f is not a function
» 1=3inZ/2Z
» Butf(1) =1+ f(3)=3
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o So we say that f is not well defined
e How to check well-definedness
o To check that a purported function f: A - B is well-defined,

o One needsto checkthata = a' = f(a) = f(a')

Corollary 10: Addition Group of Z/nZ
e Statement
o Letn € Z be fixed
o Z/nZis a group under the operation
" Z/nZ X Z/nZ - Z/nZ
» (@b)~a+b

o We will denote this operation by +

o Soa+b=a+b
e Proof
o Well-definedness
= By proposition 9, the operation @ + b = a + b is well-defined
o Associative
= Associativity is inherited from the associativity of addition for Z
o Identity
» The identity is 0

» vaeZ/nZ,a+0=a+0=a=0+a=0+a
o Inverses

» Va € Z/nZ, the inverse of a is —a

* a+—a=a—-a=0=—a+ta=—a+a
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(Z/nZ)*, Properties of Group

Wednesday, February 7, 2018 9:56 AM

Z./nZ is Not a Group Under Multiplication

e Letn € Z be fixed

e Proposition 9 implies that there is a well-defined function
o Z/NZXZ/nZ - Z/nT
o (@b) - ab

e Check group property
o Identity:1-a=1-a=1
o This operation is associative

o 1isareasonable candidate for an identity, but there is no inverse

o Examplein Z/47Z

- 2.0=0
- 2.1=2
- 2.2=0
- 2.3=2

Proposition 11: (Z/nZ)*
e Definition
o Define (Z/nZ)* = {a € Z/nZ|(a,n) = 1}
o By HW 2 #2,
» a€(Z/nL)* & 3IAc€ L/nZst.ac =1
e Statement
o (Z/nZ)* is a group with operation given by multiplication

e Proof

O

Closure: If a, b € (Z/nZ)*, then ab € (Z/nZ)* as well

o

Associativity: Clear, from associativity of multiplication of integers

O

Identity: 1
o Inverses: Builtin HW 2 #2

List of Groups
Set Operation
Z,QR,C +
Q*; ]:R*, (C*

GL,(R),n >0 Matrix multiplication
Z/nZ,n >0 +
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Z/nZ*,n >0

Proposition 12: Properties of Group

e Let G be a group, then G has the following properties

e The identity of G is unique

o

o

In other word
» [f31,1' € G st
" VgeG lg=gl=gandl'g=gl'=g
* Thenl=1'

Proof

»1=1-1"=1

e Each g € G has aunique inverse

@)

@)

In other word
» Ifg € Gand3h h' €Gs.t
" hg=gh=1andh'g=gh' =1
* Thenh=h
Proof
* Letg € G, and suppose h, h’ € G are both inverses of g
» Thenh=h-1=h(gh')=(hg)h'=1-h'=h

« (g) '=gvge6

o

o

Letg € G,thengg l=1=g"1g

Since the inverse is unique, g = (g71)7 !

e The Generalized Associative Law

o

o

@)

o

o

ie. Ifgq,...,9n € G, then g, ... g, is independent of how it is bracketed
First show the result is true forn = 1,2,3

Assume for any k < n any bracketing of a product of k elements

bib, -+ b, can be reduced to an expression of the form b, (bz (bg - bk))
Then any bracketing of the product a;a, --- a,, must break into

2 sub-products, say (a,a; -+ A ) (@g41Ax42 = Q)

where each sub-product is bracketed in some fashion

Apply the induction assumption to each of these two sub-products

Reduce the result to the form a, (az (as ... an)) to complete the induction

e (ghy'=h"1glvg,heG

o By the generalized associative law

o (gh)(h g™ =ghh Hgl=ggt=1

o (h™tg™)(gh) = h(gg™Hh™' =hh™ =1
e Notation
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o We will apply the Generalized Associative Law without mentioning it

o In particular, if G is a group and n € Z.,,, we will write

"gt=g-g
n copies
» gt=g1l.gt
n copies
n gO = 1

Proposition 13: Cancellation Law

e Statement
o LetG beagroup,andleta,b,u,v € G
o Ifau = av,thenu =v
o Ifua =va,thenu=v

e Proof

1

o au=av=>alau=alav=u=v

l=paal=u=v

o ua =va=uaa
e Warning
o ua=avHu=v

o This holds in abelian groups, but not in general
Corollary 14: Cancellation Law and Identity

e LetG beagroup,andletg,h €G
e Ifgh=g,thenh=1

o gh=g

o >gh=gl

o =>h=1
e« Ifgh=1,thenh=g!

o gh=1

o =gh=gg~"

o :>h=g_1
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Order, Definition of S,

Friday, February 9, 2018 10:07 AM

Order

e Definition
o IfGisagroup,andg € G
o The order of g is the smallest positive integerns.t. g" = 1
o Ifnistheorder of g, write |g] = n
o Ifno such integer exists, write |g| = o

o ie.|g|:=inf{n € Zyolg™ = 1}

Note
o The order of the identity is 1

Example 1

0 1
1 1

=0 =G0 D=6 D=

o Therefore, |A| = 3

o MLL=( )eGhUM

Example 2
o InZ Q,R,C, every nonzero element has infinite order

o The identity 0 has order of 1

e Example 3
o In Q" and R*, the elements of finite order are
" |1 =1
" -1 =2

o In C*, there are lots more
= Elements of order n in C are called n™® roots of unity
= {is the fourth root of unity
»eil=ii2=-13=—-ii*=1
e Example 4
o What are the orders of the elements in Z/6Z?

Elements Order Note

0 1 0 is the identity
1 6 1-6=6=0
2 3 2:3=6=0
3 2 3:2=6=0
4 3 4-3=12=0
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5

6

5.-6=30=0

o Ingeneral, if a € Z/nZ, then the "nth power"” of a isna

o Note that all the orders are divisors of 6 (Lagrange Theorem)

e Example 5

o What are the orders of the elements in (Z/5Z)*?
o (Z/57)* ={1,2,3,4}

Elements

BEWE N e

NN N N

N

rder

Note
1 is the identity

2*=16=1
3*=81=1
42=16=1

o Note: (0,5) =0+ 1,500 & Z/5Z%

Symmetric Group (Section 1.3)

e Definition

O

O

o

o

o

e Proof

Letn € Z+ be fixed

Let S,, = {bijective functions {1, ...,n} - {1, ..., n}}
(i.e. S, is the set of all permutations of {1, ..., n})
Then S, is a group with operation given by function composition

We call this group symmetric group of degree n

o Function composition is an operation on S,

= The composition of bijective functions is still bijective

= Therefore, function composition is an operation on S,

o Associativity

= Supposef:X->Y,g:Y>Z hZ->W
= ((hog) o)) = (heg)(F)) = h(g(f(x)))
" (ho(go ) =h((geN@) =h(g(f()))

* Thus(heg)ef=he(gef)
o Identity

= The identity map is the identity

o Inverses

= Bijective functions all have inverse functions
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Properties of S,,, Properties of Cycles

Monday, February 12, 2018 9:53 AM

Proposition 15: Order of Symmetric Group
e Statement
o |S,| =n!
e Proof

o First, we prove that
» IfX andY are sets of ordern
* Then there are n! injective functions from X to Y

o We argue by induction on n
= Whenn = 1, this is clear
= Forn>1
= Suppose f: X = Y isinjective
* Letx € X, then there are n possibilities for f(x)
» f restricts to an injective function X \ {x} - Y \ {f (x)}
» There are (n — 1)! such functions, by induction
» Thus, there are n(n — 1)! = n! injective functions X - Y

o Now,takeX ={1,..,n} =Y
= Since injection between finite sets of the same order is bijective
= We can conclude that |S,,| = n!

o Note
= The sets must be finite

= Counterexample: f:Z — Z,n = 2n is not bijective

Cycle
e Definition
o Letn € Zs be fixed
o Letay,..,a; €{1,..,n}
o The element of S, given by
" g gy forl<i<t-—1
g a
" jejifj€{ay, .. a
o isdenoted by (a4, ay, ..., a;) and is called a cycle of length t
e Example

o Leto =(132)€S,, then
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o

o

i 12 3 4
<l llll)
o) 3 1 2 4
2

Notice: (132)=(321) = (213)

Disjoint Cycles

e Definition

o Two cycles (aq, ...a;) and (by, ..., by ) are disjoint if
o {ay,..a;}n{bq,..,by} =0

e Example
o (12),(34) € S, are disjoint

e Fact

o Every element of S,, can be written as a product of disjoint cycles

o 8 ={M)

o S ={1),(12)}

o S3={(1),(12),(13),(23),(123),(132)}

o S,=1{(1),(12),(13),(14),(23),(24),(34),(123),(124),(132),(142),(1
34),(143),(234),(243),(1234),(1243),(1324), (1342),(1423),
(1432),(12)(34),(14)(23),(13)(24)}

o Note: We write the identity of S,, as (1)

Cycle Decomposition for Permutations

e Algorithm

Step Example

Let a := min{x € N|x not appeared in previous cycles} (1

Begin the new cycle: (a

Let b :== o(a) c(1)=12=»b
Ifb=a 12#1
» close the cycle with a right parenthesis So write (1 12

e return to step 1

Ifb+#a
e write b next to a in this cycle: (a b

Letc := a(b) o(12) =8

Ifc=a 8+#1
» close the cycle with a right parenthesis So continue the cycle as:
e return to step 1 (1128

Ifc+a

e write ¢ next to in this cycle: (a b c

b = c and repeat this step until the cycle closes

Naturally this process stops when all the numbers from oc=(1128104)(213)
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{1,2, ...,n} have appeared in some cycle. 3)(5117)(69)

Remove all cycles of length 1 c=(1128104)(213)
(5117)(69)

e Example
o Take g € S;; to be the following
<i12345678910111213>

o l N N e A A A
o(i) 12 13 3 1 11 9 5 10 6 4 7 8 3
o Startwith 1,0(1) = 12, so write 12 after 1.
o Keep going until you cycle back to 1
o Start with the smallest number which hasn't yet appeared, and repeat.
o Repeat this step until 1, ..., 13 have all appeared.

Product of Cycles
e Reminder
o Read from right to left
e Example
o Writeo = (12 3)(12)(3 4) as a product of disjoint cycles
o Whatisa(1)?
" (34)mapsitol
* (12)maps1to2
"= (123)maps2to3
= Thuso(1) =3
o Similarlyc(3) =4,0(4) =1
o Thus we close the cycle (1 3 4)
o We won't write down (2), since it is the identity
o Thuse=(134)2)=(134)
o Note: g € S, but it make sense to think of o € S,, forn > 4
e Commutativity of S,
(12)(123) =(23)
(123)(12)=(31)

o

o

o

In particular S5 is not abelian

o

Therefore §,, is not abelian forn > 3
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Homomorphism, I[somorphism

Wednesday, February 14, 2018 9:39 AM

Homomorphism
e Definition
o LetG, H be groups
o Afunction f: G — H is a homomorphism if
* f(9192) = f(91)f(92), V91,9, € G
o One says f "respects”, or "preserves" the group operation
e Trivial Examples
o Let G be agroup
o Theidentity map f: G — G given by g » g is a homomorphism
" f9)f(g2) =1-1=1=f(9:192)
o Themap f: G — G given by g = 1 is a homomorphism
* This only works if we send every element of G to 1
» IfxeG\ {1}, and f:G = G isgivenby g » x,Vg
* £(9192) = f(91)(g2) = x = x?
* Thusx =1
» This is impossible since x € G \ {1}

Example 1
o Letf:R — R*begivenby f(x) = e*
o Then f is a homomorphism
O flxy +x) = €M™ = eM1e™2 = f(x1)f (x2)

Example 2

o LetG beagroup,andletx € G
o Themap f:G - G,g » xgx~! is a homomorphism

o f(g192) = xg192x"" = xg1 x 7 'xgx"! = f(g1)f (92)

o This homomorphism is called conjugation by x

e Example 3
o Letn € Zbe fixed
o Isf:Z — Z,x » x + nahomomorphism?
o Onlywhenn =20
o fO+fO)=fO0)=2n+n=n=n=0
e Example 4

o Letn € Z- be fixed

o Isa:Z — Z,x » x™ ahomomorphism?
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o Onlywhenn =1
o Whenn =20
» a(x) =x%=1,vx\ {0}
= Only constant mapping to identity is a homomorphism
= But 1 is not the identity (0 is)
= So this doesn’t work
o Forn=>2
" oa(x; +xy) =alxy) +alxy) © (g +x)" =% + x7
= But this is not always true
» Forinstance, whenx; = x, =1,2" # 2forn > 2
Example 5
o Letn € Zbe fixed
o B:Z — Z,x = nx is a homomorphism
o Bx1 +x3) =nlxy +x3) = nxy +nx; = L) + Bxz)
Example 6

o The previous examples is a special case of the following:

o

Let G be a group,and n € Z

O

Define B:G = G, g ~ g™, then

o

f is a homomorphism vn € Z < ( is abelian

o

Proof: homomorphism = abelian
= Sayn=-1
= letg,,9, €EG
= Since  is a homomorphism
" B(91,92) = B(91)B(g2)
= (91927 = gi'97"
" 9791 =91'97"

* (g7tgrH) = (9719 D!
" (gD gD = (gD (g H
" 9192 = 9291

= Thus G is abelian
o Proof: abelian = homomorphism
= Letg,he€G
= First, supposen = 0
o We argue by induction onn
o Ifn = 0, this is obvious

o Supposen > 0, then
o B(gh) = (gh)" = gh(gh)"~* = ghg" *h"*
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o =gg" 'hh" "t = g"h"™ = B(g)B(h)

= Now supposen < 0

o Thenx - x~ " is a homomorphism, by the above argument

o So(ab)™ =a™b"™ Va,b€EG

o Now,takea = g~ and b = h™! to obtain the result

Isomorphism

e Definition

o LetG, H be groups

o A homomorphism a: G = H is aisomorphism if

o thereis a homomorphism f: H — G s.t.
» aff =idy, and

- ﬂa:ida

o Inthis case, we say G and H are isomorphic

e Fact

o a:G — Hisanisomorphism < « is a bijective homomorphism

o Proof: isomorphism = bijective homomorphism

= Thisis clear

o Proof: bijective homomorphism = isomorphism

* We need to show that ! is a homomorphism

= Lethy,h, €EH

* Choose g4,9, € G s.t.a(g1) = hy and a(g;) = h,

= Then

O

O

O

]

O

e Example

a

~t(hyhy)
05_1(0((91)0((92))
a ' (a(g192))
9192
a~t(h)f " (hy)

o Ry = {r € R|r > 0} is a group under multiplication

o Define f: R - Ry, where f(x) = e*

o Then f is a homomorphism

o Moreover, f is an isomorphism

o The inverse of f is In

¢ Observation

o IfG,H are isomorphic groups, then |G| = |H|
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Homomorphism, [somorphism, Subgroup

Friday, February 16, 2018 10:05 AM

Proposition 16: Isomorphism Preserves Commutativity
e Statement
o Letf:G — H be an isomorphism
o G is abelian if and only if H is abelian
e Proof
o (=) Suppose G is abelian
o Leth,h' €H
o Chooseg,g' € Gst.f(g)=h,f(g)="h
o Thenhh' = f(g)f(g9') = f(99") = f(g9'9) = f(g)f(g) = h'h
o (&) Apply the same argument with f~1: H - G

Proposition 16: Injective Homomorphism Preserves Order

e Statement
o Letf:G — H be an injective homomorphism
o Thenvg € G,|g| = |f(g)l
e Proof

o f(1g) =14
= Letg € G, then
" f@=f1¢-9)=f)f(9)
» By Cancellation Law, f(1;) = 1y

o When |g| < o
= Letn :=|g|, then
" 1y =f1e) = f@g") = f(@"
= (This last equality follows from an induction argument)
= Therefore, |f(g)| <n
* Now, apply this same argument with f replaced by f~1
= So we can conclude that |f(g)| =n

o When |g| = o
= If|f(g) <
* The above argument shows |g| < oo
= This is impossible
* Thus, |f(g)] = o

Groups with Same Order is Not Necessarily Isomorphic
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* G,H are groups, and |G| = |H|, is it the case that G = H? No
e Example 1: Z 2 Q
o In fact, any homomorphism f:Z — Q is not surjective
o Letf:Z — Q beahomomorphism
o Iff(a) =0,YVa€eZ
= QObviously f is not surjective
o Assume otherwise

» Byinduction, f(a)=f(1+1+-+1)=a-f(1)

n copies

= By assumption, f(1) # 0, since otherwise f = 0

= We know that ]—Cg €EQ
= ButAa € Zs.t. ]—c% =af(1)

" ie f%l ¢ im(f)

* Thus f is not surjective
e Example 2: Z/6Z % S
o |Z/6Z| = |S;|,butZ/6Z % S,
o Because Z/6Z is abelian, but S5 is not

o Also |1| = 6 in Z/6Z, but S; have no element of order 6

Orders of Elements in S,
e Letog €S,
e Ifo = oy - 0, Where gy -+ g, are disjoint cycles, then |g| = lcm(|oy], ..., [om])

e Ifoisat-cycle then|o| =t

Subgroup
e Definition
o LetG beagroup,andletH € G
o H isasubgroup if
* H # @ (nonempty)
» Ifh,h' € H,then hh' € H (closed under the operation)
* Ifh € H,thenh™! € H (closed under inverse)
o If H is asubgroup of G, we write H < G
* Note
o Subgroups of a group are also groups
e Example 1
o IfGisagroup,thenG < Gand {1} <G

e Example 2
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o Ifm,n € Zsyg,andn < m, then S, < S,
e Example 3
o LetG beagroup,andletg € G
o Then(g):={g"Ine€Z}<G
o (g) is called the cyclic subgroup generated by g
o (g)# @,since g € (g)
o Letg', g’ € (g),then g'g/ = g' € (g)

o Ifgl € (g), then (gi)_l =g i e (g)
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D,,,, Subgroup Criterion, Special Subgroups

Monday, February 19, 2018 9:58 AM

Regular n-gon
e Aregular n-gon is a polygon with all sides and angles equal

n=4 H=>5 n=m0

‘ i i : ? i : (J: g
> IIIIIII /

ﬁ* /

B LH ;

equilateral  square regular regular regular regular
rriangle pentagon hexagon  heptagon octagon
Symmetry

e Definition
o A symmetry of a regular n-gon is a way of
= picking up a copy of it
* moving it around in 3d
= setting it back down
o so that it exactly covers the original
e Examples
o Rotations

o Reflection

Dihedral Groups (Section 1.2)
* Definition
o D,, = {symmetries of the n-gon} is called n-th dihedral groups
e Note
o |D,,| = 2n (proof on page 24)
o There are n rotations and n reflections
o Symmetries of n-gons are determined by
o the permutations of the vertices they induce
e Example:n =3

o Rotations
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= 120%:(123)
= 240°:(132)
= 360°:(1)
o Reflections
= (23)
= (13)
= (12)
o Dg=1{(1),(23),(13),(12),(132),(123)}=5;

A=) A=)
ANe=(32) A=
Ay De=(i2)

e Example:n =4

N
—

= N
w W

o Rotations
= 90°:(1234)
= 180°:(13)(24)
= 270°:(1432)
= 360°(1)
o Reflections
= (24
= (13)
= (1H(23)
= (12)(34)
o Dg=1{(1),(1234),(13)(24),(1432),(13),(24),(14)(23),(12)(34)} <S8,
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ABCD DABC CDAB BCDA

A B D A C D B C
Rotations Q C) Q
D C C B B A A D
90° CW 180° CW 270° CW
rotation rotation rotation
ABCD DBCA CBAD ADCB
B_—— A D C C B A D
! / - B
Reflections 5 i—-""----"" ‘ .
c—0D A B D A B C
Reflect across Reflect across Reflect Reflect
vertical axis  horizontal axis across across
diagonal diagonal

e Fact
o In general D,,, is isomorphic to a subgroup of §,,

o Every finite group is isomorphic to a subgroup of a symmetric group

Proposition 17: The Subgroup Criterion
e Statement
o Asubset H of a group G is a subgroup iff
o H#@andVx,y € H,xy ' €H
e Recall the original definition
o A subset H of agroup G is a subgroup iff
o H* 0
o Vh,h' e H hh' € H
o VheHhleH
e Proof (=)
o Thisis Clear
¢ Proof (&)
o Closed under multiplication
= Letx€H
» 1-x1eH
* Thus,x ' €H
o Closed under inversion
* Letx,y € H theny '€ H
» Sox(y ) leH
» Thus,xy € H
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Examples of Subgroups
e Example 1
0o ZEQ<R<C
e Example 2
o Definition
= Fixn € Zs
* SL,(R) :={A € GL,(R)| detA = 1} is called the special linear group
o C(Claim
» SL,(R) < GL,(R)
o Proof
= SL,(R) # @, since I, € SL,(R)
» Let4,B € SL,(R)
detA 1

detB 1

» det(AB™!) =detA-detB™! =

e Example 3
o Definition
= [fGisagroup
» Z(G) :={a € Glag = ga,Vg € G} is called the center or G
o C(Claim
= 72(6) <G
o Proof
= Z(G) # 0,since1 € Z(G)
= Leta,b € Z(G)
» Ifg € G,abg = agb = gab
* 50 Z(G) is closed under multiplication
» Alsoa'g=(g'a) t=(ag ) t=ga?!

= 50 Z(G) is closed under inversion
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Properties of Cyclic Group, Order of g¢

Wednesday, February 21, 2018 9:56 AM

Cyclic Group

e Definition

o Agroup G iscyclicifig € Gs.t.(g) =G

e Note

o Afinite group G of order n is cycliciff3g € Gs.t. |g| = n

e Example 1: Z is cyclic
o Z=(1)
o Z=(-1)

e Example 2: Z/nZ is cyclic
o If(a,n) =1,thenZ/nZ = (a)

e Example 3: S3 is not cyclic

o

o

O

Note: If (a4, ..., a;) € S, isa t-cycle, then |(a4, ...,a:)| =t

Every element in S5 have order 1,2, or 3

o So S5 cannot be cyclic

Proposition 18: Isomorphism of Cyclic Group

e Let G be acyclic group
e If|G| =n < o, thenG = Z/nZ

o Chooseg € Gs.t.G = (g)

o Defineamap f:Z/nZ — G givenby a - g%

o Well-definedness

We need to check that f is well-defined.

That is we must show thatifa = b in Z/nZ, then f(a) = f(b)
Leta,b € Z, suppose a = b in Z/nZ

Chooseq € Zstng=a—->

f(@) = g% =g"*t = g"ig® = g* = f(b)

Thus, f is well-defined

© Homomorphism

f(@a+b) =g =g°" = f(@f(b)

Thus, f is a homomorphism

o Surjectivity

Surjectivity is clear by definition
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o

Injectivity
- 1ff@) = f(D)
= gt=gb
. gtb =1
" lgll(a=b)
* n|(a—b)
a=b

* Thus f is injective

o If|G| = oo,thenG = Z

@)

o

o

Choose g € Gs.t. G = (g)
Defineamap f:Z — G givenbyn - g"
Homomorphism
» Ifn,n, €Z
= then f(ny +ny) = g™ = gMg™ = f(ny)f (ny)
* Thus, f is a homomorphism
Surjectivity
= Surjectivity is clear
Injectivity
" Suppose f(ny) = f(n,)
* Then g™t = g™2
= Without loss of generality, assume n; = n,
* Theng™m™2 =1
= Since |g| = o
= n—n,=0
= jen =n,

* Thus f is injective

Least Common Multiple

e Definition

o

@)

o

Let a, b € Z where one of a, b is nonzero.

Aleast common multiple of a and b is a positive integer m s.t.
* almand b|m
* Ifa|m’ and b|m’, then m|m’

We denote the least common multiple of a and b by [a, b]

o Define [0,0] :== 0

e Uniqueness

o Similar to the proof of uniqueness of greatest common divisor

Page 55



ab
(a,b)

e Existence: If a,b € Z, and one of a, b is nonzero, then [a, b] =

Let a4
O = —_—
M= @ b)

o a|mandb|m

ab

(a,b)

= This is true since

is a multiple of a and b

o Suppose a|m’and b|m'’
* Chooseq,q' € Zs.t.aqg = m'and bq’ = m’
» Choosex,y € Zs.t.ax + by = (a, b), then
o m'(a,b)
o =m'(ax + by)
o =m'ax +m'by
o = bq'ax + aqby
o =ab(q'x+qy)
= Thus ab|(m’(a, b))

ab
* Therefore @b m' = m|m'’

Proposition 19: Order of g¢

e Statement

o IfG — <g) iS Cyclic,and |G| =n< OO,then |ga| = (a'n)

e Proof

o Leta€Z
n
0,n) n

o When a = 0, this is clear, since | g°| = =1

O

Soassumea # 0

n

(a,n)

o

lg¢

- (ga)(‘{'_lﬁ) = g(g%) = gle™l = gkn for some integer k
* Thus, (ga)(a%) = (g™* = 1,sincen = |g|
n a
° Za_n_)| 19
* Lett=|g?|, then (¢®)f =1
* By HW3 #1, g% =1 = n|at

» Thus, at is a common multiple of n and a

o nllat =l at = ——| 5> ] |g°|
= [g,n]lat > ——|at =
(a,n) @ml'?

(a,n)
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n
o Therefore —— = |g?|

(a,n)
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Subgroups of Cyclic Groups, (A)

Friday, February 23, 2018 10:07 AM

Theorem 20: Subgroup of Cyclic Group is Cyclic
e Statement

o LetG = (g) bea cyclic group

o Then every subgroup of G is cyclic

o More precisely, if H < G, then either H = {1} or H = (g%), where
= d is the smallest positive integer s.t. g¢ € H

e Proof

o AssumeH # {1}

o LetS:={b € Zs|g” € H}

o (g%)cH
* Choosea € Z\ {0}st.g* € H,then (g*) "1 =g *€H
* Thus, H contains some positive power of g,and so S # @
= By the Well-Ordering Principle, S contains a minimum element d
= Therefore, (g%) € H

o H < (g7
* Leth € H,thenh = g% forsomea € Z
* Chooseq,r€Zsta=qd+r,0<r<d
» g'eH=>g%v%eH>g"€H
= Ifr > 0,thenr € S, which is impossible since r < d
* The minimality of d forcesr = 0
» Soh=g%=g%%€(g?),VvheH
= Therefore H € (g%)

o Therefore H = (gd>

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order
e Statement
o Let G = (g) be a finite cyclic group of order n

o For all positive integers a dividing n, 3! subgroup H < G of order a
n
o Moreover, this subgroup is (gd), where d = 2
e Proof
n
o Let a be a positive divisor of n,and let d := p

o Existence
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4 n n L
= [(g9)] = an-d- a by Proposition 19

o Uniqueness
* SupposeH < Gand |H|=a

= Then, H = (gb), where b is the smallest positive integer s.t. g? € H
n

(n,b)

= We have g =a=|H|= |<gb)| = by Proposition 19

» Thusd = (n,b)ie.d|b
" Sog” €(g?) = H=(g") < (g
= Since |H| = |(g%)| = a, we have H = (g%)
Lemma: Intersection of Subgroups is Again a Subgroup
e Statement

o If{H;};¢; is a family of subgroups of G, then ﬂ H; <G

iel

o H# @
= Sincel € H;,Viel
o Lethy,h, EH
= Then hy,h, € H;,Vi €1
» > hhyleH,Viel
» s> hhy'eH
Subgroups Generated by Subsets of a Group (Section 2.4)

e Definition

o

Let G beagroupand A € G

o

The subgroup generated by A4 is

O

the intersection of every subgroup of G containing A

O

=] n
H<G
ACH
e Example
o IfA = @,then(4) = {1}

o IfA ={1},then{4) = {1}
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(A), Finitely Generated Group

Monday, February 26, 2018 10:01 AM

Proposition 21: Construction of (A)
e Statement
o IfA <G, then(A) ={aj'a;? ..a;*|n € Zsg,a; € A, € € {£1}}
o Note: Whenn = 0, we get 1

e Proof

O

Denote the right hand side by A
o A<G
* A=+ @, sincel € A (taken = 0)
» Ifa=aa?..ab=b"b32 . bime A
= Thenab™!=a‘*a%?..a5"b,; b %% ..b;*m € 4
* Therefore A < G
o (Ayc A
» Because A C A, and (A) is the smallest subgroup of G containing A
o Ac(4)
= Because every subgroup of G containing 4 (i.e. (4)) must contain
= every finite product of elements of A and their inverses.
o Therefore (4) = A = {aj'ay? ...a;"|n € Zsg,a; € A, € € {+1}}
e Example
o IfGisagroup,and g € G, then ({g}) = (g)
e Note
o When G is abelian and 4 € G, then we have

o (A)= {a1111 ...am"|n,- €EZa, €A me Zzo}

Finitely Generated Group
e Definition
o Agroup G is finitely generated if
o Thereis a finite subset A of G s.t. (A) = G
e Example 1
o Cyclic groups are finitely generated
e Example 2
o Finite groups are finitely generated
e Example 3

o If G, H are finitely generated, then G X H is also finitely generated
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o Forinstance, Z X Z is finitely generated by A = {(1,0), (0,1)}

o In particular, products of cyclic groups are finitely generated

o Every finitely generated abelian group is a product of cyclic groups

o (This s called the Fundamental Theorem of Finite Abelian Groups)
Example 4

o Every finitely generated subgroup of Q is cyclic.

o Itfollows that Q is not finitely generated, since Q is not cyclic (Q % Z)
a; a, a,

o SupposeH < Q,andH =(—,—,...,—) wherea;,b; € Zand b; # 0
by by by

o Without loss of generality, assume a; # 0

o LetS:= {x € Zsg b1b2 D, € H}

S % 0, since + 2" e
| ln e .
since bib, b,

= Applying the Well-Ordering Principle

= We can choose a minimum elemente € S

Claim: H =

o

e
b,b, ... b,

* Notice that H = {c1 bl + ¢, 72 b

clEZ}

e
= So we only need to check that b <blbz—b> Vi

= Letibe fixed
= Setz:=by..bji_1a;bjyq1 ...Dy

» Chooseq,r€Zstz=qe+r,0<r<e

z e z—qe T cH
| —_ = > -
biby by  I\bib,..b,)  biby..by, bib, . b,

* The minimality of e forcesr = 0

= This showse|z

a; VA

e
[ ] _— E
50 3. = bib, b, <b1b2".bn>

= Therefore H =

e
b.b, ...,

o So H is cyclic

Page 61



Coset, Normal Subgroup

Wednesday, February 28, 2018 9:59 AM

Coset
e IfGisagroup,H <G,andg €G
e gH :={gh|h € H} s called a left coset
e Hg :={hg|h € H}is called a right coset

¢ An element of a coset is called a representative of the coset

Proposition 22: Properties of Coset
e Let(G beagroupand H < G, then
* Forg,, g, €G,g.H=g,H= g;'g1€H
o (=) Chooseh € Hs.t. g, = g,h (sinceg, =g,-1€ g14H = g,H)
o Therefore g;1g; =h € H
o (&) Chooseh € Hs.t.g; = g,h
o Vh'€H, gh' =g, i&’ € g,H = g.H < g,H

€H

o VYh'€H,g,h' =g, h *h' € g4H = g,H € g.H
c€H

o Therefore g;H = g, H
e The relation ~ on G given by g, ~g, iff g; € g,H is an equivalence relation
o Reflexive
» IfgeG,theng=g-1€ gH
= Sog~g
o Symmetric
» Ifg4,9, € G,and g,~g, i.e. g1 € g,H, then
" g, =g,hforsomeh € H
* Thusg,h™! =g,
= Sog, € g.H, which means g,~g,
o Transitive
* Suppose g,~g, and g,~gs
= This means g; € g,H and g, € gzH
*= Choose hy,h, € Hs.t. g = g,h,and g, = gsh
* Then g, = gsh:hy € gsH
* S091~92
e In particular, left/right cosets are either equal or disjoint
o Suppose g4, 9, € G,andz € g;H N g, H
o Supposex € g.H, then x~g;~z~g,
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O

Sox € g,H

o

This implies that g4 H € g,H

o

To get g,H S g, H, exchange the roles of g; and g,

O

Therefore g.H = g,H
e Example 1
o LetGbeagroup,H <G
o Ifhe H thenhH =H

o Leth’ € H,thenh’ = h(h™'h’) € hH

o ThusH € hH

o By closure under the operation, hRH € H
o Therefore hH = H

e Example 2
o LetG =1Z/6Z,and H = unique subgroup of Z/6Z of order 2
o H={0,3}<Z/6Z
o Left cosets of H in G
= 0+{0,3}={0,3}
» 14+{0,3} ={1,4}
- 2+{0,3}={2,5)
* 3+{0,3}={0,3}
» 4+{0,3} ={1,4}
5+{0,3} = {2,5)

o Note
= |G| =6,|H| = 2,and H has 3 distinct cosets (2 - 3 = 6)
» [fG is a finite group, and H < G, then |H| | |G|, and

G
= H has l—l distinct left (or right) cosets in G

|H|

= This is called the Lagrange's Theorem

Normal Subgroup

e Definition

o

Let G beagroup, N < G
o Nisanormal subgroup ifgng=1 € N,vyne€ N,vg € G

o

In other words, N is closed under conjugation
o If N < Gisnormal, we write N 2 G

e Example 1
o IfG is abelian, every subgroup of G is normal

o SupposeH < G
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o LetheHandg €G
o Thenghg™!=hgg'=heH
e Example 2
o LetG =S5 H = ((12))
Supposeg =(123)€ G,andh=(12) €EH

o

O

o ThereforeH ¥ G
e Example 3
o ((123))in Sz isnormal
* Note
o In GL,(R), conjugation amounts to changing basis
o LetG = GL,(R)
o LetP,A € G,then PAP 1lis change of basis matrix
e Example 4
o Letf:G — Hbeahomomorphism, then ker f 2 G
o kerf <G
= kerf # @,since f(15) = 1y
Ifkq,k, € ker f
flik; D) = fk)f (k)™ =1y
* Thus k k3! € ker f
» Thereforeker f < G

o ker f is normal
" Letg€eG,kekerf

* flgkg™) = f(@fUf (@' = f(Pf (@)™ =14
» = gkg lekerf

Proposition 23: Criteria for a Subgroup to be Normal
e Statement
o Let N be a subgroup of a group G
o N2Geo gN=NgVvVgeaG
¢ Proof (=)
o SupposeN =2 G

o LetgeG,neN
o gn=gn(g~'g) =gng g € Ng = gN S Ng
EN

o ng=(9g Dng=gg9 'ng€ gN=>NgcgN

EN

o ThereforegN = Ng
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e Proof (&)

o

@)

o

Suppose gN = Ng,Vg € G
Letge G,neN

We must show that gng™t € N
Choosen' e Nst.gn=n'g
Thengng™ =n' €N
Therefore N 2 G
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Quotient Group, Index, Lagrange's Theorem

Monday, March 5, 2018 9:41 AM

Proposition 24: Quotient Group

e Statement

o

Let G bea group, N 2 G

o

The set of left costs of N is a group under the operation

* (91N)(g2N) = g192N
This group is denoted as G/N (say "G mod N")

o

o

We call this group quotient group or factor group
e Proof

o CheckG/N xG/N — G/N, given by (g;N, g,N) + g19,N is well-defined
* Suppose g;N = g;N,and g,N = g;N

o gtN=giN = (g:)7'g1 €N

0 g:N=g:N < (92.)7 g2 €N
* (9192)7'9192 €N

0 (9192)7'919:

o = (927" (917 0192

o = (927" (91" 91[92(92) " 192

o =(92)7" (9 9195 (95) "9,

EN EN

o =(g95)"'(91) 19195 (92) 19, EN

EN EN

* Therefore g,g,N = g19:N

= So the operation is well-defined
o Identity

= 1-N=N
o Inverse

" (GN)t=g7'N

* Since (gN)(g~IN) =gg N =N
o Associativity

* (91Ng2N)(gsN)

" = (9192N)(g3N)

" = 019293N

" =g:1N(g293N)

* =91N(92Ng3N)

e Note
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o If N 2 G, then there is a surjective homomorphism
" f:G - G/Ngivenby g » gN withkerf =N
* Sincef(g) =1lgn = gN=N<geEN
o This shows that, if H < G, then
* H 2 G © H is the kernel of a homomorphism from G to some other group
e Example 1
o Let H be a subgroup of Z
o Then H 2 Zsince Z is abelian
o Since Z is cyclic, H is also cyclic
o Sowe can write H = (n)
o There is isomorphism
= Z/(n) > Z/nZ
" a+(n)-a
e Example 2
o IfGisagroup,then{l;}2GandG 2G
= G/{lg} =G
* (/G = *,where * is the trivial group of order 1

o Intuition: The bigger the subgroup, the smaller the quotient

Index of a Subgroup
e Definition
o IfGisagroup,and H < G, then
o The index of H is the number of distinct left cosets of H in ¢
o Denote the index by [G: H]
* Note
o IfN 2 G, then [G:N] = |G/N|
e Example
o [Z:(n)] = |Z/nZ| =n
Theorem 25: Lagrange's Theorem
e Statement
o IfG is finite group,and H < G, then |G| = |H| - [G: H]
o In particular, |H|||G|
* Notice

o Ifin the setting of Lagrange's Theorem, H 2 G, then

IG]
o |G| =|H|-|G/H| = |G/H] =T

e Proof
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o

o

o

o

Letn:= |H|,and k = [G: H]
Cosets partition G
= Letg,, ..., gx be the representatives of the distinct cosets of H in G
* (In other words: if g € G, then gH € {g,H, g,H, ..., grH})
= By proposition 22, left costs are either equal or disjoint
= So,G=gHUg,HU---U g, H
Cosets have the same size
= Letg € G, then there is a function f: H - gH given by h = gh
= fis certainly surjective
» fisalsoinjective since if gh; = gh,, then h; = h,
» Thus, |gH| = |H|
Therefore |G| = |g;H| + -+ |gxH| =n+n+--+n=kn=|H|-[G:H]

k copies
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Lagrange's Theorem, Product of Subgroups

Wednesday, March 7, 2018 9:56 AM

Corollary 26: Group of Prime Order is Cyclic
e Statement
o IfG isagroup, and |G| is prime, then G is cyclic
o Hence, G = Z/pZ
e Proof
o Ifg € G, then|g| = [(g)I
o By Lagrange's Theorem, |{(g}| | |G|
o Thus,|g| € {1,|G|}
o Itfollowsthatifg € G \ {1}, then |g| = |G|
o Therefore(g) =G

o i.e.G iscyclic
Groups of Small Order

Order Property

2 Cyclic

3 Cyclic

4 Cyclicor Z/2Z X Z/ 27
5 Cyclic

6 Cyclic or S5

Corollary 27: gl¢l = 1
e Statement
o IfG is a finite group, and g € G, then g'6! = 1
e Proof

o By Lagrange's Theorem, |[{(g}| | |G|

o

Since |g| = I{g)|, we have |g|||G|

O

Thus, g!¢! = gl9I™ for some integer m

Therefore g!¢! = (g|g|)m =1

o

Corollary 28: The Fundamental Theorem of Cyclic Groups
e Statement
o IfG is a finite cyclic group, then there is a bijection
o {positive divisors of |G|} < {subgroups of G}

e Proof
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o (=) Divisor m of |G| = the unique subgroup G with order m
o (&) Subgroup H of G = |H|
Product of Subgroups
e LetGbeagroupand H,K <G
e Define HK = {hk|h € H, k € K}
Proposition 29: Order of Product of Subgroups

e Statement
|H| - |K|

o IfH,K are finite subgroups of a group G, then |HK| = THOK|

e Proof

o Notice that HK is the union of left cosets of K

= HK=UhK

In the proof of Lagrange's Theorem, we know that |hK| = |K]|

o

o We want to show that there are cosets of the form hK,where h € H

|HNK|

o

Lethy,h, € H
" WK =hK
» o hythy €K
» o hylhyeHNK
" ©h(HNK)=h,(HNK)
o By Lanrange’s Theorem, the number of distinct cosets of the form hK,h € H is

|H|

* [HiHNK]=——
[ ] |H N K|

H
Thus HK consists of — | distinct cosets of K

|H N K|

|H| - K|
o Therefore, |[HK| = —lH A K]

o

* Note: HK is not always a subgroup

o LetG =S85, H=(12)),K=((13))
|H|-|K| 2x2
|H N K| 1

o But |HK]| is not a divisor of S5

o |HK|=

o By Lagrange's Theorem, HK is not a subgroup of S3

Proposition 30: Permutable Subgroups

e Statement
o IfH,K <G,thenHK < G < HK = KH

¢ Note
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o HK = KH is not equivalentto hk = kh,vhe H ke K
o Itimplies that every product hk is of the form k'h" and conversely
¢ Proof (=)
o KH € HK
= Thisis true because H < HK,K < HK
o HK € KH
= Lethk € HK
» Seta = (hk)™ !, thena € HK
= So,a=h'k'forsomeh’' e H k' e K
= Thenhk =a™' = (h'k")™t = (k")"'(h')"* € KH
¢ Proof (&)
o HK # @,sincel-1=1€ HK
o Lethk,h'k' € HK
o We must show that hk(h'k’)~! € HK
o hk(h'k)t=hk(k")"1(h)?

€KH

o Chooseh” € Hk" € Ks.t.k(k')"X(h)"* = h"k"

€EKH EHK
o Then hk(h'k')™' = hh"k" = hh" k" € HK
cHK  €H €K

o Therefore HK < G
e Example
o LetG =S5 H =((12)),K =((13))
o HK ={(1),(12),(13),(132)}
o KH =1{(1),(12),(13),(123)}
o Thus HK # KH

o Therefore HK is not a subgroup of S;

Corollary 31: Product of Subgroup and Normal Subgroup

e Statement
o IfH,K < G, and either H or K is normal in G, then HK < G

e Proof

o

Without loss of generality, assume K < G
Leth € H k €K
hk = hk(h™*h) = hkh™*h € KH = HK < KH

EK

kh = (hh~Vkh = hh~'kh € HK = KH < HK

€K

o

O

o

Therefore HK = KH

o
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The First & Second Isomorphism Theorems

Friday, March 9, 2018 10:06 AM

Theorem 32: The First Isomorphism Theorem
e Statement

o If f:G - H is ahomomorphism, then f induces an isomorphism
" f: G/kerf — im(f)
= gkerf  f(g)
e Intuition
o Thisis an analogue of the Rank-Nullity Theorem in Linear Algebra

o Given vector space V, W and a linear transformation A:V - W
o V/ier 4 = im(A)

o = dim(V /oy 4) = dim(im(4))
o = dimV — nullity A = rank A
e Proof
o f is well-defined and injective
= letg,,9, €G
" gikerf =gy kerf
" & g;'g1 Ekerf
" e flgr'g) =1
" = flg)7 g =1
* o f(g1) =1(g2)
= = fg ker ) = f(g, ker f)
* Thus f is well-defined and injective
o f issurjective
» Leth€imf
* Chooseg €Gst.f(g)=h
* Thenf(gkerf)=nh

o fisahomomorphism
= Ifg,kerf,g,kerf € G/kerf

= f(gikerf - g, kerf)
= =f(g19:ker f)

" = f(9192)

= f(g1)f(g2)
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* = f(g1ker f)f (gz ker f)
Corollary 33: Order of Kernel and Image
e Statement
o [G:Ker f] = |im f|
e Example

o Letm,n € Z be coprimes

o Then any homomorphism f:Z/mZ — Z/nZ is trivial

o ie f(n) =0,vn € Z/mZ
e Proof

o Let f be such a homomorphism

o By the First Isomorphism Theorem, |Z/nz/kerf| = |im f|

n
o So |_1517| = |im f|, where

n
= —— jsadivisor of n,and
|ker f| '

» |im f] is a divisor of m, by Lagrange’s Theorem

o Thus, |im f| = 1,s0im f = {0}
e Note

o The same proof tells us that

o IfG, H are finite groups such that (|G|, |H|) = 1, then

o All homomorphism between them are trivial

Theorem 34: The Second Isomorphism Theorem

e Statement

o IfA<G,andB=2G
o ThenANB < A4,and AB/BEA/AnB

e [Intuition

SN

e
AN
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e Note
o B S AB < G by Corollary 31
o So,AB/B make sense
* Proof
o We have homomorphisms
* a:A— ABgivenbya = a

* B:AB —>AB/B given by x — xB

o

Let f := 8 o a, then
" fiA —>AB/B,wherea ~ aB

o fis certainly surjective
o Compute ker f
= Leta€ A
. f(a)=1AB/B(=>aB=B<=)aEB
* Thus,kerf =ANB 24
o The First Isomorphism Theorem gives an isomorphism

* %405 —="%/p
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The Third & Fourth Isomorphism Theorem

Monday, March 12, 2018 9:57 AM

Theorem 35: The Third Isomorphism Theorem

e Statement

o LetG beagroup,and H,K 2 G, where H < K
o Then K/H < G/H,and G/H/K/H ~ G/K
e Note
o K/H:={gH € G/H|g € K}
o Also,H 2 G = H 2 K,and so K/H makes sense

e [Intuition

4 B { ) (

o e o e
o ® o ®
(o o (o o L ¢

o _J o _J o
! N Gj;;'\\"r

e Proof
o K/H<G/H

» Certainly K/H # @ since K # @

» Letk.H k,H € K/H

» Thenk H(k,H)™ ' = kyHk;'H = k k;'H € K/H
o K/H<G/H

= LetkHe K/Hand gH € G/H

* Then gHkH(gH) ! = MH € K/H

EK

o Define a homomorphisma:G/H = G /K given by gH - gK

o ais well-defined

= Suppose g1H = g,H
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* Theng;'g, € H

* Since H < K, we have g;1g, €K

= S0 91K = g,k

* ie a(giH) = a(g,H)
O a is surjective

» IfgK € G/K,thena(gH) = gK
o Compute ker a

» kera ={gH € G/H|gK =K} ={gH € G/H|g € K} = K/H
o By First Isomorphism Theorem

. G/H/K/H = G/H/kera =ima=G/K

e Example
o LetG=ZK=1Z/2Z,H =171/AZ
o Then the Third Isomorphism Theorem tells us that
o Themap f:Z/4Z — Z/27Z given by a — a is well-defined and surjective
o kerf =2Z/AZ ={0,2} € Z/AZ

o Therefore, 2/42/21/42 = 7./27.

Proposition 36: Criterion for Defining Homomorphism on Quotient
e Statement
o LetG,H be groups,and N 2 G
o A homomorphism a: G — H induces a homomorphism
* a:G/N — H givenby gN - a(g)
o Ifand onlyif N < kera
e Proof (=)
o Letn € N, then
= a(nN) = 1y since homomorphisms preserve identities
» @(nN) = a(n), by definition of @
o Thus,a(n) =1y
o ie.NCSkera
o And N certainly meets the Subgroup Criteria
o Therefore N < kera
¢ Proof (&)
o a:G/N - H,gN - a(g) is well-defined
= Suppose g;N = g,N, we must check that a(g,) = a(g,)
" 91N = goN
" = g;'91€EN

» = a(g5'9,) = 1y (since N < ker )
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* = alg) talgr) = 1y
» o alg) = algr)
o @ isahomomorphism
» a(g1Hg.H) = a(g19:H) = a(9192) = a(g1)a(g:) = a(g.H)a(g.H)
Theorem 37: The Correspondence Theorem
e Statement
o LetG beagroup,andlet N 2 G, then there is a bijection
o {subgroups of G/N}::,’{subgroups of G containing N}
e Proof
o Define
* F(H)={g € GIgN € H}
» F'(K)=K/N :={gN € G/N|g € K}
o F(H) is asubgroup of G containing N
* Ifn€N,thennN =id;/y €H
= Thus, N € F(H)
= This also shows that F(H) # 0
* Ifg1,9, € F(H),then
o g4N,g,NeH
0 = g:N(gN)"" =g19;'N €H
0 = g19;' € F(H)
o FoF andF' o F are the identity maps
»* (FoF')(K)=F(K/N)={g€G|gN€e€eK/N}=K

e (F o FY(H) = F'((glgN € ) = WION €}/ _
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Transposition, Sign of Permutation

Wednesday, March 14, 2018 9:56 AM

Transposition
e Fixn to be a positive integer
e A2-cycle (i j)in S, is a transposition
Proposition 38: Transposition Decomposition of Permutation
e Statement
o Every o € S, can be written as a product of transposition
e Example
o (15324)=(14)(12)(13)(15)
o (35)=(15)(13)(15)

e Proof

o

Fixo € §,

o We may assume that g isa cycle 6 = (a; a, ... a;)

o By induction on t, we claim
* (a; a3 .. a;) = (a; ap)(ay ap_y) ... (a; ay)
o Basecase:t =2
* (a; ap) = (a4 az)
o Inductive step: t > 2
* (a; ap))(ag ag—yq) ... (aq az)
* =(a;a)(a;az .. ag_q)
" =(ayap.. apq ap)
e Note

o §,isgenerated by {(12),(13),...,(1n)}

Sign of Permutation € (Transposition Definition)
e Intuition
o The numbers of transposition used to write some o € S,
o is not well-defined, but it is always either even or odd
e Definition

o Lete:S, > Z/2Z

o 0 o isaproduct of even number of transposition
1 o isaproduct of odd number of transposition

o Then € is a group homomorphism

o A, = kere is the alternating group of degree n
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Sign of Permutation €’ (Auxiliary Polynomial Definition)
e Auxiliary Polynomial A

o A:= 1_[ (xl-—xj)

1<i<jsn
o Foro € S,,definea(A) := l_[ (xa(i) — xa(j))
1<i<jsn
o Then o(A) is always either A or —A
e Example
o Letn=4ando =(1234)
o A= (x —x2)(x1 — x3) (g — x4) (xz — 23) (2 — x4) (X3 — x4)
o a(B) = (xz = x3)(xz — x4)(xz — 21) (3 — 24) (x3 — 1) (x4 — %1) = —A
e Definition
o Lete:S, »Z/2Z
0 o(d)=A
1 o(A) =-A
o €'(0) is the sign of g, often denoted as sgn o
o cisevenife' (o) =0

o cisoddife’(c) =1

Proposition 39: €’ is a Group Homomorphism

e Statement
o € isagroup homomorphism
e Example
o Lete=(12),t=(123)=>10=(13)
o LetA = (x; — x3)(x; — x3)(xz — x3)
" 0(d) = (xz —x)(x1 —x3) (%2 — x3) = —A
= 7(8) = (0 —x3) (2 — %) (3 —x1) = (=1)?’A=A
= (10)(8) = (x3 — %) (X3 — %) (¥ — x1) = (=1)°A = —A
o €'(10) = €'(1)€' (o), since
* ¢'(to) =1
» €'(D)e'(0)=0+1=1
e Proof

o Fixog,t€S,

o LetA:= 1_[ (xi—xj),then

1<i<jsn
"t = 1_[ (e = %e()
1<i<jsn
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= g(A) = 1_[ (xa(i)_xd(j))

1<i<jsn

= (t0)(A) = 1_[ (x(‘m')(i) - x(w)(j))

1<i<jsn

o Suppose o(A) has k "reversed factor” (i.e. factors (x; — x;), where i < ), then

= (10)(4)

1<i<jsn
. = (1)K 1_[ (e — Xe())
1<i<jsn
» = (—1Dkr(d)
] :O’(A)T(A)

o Therefore €'(to) = €' (7)€’ (0)
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Homework 6

Friday, March 16, 2018 9:51 AM

Homework 6 Question 1
¢ Statement

o SupposeA,B<H,AB=H

o Then there is an isomorphism #/, - o 5 H/)xH/p)
e Proof
o Define a map
= £~ (H/) % (H/p)
h - (hA, hB)
o Check f is a homomorphism
* f(hihy)
= (hy h,A, hih,B)
= (hyAh,A, hyBh;,B)
= (h4A, h4B)(h,A, hyB)
= f(hy)f (hy)
o Compute ker f
= Leth € kerf
e f(h)= (1H/A: 1H/B) =(4,B)
* < he€edAandh€B
" h€EANB
* Thereforekerf = ANB

o Prove surjectivity

= Let (4, h,B) € (H/) x (H/p)
= Chooseay,a, € A,by,b, € B s.t.
o hy =a;b;
O hy, =ayb,
* Then
o hA=Ahy = Aab; = Abq
o h,B=a,b,B=a,B
* f(azby) = (h4A, h,B)
o f(azby)
o = (ayb,4,a,bB)
o = (Aayby,a,B)
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o = (Abl, azB)
o = (hlA, th)
= Therefore f is surjective

o By the First [somorphism theorem, there is an isomorphism
" f_:H/kerf_) im f
- =>f=H/A NB~ (H/A) X (H/B)
e Note
o Given two homomorphism f;: G = Hy, f,: G = H,
o Then their direct product

* f:G - Hy X H, givenby g = (f1(9), f2(9))

o isalsoa homomorphism

Homework 6 Question 2
e Statement
o Gisabelian & G/Z(G) is cyclic
e Proof (=)
o Suppose G is abelian, then G = Z(G)
o So G/Z(G) is the trivial group
o Therefore G/Z(G) is cyclic
¢ Proof (&)
o Suppose G/Z(G) is cyclic
o Choose gZ(G) € G/Z(G) st.{gZ(G)) = G/Z(G)
o Letx € G, then
» xZ(G) = g*Z(G) for some k € Z,and g *x € Z(G)
o Leta,b€eG
o Chooseky,k, € Zand z,z, € Z(G) s.t
= g%1a =2z andg*2b =z,
o So,a= gklzl,b = gkzzz

Then ab = g*1z,g%2z, = g*2z,9%12, = ba

O

Homework 6 Question 4
e Statement
o G ={(g)iscyclicofordern,d|n,d >0
o Then G/<gd> is cyclic of order d
e Proof: If H is a cyclic group and A < H, then H/A is also cyclic

o Choose a generator h € H

o Then hA is a generator of H/A
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o IfR'A€H/A
o Choosek € Zs.t.h' = h¥
o Therefore h'A = hk¥A = (hA)¥

Proof
n n
o |{g®)| = md) - d

By Lagrange's Theorem

o n=6]=|(g)][G:(g%)] = §|G/<gd>|

o

o

- |G/<gd>| =d
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Sign of Permutation, 4,,

Monday, March 19, 2018 9:50 AM

Recall
e eS,>1Z/2Z

L 0 o isaproduct of even number of transposition
o
1 o isaproduct of odd number of transposition

e €S, > Z/2L

0 o(A)=A
o {i o(A) = —A

e A= 1_[ (xi—xj),O'(A) = 1_[ (xa(i)_xa(j))

1<i<jsn 1<i<jsn

Proposition 40: Sign of Transposition
e Statement
o Letn € Zsg
o Ift € S, is transposition, then €' () = 1
e Example
o Supposen =4,7=(12)
o A= (x; —x2) (g — x3) (X1 — x4) (X2 — x3) (03 — x4) (x5 — x4)
o T(A) = (g — x1)(xz — x3) (03 — x4) (31 — x3) (1 — X4) (X3 — X4)
o 1(A))=-A=>¢€(1)=1
e Proof
o Supposet = (12)
= Say (xl- - xj) is a factor of A
» Thent(i)>1(j)=i=1,j=2
= Thust(A) = —A
» Soe'(7) =1
o Supposet=(ij),1<i<j<n

= LetA € S, denote the following permutation

o A(D) =i
o A@2)=j
o A() =1
o A(j) =2

o Ak) =k k & {1,2,i,j}
= (/) =212)A
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o [2(12)4]() = [21 2)](1) = A(2) =
o [2(12)4() = [2A D]2) = A1) =i
o Without loss of generality, assume i, j & {1,2}
o [4(12)2](D) =[212)]@) =) =1
o [4(12)2]1(2) = [2(1 2)]() = A1) =2
o Fork & {1,2,i,j}
o [4(12)2](k) = [A(1 2)](k) = A(k) =k
* We know €’ is a homomorphism, so
o €'(ij)=€e"12)1)
o =€e'D)+e12)+€'D)
o =2’ +1
o=0+1=1
Corollary 41: Equivalence of Two Definitions of Sign
e Statement
o eiswell-defined, and € = €’

e Proof

o

Leto € S,

o Say o = 14 - T, where t; is a transposition, then

o €'d)=€@)++em)=1++1=k
k copies
o Ifkisodd, then
= ¢ cannot be written as a product of an even number of transpositions
o Soe(o) = €'(0) = 0 for o with odd k, and vice verse
o This shows € is well-defined, and € = €’

Corollary 42: Surjectivity of €
e Statement
o Ifn > 2, then € is surjective
e Proof
o €(1)=0,ande(12) =1
o Since Z/27Z has only 2 elements, € is surjective
Alternating Group
e Definition
o The alternative group, denoted as A,, is the kernel of €
o Thatis, A, contains of all even permutations in S,
e OrderofA4,

o By the First Isomorphism Theorem
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o We have an isomorphism S,,/A,, = Z/2Z
o By Lagrange's Theorem, |4, |[S,: 4,] = |S,|

oy
[Sn:dn] 2
e Note
o We showed earlier that, if (a; ...a;) € S,,

o (ay..ar) = (ay ar)(ay ar—1) - (ay a;)
t—1 terms
o t-cycleis even when t is odd, and vise versa
o Thus, (a; ...a;) € 4, © tisodd
e Examples

o A, =trivial group

o A3 ={(1),(123),(132)}=((123))

o A, ={(1),(123),(132),(124),(142),(134),(143),(234),(243),(12)

(34),(13)(24),(14)(23)}
e Subgroups of 4,

Order  Subgroup
1 {1}

2 {(1), (12)(34)}
{(1), (13)(24)}
{(D,AHE3)}

3 {(1),(123),(132)}
{(1),(124),(142)}
{(1),(134),(143)}
{(1),(234),(243)}

4 {(1), (12)(34), (13)(24), (14)(23)}

None
12 Ay

Converse of Lagrange's Theorem

e A, hasno subgroup of order 6

This shows that the converse of Lagrange's Theorem is false

o Ifd||G], there is not necessarily a subgroup of G with order d

But the converse does hold for finite cyclic groups

Cauchy's Theorem

o Ifpisaprime, and p||G|, then G contains a subgroup of order p

Sylow's Theorem
o If|G| = p“m, where p is prime and (p,m) = 1

o Then G contains a subgroup of order p®
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Subgroups of A4, Group Action, Orbit, Stabilizer

Wednesday, March 21, 2018 9:57 AM

Proposition 43: Subgroup of Index 2 is Normal

e Statement
o IfGisagroup,H < G,and [G:H] = 2,then H 2 G

e Proof

o

Ifg € H thengH = H = Hg
Ifg& H thengH =G\ H=Hg
Therefore gH = Hg,Vg € G

o SoH=2G
e Corollary (See HW8 #2)

o

o

o Letp be the smallest prime dividing |G|
o If[G:H] =p,thenH 2 G

Proposition 44: Conjugate Cycle
e Statement
o If(ay ...a;),(a; ...a;") are t-cyclesin S,
o Then3o € S, st.o(a,..a)o™ ! = (a, ..a,))
e Proof
o Chooseo € S, s.t.a(a;) =a;, Vi€ {1,..,t}

o ByHW7#1,0(a; ...a)o™t = (o(ay) ..o(ay) = (a;" ...a;”)

Theorem 45: A, Have No Subgroup of Order 6
e Statement
o A4 have no subgroup of order 6
e Proof
o By way of contradiction, suppose H < G, and |H| = 6
o Then[A,;:H] =2andthusH 2 A,
o Since A4 contains eight 3-cycles, H must contain some 3-cycle a
o Writea = (a b c¢), then
» (abd)(abc)(abd)™*=(bdc)eH
» (bed)(abc)(bcd)™'=(acd)€EH
» (bdc)(abc)(bdc)*=(adb)€H
o Sofar,wehave (1),(abc),(bdc),(acd),(adb) EH
o Also, since H is closed under inverses, (a ¢ b),(bcd) € H

o Thus, |[H| = 7, which makes a contradiction
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o Therefore A, have no subgroup of order 6

Group Action
e Definition
o Anaction of G on X is a function G X X = X, (g, x) » gxs.t.
" Igx=x,Vx€EX
» g(hx) = (gh)x,Vvg,he G xeX

e Examples
Set Group Action
R™ GL,(R) (A,v) » Av
{1,..,n} Sn (0,0) = a(i)
Group G Group G (g,h) » gh
Group G Group G (g,h) » ghg™?
Setof cosetsof H < G Group G (9.9'H) » gg'H

Set of all subgroups of group ¢ Group G (g,H) » gHg™!

e Proof: Conjugation on subgroup is a group action

o IfH <G,and g € G,thengHg™! ={ghg 'lhe H} <G

O

gHg™' # @,sinceglg ' =1€ gHg™!

o

Ifghg™,gh'gt € gHg™ !, then
ghg™*(gh'g™")™t = ghg™'g(W')*g™' = gh(h' )1 € gHg™*
Orbit and Stabilizer

e Supposeagroup G actson aset X

o

o letxeX

e The orbit of x, denoted orb(x),is {g - x|g € G} € X

» The stabilizer of x, denoted stab(x),is{g € Glg-x =x} S G
Proposition 46: Stabilizer is a Subgroup

e Statement

o IfG actson X,and x € X, then stab(x) < G

e Proof

o

stab(x) # @, because 1x = x

o

Let g, h € stab(x)

o

(gh)x = g(hx) = gx = x = gh € stab(x)

o

x=1-x=(g71g)x =g (gx) = g7 'x = g~ € stab(x)
Centralizer

e Let G be agroup, and let ¢ act on itself by conjugation

e Ifh € G,thenstab(h) = {g € G|ghg™ = h} = {g € G|gh = hg}

e This set s called the centralizer of h, denoted as C; (h)
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e (C;(h) is the set of elements in G that commute with the element h

Center

¢ Intersections of subgroups are subgroup

e Thusif G acts on a set X, U stab(x) < G

xXEX

* Inthe example above, U C;(h) = Z(G) is called the center of G
heG

* Z(G) is the set of elements that commute with every element of G

Normalizer

e Let X be the set of subgroups of a group G

LetGactsonXbyg-H = gHg™?!
If H < G, then
o stab(H) ={g € GlgHg™' = H} ={g € G|gH = Hg}

This set is called the normalizer of H in G, denoted N; (H)

Ng (H) is the set of elements in G that commute with the set H

Note: N;(H)=G < H=G
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Orbit, Stabilizer, Cayley's Theorem

Friday, March 23, 2018 10:07 AM

Proposition 47: Orbits Equivalence
e Statement
o LetG actonasetX
o Therelation x~x' < 3g € G s.t. gx = x' is an equivalence relation
e Proof
o Reflexive
= l-x=x
o Symmetric
* Suppose x~x',thendg € Gs.t.gx =x' > x =g 1x’
o Transitive
» Suppose x~x" and x'~x"’
* Chooseg,h € Gs.t.gx = x"and hx' = x"
* Then ghx = hx' = x"
e Note
o The equivalence classes are the orbits of the group action

o Thus, the orbits partition X

Proposition 48: Orbit-Stabilizer Theorem
e Statement
o IfG actson X, and x € X, then |orb(x)| = [G: stab(x)]
e Proof
o Define a function
= F:orb(x) — {left costs of stab(x)}
= gx - g stab(x)
o F isinjective
» g stab(x) = g’ stab(x)
» o (g")71g € stab(x)
- o (g lgx=x

" ogx=g'x

o F issurjective

* Thisis clear
o Soorb(x) = {left costs of stab(x)}
o Therefore |[orb(x)| = [G: stab(x)]
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Proposition 49: Permutation Representation of Group Action
e Statement
o Let G be a group acting on a finite set X = {x, ..., x,,}
o Then each g € G determines a permutation o, € S, by
"o (D=jeo g x=x
e Proof
o Themap f: X = X, given by x » g - x is bijection Vg € G
» Injectivity:g-x=g-x'=2 (g7 1g) - x=(@ 1g) - x' =>2x=x
» Surjectivity: f(g7t-x) = (gg™) - x =x
o Soeach g € G determines a permutation g, € S, where
"o (D=je g x=x
Proposition 49: Induced Homomorphism of Group Action
e Statement
© The map ®:G — S,, given by g - o, is a homomorphism
e Proof
o Letg,h€G,i€e{l,..,n}
o Suppose gy, (i) = j for some j
o Then (gh)x; = x;
o Write hx; = x, for some k, then g, (i) = k
o (gh)x; =x; & gxx =x; < a,(k) =j & g5(0,(1)) =

o Therefore oy, (i) = a405,(i), Vi € {1, ...,n}

Theorem 50: Cayley's Theorem
e Statement
o Every finite group is isomorphic to a subgroup of the symmetric group
e Proof
o LetG = {g4, ..., gn} act on itself by left multiplication g - h = gh
o Then this action determines a homomorphism
= PG> S,
* g o whereo,()=j < g-9; =9
o & isinjective
* P(g) =P(h) &0y =0, < ggi=hgi,VieSg=h
o ThusG = im(®) < S,
e Example
o Klein 4 group K = {1,a, b, c}

o wherea’?=b*’=c?=1<ab=c,bc=a,ac=bh
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S Q = =

1
a
b

Cc Cc

Label the group elements with 1, 2,

a
a
1
c
b

1 - g, = (1) since

" o(1)=1
" 0,(2) =2
" 53(3)=3
" g,(4)=5
aw o, =(12)(34)since
" g,(1)=2
" 0e(2) =1
" 0,(3) =4
" g,(4)=3
b - g, = (13)(2 4) since
" op(1) =3
" o0p(2) =14
" 0(3)=1
" g,(4) =2
¢ o, =(14)(23)since
" g.(1)=4
" g.(2)=3
" g.(3)=2
" g.(4)=1

[ R

c
1

a

c
c
b
a
1

3,

4

Therefore K = {(1),(12)(34),(13)(24),(14)(23)} < S,
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Conjugacy Class, The Class Equation

Monday, April 2, 2018 9:57 AM

Conjugacy Class
e Definition
o IfG is a group, G acts on itself by conjugation: g - h = ghg™?!
o The orbits under this action are called conjugacy classes
o Denote a conjugate class represented by some element g € G by conj(g)
e Example 1
o Ifg € G,and g € Z(G), then conj(g) = {g}
o Sincehgh™'=hh g =g,VheG
o The converse is also true: If conj(g) = {g}, then g € Z(G)
e Example 2

o LetG =S,

o

If o € S, then conj(g) = {all permutations of the same cycle type as o}

o

For instance

» [foisat-cycle, then conj(o) = {all t-cycles}

o

More generally
* Leto = (ail) ag)) (a&m) agz)) be a product of disjoint cycles
* Then conj(o) = {all products of disjoint cycles of length ¢4, ..., t,;,}

Theorem 51: The Class Equation

e Statement
o Let G be a finite group
o Letgq,..gr € Gbe
= representatives of the conjugacy classes of G that are
= not contained in the center Z(G)
r

o Then |G| = |Z(G)| + ) [G:C¢(g)]

i=1
* Recall: C;(g;) ={g € Glgg; = 9:9}
e Proof

o (@ is the disjoint union of its disjoint conjugate classes

T

o Then G = Z(G) U U conj(gy)

i=1

T
o =161 =12()| + ) lconj(g
i=1
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-
o =G| =1Z(6)| + Zlorb(gi)l (under conjugacy action)

=1

T
o = |G| =1Z(G)| + Z[G:stab(gl-)] by Proposition 48

=1
o =161 = 12| + ) [6:Co(g0)]
i=1

Corollary 52: Center of p-Group is Non-Trivial

e Statement

o Ifpisaprime, and P is a group of order p* (a« > 1), then |Z(P)| > 1
e Note

o Group of order p“ for prime p is called a p-group

e Proof

T

o By the class equation, |Z(P)| = |P| — z[P: Cp(p;)], where py,...p, € P are
i=1

o representatives of the conjugate classes of P not contained in Z(P)

© g; €Z(P)=Cp(g) # P = [P:Cp(g)] # 1

o By Lagrange's Theorem, [P: Cp(g;)]|p®

o Combing previous two results, p|[P: Cp(g;)]

o Thus,p <|P|—Z[P:Cp(gi)]) = |Z(P)|, since p||P|

i=1

o = |Z(P)|+1

Corollary 53: Group of Order Prime Squared is Abelian
e Statement
o Ifpisaprime, and P is a group of order p?, then P is abelian.
o Infact, either P = Z/p*Z or P = Z/pZ X L./pZ.
e Proof
o By Corollary 52 and Lagrange's Theorem, | Z(P)| = p or p?
o Suppose |Z(P)| =p
Pl _p?
* IP/Z(P)| = [P:Z(PY] = o == p
= By Corollary 26, P/Z(P) is cyclic
= By HW6 #2, P is abelian
* Inthiscase Z(P) = P = |Z(P)| = p?
» Therefore |Z(P)| = p is impossible
o Suppose |Z(p)| = p?
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= Wehave |[Z(p)|=|P|=>Z(P)=P

So P is abelian

o IfPis cyclic, then clearly P = Z/p?Z

o If P isnot cyclic, we need to show that P = Z/pZ X Z/pZ

Letz € P\ {1},then |z| =p

Lety € P\ (z)

SetH = (z),K := (y),then HN K = {1}
o Since any non-identity element of H or K is a generator
o Forinstance,if 1 # yk € H forsome k,theny € H
o Thisis impossible,so H N K = {1}

H| - |K]| ,
|HK| = -7 = |H| - |[K| =p“ =|P| > HK =P
|H N K|

By HW6 #1, there exists an isomorphism P 5 P/H X P/K

|P|  p? N

Similarly for P/K
Therefore P = HK = Z/pZ X Z/pZ
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Cauchy's Theorem, Recognizing Direct Products

Wednesday, April 4, 2018 9:48 AM

Theorem 54: Cauchy's Theorem
e Statement
o If G is a finite group, and p is a prime divisor of |G|, then 3H < G of order p
e Proof
o Write |G| = mp
o We argue by strong induction on m
o When m = 1, this is trivial, since any non-identity element of G has order p
o Supposem > 1,andVvn € {1,...,m — 1} if |G'| = np,then IH' < G' of order p
o IfG is abelian
» Letx € G\ {1}
= If(x)=0G
0 By the Fundamental Theorem of Cyclic Groups,
0 G = (x) contains a (unique) subgroup of order p
" If(x)#G
O SetH:=(x)=2G
o By the Lagrange's Theorem, |G| = |H|[G: H] = |H| - |G/H|
] Sincep||G|, either p|IH| or p|IG/H|
o Ifp||H]|
¢ Since H is cyclic, H contains a (unique) subgroup of order p
¢ [t follows that G contains a subgroup of order p
o Ifp|IG/H|
¢ |G/H| < |G|, so, by induction,3gH € G/H s.t. |gH| = p

¢ So we only need to prove |gH| | lgl

O IfK L K'is a group homomorphism, |f(k)|||k|,\7’k EK

¢ Now, take K = G,K' = G/H, f the usual surjection g » gH
¢ Thereforep||g|
# Since (g) is cyclic, (g) contains a (unique) subgroup of order p
¢ [t follows that G contains a subgroup of order p

o If G is not abelian
= By the Lagrange's Theorem, |G| = |C;(g;)| - [G: C;(g)], Vi € {1, ...,7}
= Since p||G], either p||C;(g;)| or p|[G: C(g:)]
= Ifp|IC;(g:)| for some i
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O

O

]

Since G is not abelian, C;(g;) = G forall i
Apply the induction hypothesis, C;(g;) contains a subgroup of order p

It follows that G contains a subgroup of order p

» Ifp|[G: Cs(g)] Vi

O

O

O

O

r
By the Class Equation, |G| = |Z(G)| + Z[G: C;(g:)] where g4, ..., gr

i=1
eEG

are the representatives of the conjugate classes not contained in Z(G)

<|G| -6 c(;(gl-)]) = 12(6)|

i=1

It follows that p

G is not abelian, so Z(G) = G
Apply the induction hypothesis, Z(G) contains a subgroup of order p

It follows that G contains a subgroup of order p

Lemma 55: Recognizing Direct Products

e Statement

o Let G be a group with normal subgroups N;, N,

o Themap a: N; X N, — G given by (n,,n,) = nyn, is an isomorphism

o ifandonlyif NyN, = G and Ny N N, = {1}

e Proof (=)

o Since «a is surjective, NN, = G

o Supposen € N; NN,
o Thena(n,1) =n=a(1,n)

o Since a isinjective, (1,n) = (n,1) > n=1

O SON10N2={1}

e Proof (&)

O a is surjective

= Thisis true since NyN, = G

o «is a homomorphism

a((nlJnZ)l (njlll nIZ)) = a((nlniy nZnIZ)) = nlnllnanZ

a(ng, ny)a(ni,ny) = nynynin,

We want show that a((ny,n,), (n, n5))(a(ny, ny)a(ni, n’z))_1 =1

(nyninyny)(nynyning)~t = nyninyny(ny) 1 (ny) " ny'ng

-1

_ / rN=1,,-1, -1 _ ' rN=1,—1 . —1
=ninn,(ny)” ny ny =nynny(ny) T ny g €N,

ENZ EN2

_ ' rN=1,-1,-1 _ ' rN=1,,—1,,—1
=nnin,(n)) 'n; ni =nynny,(ny)"'ny ny €EN;
~———— e | ——

€N, eN,;

Thus (n;nin,n%)(nynynin,) "t € Ny n N, = {1}
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Therefore a((nl,nz), (ni,n'z)) = a((npnz)' (n’l,né))

O aisinjective

If (ny,ny,) =1
>nmn, =1

=>n, =n;!

=>nqy € Ny,n, €EN;
>n=n,=1

= (ny,n) = (L,1)

= «a is injective
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Homework 8, Properties of Finite Abelian Group

Saturday, April 7, 2018 10:09 PM

Homework 8 Question 3
e Statement
o IfG isagroup with |G| < 11, and d| |G|, then G has a subgroup of order d
e Proof
o For|G| = 2,3,5,7,11
= |G| is prime, thus cyclic
o For |G| =4,6,9,10
= |G| is product of two primes, so use the Cauchy's Theorem
o For|G| =8
» de{1,248}
= Whend = 1,2,8, this is obvious
= Soassumed = 4
= [f G contains an element of order 4, then we are done
» So,we may assume |g| = 2,Vg € G \ {1}, then G is abelian
* Leta,b € G\ {1}.LetH :={1,a,b,ab}
* H isclosed under inverse
o The inverse of every element of G is itself

» H is closed under multiplication by multiplication table below

1 a b ab

1 1 a b ab
o a a 1 ab b
b ab 1 a
ab ab b a 1

Lemma 56: Coprime Decomposition of Finite Abelian Group
e Statement
o Let G be a finite abelian group of order mn, where (m,n) = 1
o LetM ={x€G|x™ =1}, N = {x € G|x™ = 1}, then
= M,N <G, and
* Themap a: M X N — G given by (g, h) = gh is an isomorphism
o Moreover, if m,n # 1, then M and N are nontrivial
e Proof
o M\NZG
» [tsufficestocheck M <G
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M #+ @,sincel € M
Ifx,y € M, then (xy~1)™ = x™(y™)™1 = 1. Thusxy 1 e M

o MN =G

Chooser,s€Zstmr+ns=1

Let g € G, then g = g™ " = gMTg"s

(™))" = (g™)" = (g'°!)" = 1 by Lagrange's Theorem
Similarly, (g™*)™ =1

So,g™ € M,g™ € N,sog € MN

Therefore MN = G

o MnN ={1}

Letge MNN,theng™ =1=g"
Then |g||m and |g||n

Since (m,n) =1,|g| =1
Thus M N N = {1}

o ByLemma55 M NN = {1}and MN = G = «a is an isomorphism

o M and N are nontrivial

Supposem # 1

Let p be a prime divisor of m

Then G contains an element z of order p, by Cauchy's Theorem
Z€M,soM # {1}

Similarly, ifn # 1, N # {1}

Corollary 57: p-Group Decomposition of Finite Abelian Group

e Statement

o Let G be a finite abelian group, and p be a prime divisor of |G|

o Choosem € Zsg s.t. |G| =p™nandp t n
o ThenG = P X T,where P,T <G, |P| =p™,andp ¢ |T|

e Intuition

o If|Gl =pipy? ™

o This corollary says G = Py X -+ X B, where |P;| = p;"

o This reduces the Fundamental Theorem of Finite Abelian Groups

o to the case where the group has order given by a prime power

e Proof

o LetP:={xEG|xpm=1},T::{xEG|x"=1}
o ByLemma56,G =P XT
o ptIT|

Suppose, by way of contradiction, that p| |T|
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= By Cauchy's Theorem,3z € Ts.t. |z| = p
» Sincez €T,z" =1,s0p|n
= Thisis impossible, thus p } |T|
o |P|=p™
* Since |G| = |P|-|T| = p™n, p™||T]|
= Suppose p™ < |P|
= Then, 3 prime g s.t. p # g and q||P|
» By Cauchy's Theorem,3y € Ps.t. |y| = q
= Thisis impossible sincey € P = ypm =1= qlpm

Thus p™ = |P|
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Fundamental Theorem of Finite Abelian Groups

Monday, April 9, 2018 10:26 PM

Lemma 58: Prime Decomposition of Abelian p-Group
e Statement
o IfG is an abelian group of order p™, where p is a prime
o Leta € G has maximal order among all the elements of G
o ThenG = A x Q,whered =(a),Q <G
e Proof

o We argue by induction on n

o Ifn=1,thenG = A, so we may take Q = {1}
o Now supposen > 1
o Casel:dbeGst.bgAandb? =1

" LetB:=(b)2G
» AnB={1}
o |b]is prime, since b? =1
o Recall: If (x,n) = 1, then Z/nZ = (x)
o So every non-identity element of B is a generator
o Thus,ifxe AnB,andx # 1,thenB={(x)cANBcA
o Then b € A, which contradicts the assumption
o ThereforeAn B = {1}
* LetG := G/B,then |G| < |G| since B # {1}
* aB is an element of maximal order in G
o laBl|lal
o g2l =1
¢ =ad¥eB
¢ > (@aB)d=1;
¢ = aB||lal
] |a|||aB|
¢ @B =1,
= al*Blp = B
= al*fl e B
= al*®le AnB = {1}

= qleBl = 1

* & & o o

= |al||aB]
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o SolaB| = |al
o Therefore aB is an element of maximal order in G
* Byinduction,3Q < G s.t. G = (aB) x Q
= Apply the Correspondence Theorem, choose Q < G s.t.Q = Q/B
» Claim:G =AXQ
0 By Lemma 55, we need only show AN Q = {1}and AQ =G
o AnQ ={1}
¢ Letg € AnQ,then g = a’ for some i
Thus,a'B € (aBYNQ <G
Since G = (aB) X Q,{aB)n Q = {1}
Therefore a'B = 1;

.
.
.
¢ = |a| = |aB|[i
.
.

=>a=1
=>ANnQ = {1}
0 AQ=G
¢ letg€eG
¢ Since G = (aB) X Q,
¢ gB = a'ByB for some a'B € (aB)and yB € Q,
 Thus gB = a'yB = g(aly) " €B
¢ Chooseb €EBst.ga”ly 1=b
¢ Theng = cg X,I.)z
€A €0

¢ Therefore AQ = G

o Case2:AbeGst.bg&Aand|b|=p
= In this case, we need to prove G = A
= By way of contradiction, suppose otherwise
= Choose x € G \ A with the smallest order

= Recall: IfH = (z), then [(z™)| = %

= |xP| <|x|,soxP €A

» Chooseis.t xP =a

= Sayla| =p®

= Since a has maximal order, xP' =1

inS—1

s s—1 : ps_l
» >1=x" =P =(a') =a®?
= [t follows that p|i
= SoxP = a!, where p|i

» Sety:=a /Px, theny? =a ixP =1
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* Buty € A,sinceya’/? =x ¢ A

= This contradicts the assumptionthatZ2b € Gs.t. b € Aand |b| =p
* SoG\A=0¢

» Therefore G = A = (a), and Q = {1}

Theorem 59: Fundamental Theorem of Finite Abelian Groups
e Statement
o Every finite abelian group ¢ is a product of cyclic groups
e Proof
o Say|G| = p{nl -+ p,'", where p; are distinct primes

o By Corollary 57, and induction G = P; X -+ X F,, where

o

P ={xeGlx?" =1} and|P| = p"

o

So, it suffices to show each P; is a product of cyclic groups

O

By Lemma 58, P; = A; X Q;, where 4; is cyclic

o

The result immediately follows by induction on m;
e Example

o How may abelian groups of order 8 are there up to isomorphism

o There are 3 abelian groups of order 8: Z/BZ' Z/ZZ X Z/4Z'Z/ZZ X Z/ZZ X Z/ZZ

Partition

e A partition of n € Z. is a way of writing n as a sum of positive integers

e Example: 3 has 3 partitions: 3,2+ 1,1+ 14+ 1

Corollary 60: Number of Finite Abelian Groups of Order n
e Statement
o Ifn =p;! - p.™, where p; are distinct primes

o Then the number of finite abelian groups of order n is

m

o 1_[ number of partitions of e;
i=1
e Note

o If (4%, ...,A™) are partitions of ey, ..., e,,, where 1; = {/111, ) Afi}

o Then this list of partitions corresponds to the abelian group

y/A Z Z Z
o X +oe X X o0 X X oo X
Al //151 //11 //15"1
</p11Z p11 Z) < plmZ plm Z)

e Example

o Whenn=72=23.32
v 7 7 v 7] ~1T 7 7
o Efog X B am X Flom * Hl3g % /31, = Flam * “len % e

© Z/2z X Z/zz X Z/zz X Z/91
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7

Z/42 X Z/zz X Z/sz x %/3g
7

Z/42 X Z/zz x%/oz,

Z/BZ X Z/sz X Z/:sz

Z/SZ X Z/9Z
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Definition of Ring

Wednesday, April 11, 2018 9:58 AM

Ring
e Definition
o Aring is a set R equipped with two operations + and - s.t.
o (R,+) is an abelian group
o -isassociative

o d1eRstl-r=r=r-1

o Distributive property:
" Va,b,c ER
" g-(b+c)=a-b+a-c
" (a+b)-c=a-c+b-c
e Note

o 1iscalled the multiplicative identity

o

Dummit-Foote don't require the multiplicative identity

O -isnotnecessarily commutative

o

R is not a group under -, because inverses may not exist

o

We will typically denote multiplication of r,s € R by rs

O

Typically 1 will denote the multiplicative identity

o

And 0 will denote the identity of (R, +)
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Properties of Ring, Zero-Divisor, Unit

Monday, April 16, 2018 9:57 AM

Examples of Ring
e Example 1
o The trivial group, equipped with the trivial multiplication, is a ring

o It's called the trivial ring

Example 2

o Z,Q,R,Care all rings with usual addition and multiplication

Example 3

o Forn > 0,Z/nZis a ring with modular addition and multiplication

Example 4
o Forn > 0, define Mat,», (R) := {n X n matrices with entries in R}
o Then Mat,,, (R) is a ring with matrix addition and multiplication

o Note: whenn > 1, Mat,,»,, (R) is not commutative

Example 5
o GL,(R) is not a ring under the usual matrix addition and multiplication

o Because GL,(R) is not a group under addition: 0 € GL,, (R)

Proposition 61: Properties of Ring

Let R be aring, then

0a=0=a0,va€eR
oc 0a=(0+0)a=0a+0a=0a=0
o al=a(0+0)=a0+a0=>a0=0
e (—a)b =a(—b) = —(ab),va,b e R
o (—a)b+ab=(—a+a)b=0b=0>=>(—a)b =—(ab)
o a(—=b)+ab=a(-b+b)=a0=0=a(—b) =—(ab)
e (—a)(—b) =ab,Va,bER
o (—a)(-b) = —(a(—b)) = —(—ab) =ab
¢ The multiplicative identity 1 is unique
o Suppose 1,1’ € Rsatisfylr =r =rland1'r =r =r1',vr € R
o Thenl=1-1"=1'
e —a=(-1)a,vVa€eR
o (-)a+a=(-1a+1-a=(-14+1)a=0a=a=>-a=(—1a

Proposition 62: Criterion for Trivial Ring

e Statement
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o AringR is trivial (i.e. have only one element) iff 1 = 0
e Proof

o (=) Clear

o (=)LetreR,thenr=1-r=0-r=0
e Note

o Often, instead of saying "R is nontrivial", one says "1 # 0"

Zero-Divisor and Unit
e Definition
o LetR bearing
o Anonzero elementr € R is called a zero-divisor if
» 3se R\ {0}st.rs=0o0rsr=0
o Assume 1 # 0, then u € R is called a unit if
= JyeRstuv=1=vu
e Note
o IfRisaring and 1 # 0, then 0 and zero-divisors are not units
o Letz € R be a zero-divisor
o By way of contradiction
0 Choosev€ERstzv=1=vz
o Chooses € R\ {0}st.zs=0
o Thens = (vz)s = v(0) = 0, contradiction
e Example 1
o Whatare the units in Z/6Z?
» 1,5 sincel-1=1and5-5=25=1
o Whatare the zero-divisors in Z/6Z?

,3,4,since2-3=3-4=0

NI

e Example 2

o Ifr,s are elements of a ring, and rs = 0, we can't conclude sr = 0
1 00O 1y _ (0 1

© (o 0)(0 0)_(0 0)
0 1hy/1 0y_/0 O

© (o 0)(0 0)_(0 0)

Proposition 63: One-Sided Zero Divisor and Unit
e Statement
o LetR be aring, then
o reRseR\{0}andsr=0»3teR\{0}strt=0

o ueR anddveERstuv=13IJweEeRstwu=1

e Proof
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Let VV be a vector space over R with countably infinite dimension
Fix a basis {ej, e,, ... } of V
Let R := {linear transformation VV — V} is a ring given by
" f+pW) =fW)+gW),Vf,gER
" (f@) =f(g)),Vf.g €R
Check R is aring
" id) ER,sOR+Q
= (R,+) is an abelian group
o Addition is associative
0 The zero map is the additive identity
o Letf,g€Randv eV
o (—f)(w) = —f(v) is the additive inverse of f
o f+9W)=f@)+g9@)=gW)+f)=@g+HW)
= Multiplication
o Associativity of multiplication is clear
O idy is the multiplicative identity
= Distributive property
o Letf,gh€Randv eV
0 (ho (f + )W) = h(F @) +g®)) = (RH®) + (hg) ()
o (F+9) eh)®) = (f + O(h() = FR@) + (gh)(¥)
o Soh(f+g)=hf+hgand(f +g)h=fh+gh
Define
" a:V >Vbye »eq,Vi=1
= B:V—->Vbye, —» 0,ande; » e;_{,Vi=2
= y:V >Vbye, »eande; » 0,Vi > 2
Ba = idy
= Since g; vﬁeiﬂ vﬂe(Hl)_l =e,Vizx1
aff # idy
= Suppose aff = idy, thenyaf =y
* But(yap)(er) =0 #y(e)) =e;
ya =20
= Since ¢; lo—l>ei+1 LO,Vi >1
= Notice: neither a nory is 0
ad #0,v8 € R\ {0}
» [f36 € R\ {0}s.t.ad = 0, then
* 0= fad =4 # 0,which is impossible
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o Note
= [fV = P(R), the set of all polynomials over R, then
* ¢ is analogous to integration
= fisanalogous to differentiation

» yisanalogous to evaluation at 0

Group of Unites
e Definition
o R*:={u € R|uisaunit}
* Note
o R*isagroup under multiplication

e Example
o (Z/nZ)* = {a € Z/nZ|(a,n) = 1} = {units in Z/nZ}
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Field, Product Ring, Integral Domain

Wednesday, April 18, 2018 10:42 AM

Proposition 64: Units and Zero-Divisors of Z/nZ

e Statement

o Letn>0

o Every nonzero elementin Z/nZ is either a unit or a zero-divisor
e Note

o We don’t have this property in Z

o InZ, the units are +1, there are no zero-divisor

o In particular, 2 € Z is not 0 or unit or zero-divisor
e Proof

o Suppose a € Z/nZ is nonzero and not a unit

o Letd:=(a,n), thend >1

o Write cd = a,md = n, then

o am=cdm=cn=0

o Sincemd =n,wherel <m<nandd >1

o m cannot be a multiple of n

o Soam = 0withm # 0

o Therefore a is a zero-divisor

Field

* Definition
o A communitive ring R is called a field if
o Every nonzero element of R is a unit
o i.e. Every nonzero element of R have a multiplicative inverse
e Example 1
o QR,C
e Example 2
o Z/pZ, where p is a prime
o 1<a<p-1(ap)=1=>aclZ/pZ
o Note: Z/nZis a field & n is prime
e Example 3

o R?is not a field with multiplication defined as (11,13) (1{,13) = (1111,7373)

Product Ring
e Let Ry, R, berings
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e The productring Ry X R; has the following ring structure
e For addition, it's just the product as groups

e For multiplication, (ry,12)(r}, 75) = (r174, 7215) with identity (15, 15, )

Integral Domain

e Definition
o A communicative ring R is an integral domain (or just domain) if
o R contains no zero-divisors

e Example
o Unites are not zero-divisors, so all fields are domains
o Zis a domain, but not a field
o Z/nZis adomain < itis a field & n is prime

0 R; X R, isadomain < one of them is trivial, and the other is a domain
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Product Ring, Finite Domain and Field, Subring

Friday, April 20, 2018 10:08 AM

Proposition 65: Criterion for Product Ring to be a Domain
e Statement
o If R, and R, are rings, then Ry X R, is a domain iff
o One of the R; or R, is a domain, and the other is trivial
¢ Proof (&)
o Without loss of generality, assume R; is a domain and R, is trivial
o Let (ry,73),(r1,13) € Ry X R; \ {(0,0)}
o Thenr; # 0andr{ #0
o Since R, is a domain, ;7] # 0
o Thus, (11,1)(r,15) = (7], 15713) # 0
¢ Proof (=)
o (1g,,0)(0,1g,) = (0,0)
Since R; X R, is a domain, either (1R1, 0) or (0,1R2) is (0,0)

o

o This means either 1, or 1g, is 0, and thus R, or R is trivial
o Without loss of generality, suppose R, is trivial
o We want to show that R; is a domain
o Letr,r{ € Ry \ {0}
o Then (ry,0),(1{,0) € Ry X R, \ {(0,0)}
o So(ry,0)(r{,0) = (ry11,0) = (0,0) i.e.ryr{y #0
Proposition 66: Finite Domain is a Field
e Statement

o A finite domain R is a field

e Proof

O

Leta € R\ {0}

o We want to show that a has a multiplicative inverse

o

Define a function F: R — R given by r - ar
o F isinjective

= Suppose F(ry) = F(ry)

» Thenar; = an,

» Soa(r, —r,) =0

= Since R isadomain, 7y —1, =0

* Thus,r =1
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o F issurjective since R is finite
o Chooseb ERs.t.F(b) =1,thenab =1

o So b is theinverse of a

Subring
e Definition
o A subring of aring R is a additive subgroup S of R s.t.
o Sisclosed under multiplication
o S contains 1
* Note
o A subring of a ring is also a ring
e Example 1
o Aringis always a subring of itself
e Example 2
o {n x nscalar matrix} € {n X n diagonal matrix} € Mat,,», (R)
e Example 3
o ZSQERcC
e Example 4
o Let R = {continuous function from R" to R for some n > 1}
o Define addition and multiplication as
" W) =f@)+gW)
= (f9)w) = fw)g)
= f =1 isthe multiplicative identity
o Then {polynomial functions with n variables} is a subring of R
e Example 5
o Iff:R — Sisaring homomorphism i.e.
= fis a homomorphism of abelian groups under addition
* fQrir2) = fr)f(ra), Vryr; €R
" f(Ap) =15
o Thenim(f) is a subring of S
o Proof
= By group theory, im(f) is an additive subgroup of S
* 1 € im(f) by assumption
= Iff(r1), f(rp) € im(f), then f(r,)f (rp) = f(ri72) € im(f)
e Example 6
o By HWO9 #1, 3! Ring homomorphism f:7Z — R for any ring R

o im(f) is the smallest subring of R
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o Also,im(f) = Z/nZ, where n = char(R)

o Note: A ring isomorphism is a ring homomorphism that is bijective
e Example 7

o {(r,0)|r; € Ry} € R, X R, is not a subring

o Since it doesn't contain the identity (1,1)
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Polynomial Ring, Ideal, Principal Ideal

Monday, April 23, 2018 9:57 AM

Polynomial Ring
e Polynomials over a ring
o Let R be a commutative ring
o A polynomial over R is the sum
" a,x" +a, 1x" 1+ +a;x + ay, where
= xisavariable,and a; € R
e Degree
o Let f(x) = apx™ + ap_1x"" 1 + -+ a;x + a, is a polynomial over R
o The degree of f, denoted as deg(g), is sup{n > 0|a,, # 0}
o Note: deg(0) = —oo

Leading term and leading coefficient
o Ifdeg(f)=n=0
o Theleading term of f is a,x™

o The leading coefficient of f is a,,

Polynomial ring
o Let R[x] := {Polynomials over a commutative ring R}
o Then R[x] is a commutative ring with

o ordinary addition and multiplication of polynomials

R is a subring of R[x]

O

R is identified with the constant polynomials
o Thereis a ring homomorphismi: R — R[x] defined as
o mapping the ring element r € R to the constant polynomial
o The constant polynomials in R[x] form a subring
o And i gives an isomorphism between R and the subring
e Polynomial ring with multiple variables
o We define polynomial rings in several variables inductively
Rlx1, 2] = (R[x1][x]

o

o

o R[xq,...,xp] = (R[X1, .., X1 [x5]
Proposition 67: Polynomial Rings over a Domain

e Statement

o LetR be a domain
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o Letp,q € R[x]\ {0}, then
1. deg(pq) = deg(p) + deg(q)
2. (R[x])* =R*
3. R[x]is a domain
e Proof
o Write
" p=a,x"+ -+ ax+ay wheredeg(p) =n
" q=byux™+ -+ byx + by, where deg(q) =m
o Thena, # 0and b,, # 0
o SinceR is adomain, a,m;, # 0
o So, the leading term of pq is a, b, x™*™, which verifies (1)
o Also, a, by, x™*™ # 0. This proves (3)
o For (2), suppose pq = 1, then
" deg(p) +deg(q) = deg(pq) = 0 by (1)
= Thus,deg(p) = 0 = deg(q) i.e.p,q ER
* Sincepq =1,p,q € R*
» Thus (R[x])* € R*
» Also, R* < (R[x])*
= Therefore (R[x])* = R*

|deal
e Definition

o LetIbeasubsetofringR,andletr € R

o Definerl := {rx|x € I}

o Iisaleftideal of R if
= [ isan additive subgroup of R
= rI=I1I,Vr eR

o Rightideal is defined similarly

o [lisanidealif! is both a left and right ideal

e [Intuition

o Normal subgroups are to groups as ideals are to rings
e Example
o IfRisaring, then R and {0} are both ideals
Proposition 68: Ideal Containing 1 is the Whole Ring

e Statement

o Ifl€Risanideal,thenI =R < 1€l

e Proof (=)
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o Trivial
¢ Proof (&)
o By definition of ideal, rI = I,¥r € R
o Sor=r-1€l
o ThusR =1
e Corollary
o Recall that subrings always contain 1
o IfSisasubring of ring R, then
= SCRisanideal & S =R
o IfI € Risanideal, then

= [isasubringof R [ =R

Principal Ideal
e Definition
o LetR is a commutative ring, and letr € R, then
o (r):={ar|a € R} is called the principal ideal generated by r
e Proof: Principal ideals are ideals
o 0=0-r€(r),so(r)isnotempty
o Letar, br € (r), then
" ar—br=(a—b)re(r)
» Therefore, () is an additive subgroup of R
o Leta €R, br € (1), then
» a(br) =abr € (r)
= (br)a = bra = abr € (1)
= Soa(r)=(r)a,Va€ER
e Example

o Ifn € Z, then (n) is just the cyclic subgroup generated by n
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Examples of Ideals, Quotient Ring

Wednesday, April 25, 2018 9:56 AM

Examples of Ideals

e {(n)|n € Z}is all of the ideals in Z

Let I € Z be a nonzero ideal

o

o

Let d be the smallest positive integer in /
12(d)

= Thisis clear
d2=21

= Supposex € ]

O

O

» Writex = qd + r whereq,r € Z,and0 <r <d
» Thenwehaver = x — qd, wherex € I,qd € |

= Sor € ], and the minimality of d forcesr = 0

= Therefore x € (d)

e Iff:R — Sisaring homomorphism, then ker f is an ideal

o ker f is an additive subgroup of R by group theory
o Letr € R,and x € ker f
o Then f(rx) = f(r)f(x) =0 = f)f(r) = f(xr)

o Thusxr,rx € ker f

e There are left ideals that are not right ideals, and vice versa

o

Let R = Mat,(S), where S is any ring

o

Letl<k<n

o

o

Cy is aleft ideal
» LetA € Mat,(S),and B € C},

Let Cy = {matrices with 0 entries except in the k™ column} CR

» The (i, ) entry of AB is the dot product of i-th row and j-th column

= [t's clear that the (i, j) entry of AB is 0 unless j = k

o

Cy isnot a right ideal

. (g i) € C, € Mat,(R)

b DG V=G Dee

o

o Then Ry, is a right ideal, but not left ideal

Proposition 69: Quotient Ring
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e Statement
o LetRbearing
o IfI € Risanideal, then the quotient group R/I is a ring with multiplication
s r+ D@ +D=1rr"+1
o Conversely, if
= J C Ris an additive subgroup
* R/] is a ring with multiplication defined above
o Then] isanideal
e Proof (=)
o Multiplication is well-defined
" Letny+1=nr+Landr +1=1r+1
» We mustshow thatryr{ + I =r,ry +1
" —nr=nr A nn —nn - R =n01 ) + (- )

. T1+I=T2+I Tl—TZEI
rn+l=r+1I r—r, €l

D1 —1ry €1
» Thusrry +1=mnrr,+1
o lgy=1+1
o Associativity and distributivity of R/I follow from analogous properties of R
¢ Proof (&)
o Suppose] € R is an additive subgroup, and R/J is a ring with above operation

o Then f:R = R/] givenbyr » r + ] is aring homomorphism with ker f = J

o Thus,] is an ideal

Page 120



[somorphism Theorems for Rings

Friday, April 27, 2018 10:08 AM

Theorem 70: The First Isomorphism Theorem for Rings
e Statement
o Iff:R — S isaring homomorphism, then there is an induced isomorphism
o f:R/Ker f - im(f), givenbyr + ker f — f(r)
e Proof

o Weneed only check f(1g/ker f) = 15, and f preserves multiplication
o f(lR/kerf) =f_(1+kerf) =f(1g) = 15

o f((m+D+D)=Fflnra+D =f(rr) = f)f ) =flr+Df(r,+1)
e Example: R[x]/(x?+ 1) = C

o

Let F: R[x] —» C given by p = p(i)

O

F is a ring homomorphism
» Infact, if R is a subring of some ring S, and s € S, then

* The function R[x] — S given by p - p(s) is a ring homomorphism

o

F is surjective

= Ifa+ bi € C thenF(a+ bx) =a+ bi
(x2+1)CSkerf

» Ifp(x?+1) € (x? + 1), then

» F(p(x*+ 1)) =F@)Fx*+ 1) =p@pi*+1) =0
ker f € (x2+ 1)

= Letp €kerf

o

o

» Using polynomial division, we can find g, € R[x] s.t.
» p=q(x%+1)+rwheredegr < deg(x?>+1) =2
* Writer = ax + b forsomea,b € R
» Sincep €kerf,p(i) =0
» 0=p())=q)x{@*+D+r(@)=r@)=ai+b
= Soa=b=0
* Thereforep = q(x? +1),andp € (x? + 1)
o Therefore, ker f = (x? + 1)
o By the First Isomorphism Theorem of Rings, R[x]/(x* + 1) = C
e Example: R[x]/(x —a) = R, wherea € R
o LetF:R[x] » Rgivenbyp ~ p(a)

o F is surjective
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= F(b)=b,¥b €ER

o

F is a ring homomorphism
(x—a) S kerf

» Ifp(x —a) € (x — a), then

" F(p(x —a)) =F()F(x —a) =p(a)p(a—a) =0
kerf € (x — a)

= Letp €kerf

o

o

* Divide x — a into p to obtain q,r € R[x] s.t.

* p=q(x—a)+r, wheredegr <1

» Sincep ekerf,0=p(a) =q(a)(a—a)+r=r

* Thusr=0,sop=q(x—a) € (x —a)
Therefore, ker f = (x — a)

o

O

By the First Isomorphism Theorem of Rings, R[x]/(x —a) = R
e Example: R[x]/(x?—1) = Rx R
o Recall: Chinese Remainder Theorem

= If],] areideals in a commutativering Rs.t.I + ] =R

= ThenR/IJ] = R/I X R/], where

» I+]={x+ylxelye]}

" =y + -+ xpynln € Ly, x; €1,y €]}
x-S x+Dx-1)

* Thisis obvious,sincex? —1 € (x + 1)(x — 1)
x+DEx-1Dc(x?*-1)

» Letpiqi + -+ ppqn € (x —1)(x + 1), wherep; € (x —1),q; € (x + 1)

O

o

= Each term p;q; is of form
o filx—1)-g;(x+1)=f,gi(x?> —1) forsome f;,g; €ER
* Thusp;q; € (x> = 1) > p1qy + -+ ppqy € (x* = 1)
Thus (x> —1) = (x + D(x — 1)
Rlx]/(x+1D(x—-1)=RXR

o

o

.1 1 L D=1€R
§(x+ )—5(x— ) =1€ R[x]

" 5 x+1D)+(x—-1) =R[x]

" 251e(x+D)+(x—-1)

» Chinese Remainder Theorem implies R[x]/(x + 1)(x — 1) = RX R
o Therefore, R[x]/(x? — 1) = RX R

Other Isomorphism Theorems for Rings
e The Second Isomorphism Theorem for Rings

o Iflisanideal ofaringR, and S is a subring of R
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o Then S + [ is also a subring of R, where
o lisanidealof S+ ,and (S+1)/I=S/(INS)
e The Third Isomorphism Theorem for Rings

o IfI €] are ideals of a ring R, then R/I/]/I = R/J

e (Correspondence Theorem
o IfRisaring, and/ isanideal of R

o Then there is a bijection {ideals of R/I} <— {ideals of R containing I'}
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Ideal Generated by Subset, Maximal Ideal

Monday, April 30, 2018 10:00 AM

Ideal Generated by Subset

e Definition

o

o

O

o

e Note

o

Let R be a commutative ring
If A is a subset of R, then the ideal generated by A4 is
A) ={raq +-+rpa,n€Zs,r;€R,a; € A} SR

If A is finite, then we write (4) as (a4, ..., ay)

When |A| = 1, (A) is a principal ideal

e Example: (2,x) € Z[x]

o

O

o

o

@)

Suppose, by way of contradiction, that (2,x) = (p) for some p € Z[x]
Since 2 € (p)

» 2 = pq for some q € Z[x]

» 0=deg2 =degp +degqg

» degp =degq =0
Since x € (p)

* Chooser € R[x] s.t.pr = x, thendegr =1

= Writer = ax + b,wherea,b € Z

* Thenpr =p(ax+b) =x

* Sopa = 1, by comparing coefficients

* Sincep € Z[x]anda € Z,p € {+1}
Therefore (2,x) = (p) = Z[x]
So,1 = 2p' + xq', where p’, q' € Z[x]
Evaluating both side at 0, we get 1 = 2p'(0) = 0

This is a contradiction, so (2,x) € Z[x]

e Example: Z[x]/(2,x) = Z/(2)

o

o

@)

o

Define F: Z[x] - Z/27Z given by agx™ + -+ a1x + ay = a,
F is a ring homomorphism
= F factors as Z[x] - Z — Z/2Z, where p = p(0) = p(0)
= Composition of homomorphisms is still a homomorphism
F is certainly surjective
(2,x) S kerF
» Letp € (2,x)
* Thenp = 2g + xh for some g, h € Z[x]
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o

o

o

o

= Since xh has no constant term, and 2g has even constant term
" F(p) =F(29) =F(g) =0€Z/2Z
ker F € (2,x)
» Letp=a,x"+--+a;x+ay €kerF
= Write a, = 2b,where b € Z
* Thenp = x(a,x" 1+ -+ a;) +2b € (2,x)
Therefore, ker F = (2, x)
By the First Isomorphism Theorem of , Z[x]/(2,x) = Z/2Z = Z/(2)
Note: Z[x]/(x,n) = Z/(n)

Maximal Ideal

* Anideal M in aring R is maximal if

e M # R, and the only ideals containing M are M and R

Proposition 71: Criterion for Maximal Ideal

e Statement

o

o

If R is a commutative ring, and M € R is an ideal

Then M is maximal & R/M is a field

¢ Proof (=)

@)

o

o

o

o

The only ideals containing M are R and M

Thus, R/M has exactly 2 idals, by the Correspondence Theorem
Namely, the zero ideal, and the entire ring

Letx+ M eR/Mst.xgM

Supposex &€ Mie.x + M # Og/y

Then (x + M) = R/M

Sol+Me (x+M)

Choosey+ M eR/Mst.(x+M)(y+M)=1+M

This shows x + M is a unit

Therefore R/M is a field

¢ Proof (&)

o

o

@)

o

o

Suppose R/M is a field

Then R/M has exactly two ideals, 0 and R/M

By the Correspondence Theorem,

There are exactly two ideals containing M, thatis R and M

By definition of maximal ideal, M is maximal

Examples of Maximal Ideals

e What are the maximal ideals in Z?

o

(n) € Zis maximal & Z/(n) is a field < n is prime
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e Is(x) € Z[x] maximal?
o No, (x) € (2,x) # Z[x]
o Also, by First Isomorphism Theorem, Z[x]/(x) = Z, but Z is not a field
» Define a ring map Z[x] — Z given by p - p(0)
» Fissurjective, and ker F = (x)
e Is(x? +1) € R[x] maximal?
o R[x]/(x?+ 1) = Cisafield
e Is(x? —1) € R[x] maximal
o R[x]/(x?—1) = R x Ris nota field, since (1,0) is not a unit
o Another way to see (x2 — 1) is not maximal
= (-1 e (x-1) S R[x]
" (-1 &g (x+1) S R[]
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Prime Ideal, Euclidean Domain

May 2, 2018 10:00 AM

Prime Ideal
e Let R be a commutative ring
e Anideal P € R is prime if

e abeRandabe P>acPorbeP

Proposition 72: Prime ldeas of Z
e Statement
o The prime ideals of Z are ideals of the form (n), where n is prime orn = 0
e Proof (=)
o Let(n) € Zbeaprimeideal,andn # 0
o We want to show that n is prime
o Choosea,b € Zst.n=ab
o Thenab € (n), so either a € (n) or b € (n), by definiton of prime ideal
o Without loss of generality, suppose a € (n), then n|a
o Chooseq €Zstng=a
onmn=ab=>n=ngh=>1=qb=b e {1}
o Sonisaprime
¢ Proof (&)
o (0)isprime
= Leta,b € Z and ab € (0)
* Thenab =0
*" 5g=00rb=0
= >a€(0)orb € (0)
= Therefore (0) is prime
o (p)isprime forp € Z prime
» Leta,b € Z,and say ab € (p)
= Thenp|ab
= Since p is prime, this means p|a or p|b

" a€(p)orb € (p)

Proposition 73: Criterion for Prime |deal

e Statement
o Let R be a commutative ring, P € R an ideal, then

o Pisprime © R/P is a domain
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o

In particular, R is a domain & zero ideal is prime

e Proof (=)

@)

o

o

@)

o

o

Leta+ P,b+ P € (R/P)\ {P}
Then(a+P)(b+P)=ab+P =0
So,ab € P

Since P is prime,a € Por b € P
Thereforea+P =0orb+P =0

So R/P is a domain

¢ Proof (&)

o

o

o

o

o

Leta,b € R, and suppose ab € P, then
O=ab+P=(a+P)b+P)

Since R/P isadomain,a+P =0orb+P =0
Soa€PorbeP

Therefore P is prime

e Example

o

(x? — 1) € R[x] is not prime, since R[x]/(x? — 1) = R X R is not a domain

o Also,x>—1€ (x>—1),butx—1,x+1¢ (x*>—-1)

Corollary 74: Maximal Ideal is Prime

e Statement

o If R is a commutative ring, and M € R is maximal, then M is prime

e Proof

© M is maximal = R/M is a field > R/M is a domain = M is prime

Euclidean Domain

e Definition

o LetR be adomain

o AnormonR isafunction N:R - Zsys.t. N(0) =0

o Riscalled a Euclidean domain if R is equipped with a norm N s.t.

o Va,b € Rwithb #0,3q,r ER s.t.

" a=gqb+rand
= eitherr =00or N(r) < N(b)

e Example 1

o Zis aEuclidean domain, N(a) = |a|

e Example 2

o IfFisafield, then F is trivially a Euclidean domain

o Take N:F — Zs to be any function s.t. N(0) = 0
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o Then,ifa,b € F,whereb # 0,takeq =—,r =0

S| Q

e Example 3
o IfF isafield, then F[x] is a Euclidean domain, with N(p) = degp
o The division algorithm is just polynomial division
o Note
* deg0 = —oo & Z,, so this definition isn't quite right
= To handle this problem, define a norm that sends values not in Z,, but
* any total ordered set in order-preserving bijection with Z,

» (For instance, Zsq U {—0})

Principal Ideal Domain

e A domain in which every ideal is principal is called a principal ideal domain

Proposition 75: Euclidean Domain is a Principal Ideal Domain
e Statement
o Everyideal in a Euclidean domain R is principal
o More precisely, if I € R is an ideal, then I = (d), where
o d isan element of I with minimum norm
e Proof

Let I € R be an ideal

o

O

If I = (0), then [ is principal, so assume I # (0)
o {N(a)|a € I \ {0}} has a minimal element, by well-ordering principal
o Choosed €I\ {0} s.t. N(d) is minimal
o Certainly, (d) € I
o Leta €1, writea = qd + r, where
" q,r €ER,and
= eitherr =00or N(r) < N(d)
o Sincer =a—qd € I, N(r) can't be smaller than N(d)
o Sor=0=>a=qd=>ac(d)
o Thereforel € (d)
e Example 1
o We haven't yet proven that F[x] is a Euclidean domain, where F is a field
o Once we show this, then F[x] has the property that all of its ideals are principal
e Example 2

o Z[x] cannot be a Euclidean domain, since (2,x) € Z[x] is not principal

Theorem 76: Polynomial Division

e Statement

Page 129



o

o

o

Let F be a field, then F[x] is a Euclidean domain
More specifically, if a, b € F[x] where b # 0, then
3lq,r € F[x]st.a = bq+randdegr < degh

* Proof (Existence)

o

@)

o

We argue by induction on deg a
Ifa=0,takeq,r = 0,soassumea # 0
Setn :=dega,m :=degh
Ifn <m,thentakeq =0,r =a
Assumen = m
Write

" a=ax"+ - +a;x+a

u b:bmxm+"'+b1x+b0

an
Seta' =a——x""™p
m

* Thendega' < dega

a
= Since a and 51 x™™b have the same leading coefficient
m

By inductive hypothesis
» 3q',r € F[x]witha' = q¢'b +r and degr < degb

a
Setq=q' + Elx”‘mb, then

m

An oo
* a=a +—x""™b
m

a
* =q'b+r+ Eﬁx”‘mb

m

a
()

m

" =gb+r

e Proof (Uniqueness)

o

@)

o

Suppose bq' + ' = a = bq + r where degr < degb, and degr’ < degh

Then deg(a — bq) < degb and deg(a — bq") < deghb

= deg((a — bq) — (a — bq")) = deg(bq’ — bq) = degb + deg(q’ — q) < degh
=deg(¢'—q)<0=4q"=g¢

It follows immediately that r’ = r
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