Definitions

Notations

- ":=" means "equals, by definition"
- $\mathbb{Z}:=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ the set of integers
- $\mathbb{Q}:=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$ the set of rational numbers
- $\mathbb{R}:=$ the set of all real numbers
- $\mathbb{C}:=\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\}$ the set of complex numbers
- $\mathbb{Z}_{\geq 0}:=\{a \in \mathbb{Z} \mid a \geq 0\}$ the set of non-negative integers
- $\mathrm{S} \backslash\{x\}:=\{s \in S \mid s \neq x\}$
- Denote a function f from a set A to a set B by $f: A \rightarrow B$
- Denote the image of f by $\operatorname{im}(f):=\{b \in B \mid \exists a \in A$ s.t. $f(a)=b\}$

Injective, Surjective and Bijective

- Let $f: A \rightarrow B$ be a function, then
- f is injective if $\forall a, a^{\prime} \in A, a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)$
- f is surjective if $\forall b \in B, \exists a \in A$ s.t. $f(a)=b$ (i.e. $\operatorname{im}(f)=B$)
- f is bijective if f is both injective and surjective

Divides

- If $x, y \in \mathbb{Z}$, and $x \neq 0$
- We say x divides y and write $x \mid y$, if $\exists q \in \mathbb{Z}$ s.t. $x q=y$

Cartesian Product

- If A and B are sets, then the Cartesian product of A and B is
- $A \times B:=\{(a, b) \mid a \in \mathrm{~A}, b \in \mathrm{~B}\}$

Relations

- A relation on a set A is a subset R of $A \times A$
- We write $a \sim a^{\prime}$ if $\left(a, a^{\prime}\right) \in R$

Equivalence Relations

- A relation R on A is an equivalence relation if R is
- Reflexive
- If $a \in A$, then $a \sim a$
- i.e. $(a, a) \in R$
- Symmetric
- If $a \sim a^{\prime}$, then $a^{\prime} \sim a$
- i.e. $\left(a, a^{\prime}\right) \in R \Rightarrow\left(a^{\prime}, a\right) \in R$
- Transitive
- If $a \sim a^{\prime}, a^{\prime} \sim a^{\prime \prime}$, then $a \sim a^{\prime \prime}$
- i.e. If $\left(a, a^{\prime}\right) \in R$ and $\left(a^{\prime}, a^{\prime \prime}\right) \in R$, then $\left(a, a^{\prime \prime}\right) \in R$

Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- A greatest common divisor of a and b is a positive integer d s.t.
- $d \mid a$ and $d \mid b$
- If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$ then $e \mid d$
- We write the greatest common divisor of a and b, if it exists, as (a, b)
- As a convention $(0,0):=0$

Equivalence Class

- Let X be a set, and let \sim be an equivalence relation on X
- If $x \in X$, then the equivalence class represented by x is the set
- $[x]=\left\{x^{\prime} \in X \mid x \sim x^{\prime}\right\} \subseteq X$

Integers Modulo n

- Let $n \in \mathbb{Z}_{>0}$
- The relation on \mathbb{Z} given by $a \sim b \Leftrightarrow n \mid(a-b)$ is an equivalence relation
- The set of equivalence classes under \sim is denoted as $\mathbb{Z} / n \mathbb{Z}$
- We call this set integers modulo $n($ or integers $\bmod n)$
- We can check that there are n elements in $\mathbb{Z} / n \mathbb{Z}$
- We use \bar{a} to denote the equivalence class in $\mathbb{Z} / n \mathbb{Z}$
- Then $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$

Group

- If G is a set equipped with a binary operation
- $G \times G \rightarrow G$
- $(g, h) \mapsto g \cdot h$
- that satisfies
- Associativity: $\forall g, h, k \in G, g \cdot(h \cdot k)=(g \cdot h) \cdot k$
- Identity: $\exists 1 \in G$ s.t. $\forall g \in G, 1 \cdot g=g \cdot 1=g$
- Inverses: $\forall g \in G, \exists g^{-1} \in G$ s.t. $g g^{-1}=g^{-1} g=1$
- Then we say G is a group under this operation

Abelian Group

- We say a group G is abelian, if $a b=b a, \forall a, b \in G$
- If G is a group, and $g \in G$
- The order of g is the smallest positive integer n s.t. $g^{n}=1$
- If n is the order of g, write $|g|=n$
- If no such integer exists, write $|g|=\infty$
- i.e. $|g|:=\inf \left\{n \in \mathbb{Z}_{>0} \mid g^{n}=1\right\}$

Symmetric Group

- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Let $S_{n}:=\{$ bijective functions $\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}\}$
- (i.e. S_{n} is the set of all permutations of $\{1, \ldots, n\}$)
- Then S_{n} is a group with operation given by function composition
- We call this group symmetric group of degree n

Cycle

- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Let $a_{1}, \ldots, a_{t} \in\{1, \ldots, n\}$
- The element of S_{n} given by
- $a_{i} \mapsto a_{i+1}$ for $1 \leq i \leq t-1$
- $a_{t} \mapsto a_{1}$
- $j \mapsto j$ if $j \notin\left\{a_{1}, \ldots a_{t}\right\}$
- is denoted by $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ and is called a cycle of length t

Disjoint Cycles

- Two cycles $\left(a_{1}, \ldots a_{t}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ are disjoint if
- $\left\{a_{1}, \ldots a_{t}\right\} \cap\left\{b_{1}, \ldots, b_{k}\right\}=\varnothing$

Homomorphism

- Let G, H be groups
- A function $f: G \rightarrow H$ is a homomorphism if
- $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right), \forall g_{1}, g_{2} \in G$
- One says f "respects", or "preserves" the group operation

Isomorphism

- Let G, H be groups
- A homomorphism $\alpha: G \rightarrow H$ is a isomorphism if
- there is a homomorphism $\beta: H \rightarrow G$ s.t.
- $\alpha \beta=i d_{H}$, and
- $\beta \alpha=i d_{G}$
- In this case, we say G and H are isomorphic

Subgroup

- Let G be a group, and let $H \subseteq G$
- H is a subgroup if
- $H \neq \emptyset$ (nonempty)
- If $h, h^{\prime} \in H$, then $h h^{\prime} \in H$ (closed under the operation)
- If $h \in H$, then $h^{-1} \in H$ (closed under inverse)
- If H is a subgroup of G, we write $H \leq G$

Regular n-gon

- A regular n - gon is a polygon with all sides and angles equal

Symmetry

- A symmetry of a regular n-gon is a way of
- picking up a copy of it
- moving it around in 3d
- setting it back down
- so that it exactly covers the original

Dihedral Groups

- $D_{2 n}:=\{$ symmetries of the n-gon $\}$ is called n-th dihedral groups

Cyclic Group

- A group G is cyclic if $\exists g \in G$ s.t. $\langle g\rangle=G$

Least Common Multiple

- Let $a, b \in \mathbb{Z}$ where one of a, b is nonzero.
- A least common multiple of a and b is a positive integer m s.t.
- $a \mid m$ and $b \mid m$
- If $a \mid m^{\prime}$ and $b \mid m^{\prime}$, then $m \mid m^{\prime}$
- We denote the least common multiple of a and b by $[a, b]$
- Define $[0,0]:=0$

Subgroups Generated by Subsets of a Group

- Let G be a group and $A \subseteq G$
- The subgroup generated by A is
- the intersection of every subgroup of G containing A
- $\langle A\rangle:=\bigcap_{\substack{H \leq G \\ A \subseteq H}} H$

Finitely Generated Group

- A group G is finitely generated if
- There is a finite subset A of G s.t. $\langle A\rangle=G$

Coset

- If G is a group, $H \leq G$, and $g \in G$
- $g H:=\{g h \mid h \in H\}$ is called a left coset
- $H g:=\{h g \mid h \in H\}$ is called a right coset
- An element of a coset is called a representative of the coset

Normal Subgroup

- Let G be a group, $N \leq G$
- N is a normal subgroup if $g n g^{-1} \in N, \forall n \in N, \forall g \in G$
- In other words, N is closed under conjugation
- If $N \leq G$ is normal, we write $N \unlhd G$

Quotient Group

- Let G be a group, $N \unlhd G$
- The set of left costs of N is a group under the operation
- $\left(g_{1} N\right)\left(g_{2} N\right)=g_{1} g_{2} N$
- This group is denoted as $G / N($ say $" G \bmod N$ ")
- We call this group quotient group or factor group

Index of a Subgroup

- If G is a group, and $H \leq G$, then
- The index of H is the number of distinct left cosets of H in G
- Denote the index by [G: H]

Product of Subgroups

- Let G be a group and $H, K \leq G$
- Define $H K:=\{h k \mid h \in H, k \in K\}$

Transposition

- Fix n to be a positive integer
- A 2 -cycle $(i j)$ in S_{n} is a transposition

Sign of Permutation ϵ (Transposition Definition)

- Let $\epsilon: S_{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$
$\sigma \mapsto \begin{cases}\overline{0} & \sigma \text { is a product of even number of transposition } \\ \overline{1} & \sigma \text { is a product of odd number of transposition }\end{cases}$

Sign of Permutation ϵ^{\prime} (Auxiliary Polynomial Definition)

- Let $\epsilon^{\prime}: S_{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$

$$
\sigma \mapsto\left\{\begin{array}{cc}
\overline{0} & \sigma(\Delta)=\Delta \\
\overline{1} & \sigma(\Delta)=-\Delta
\end{array}\right.
$$

- $\epsilon^{\prime}(\sigma)$ is the sign of σ, often denoted as $\operatorname{sgn} \sigma$
- σ is even if $\epsilon^{\prime}(\sigma)=\overline{0}$
- σ is odd if $\epsilon^{\prime}(\sigma)=\overline{1}$

Alternating Group

- The alternative group, denoted as A_{n} is the kernel of ϵ
- That is, A_{n} contains of all even permutations in S_{n}

Group Action

- An action of G on X is a function $G \times X \rightarrow X,(g, x) \mapsto g x$ s.t.
- $1_{G} x=x, \forall x \in X$
- $g(h x)=(g h) x, \forall g, h \in G, x \in X$

Orbit and Stabilizer

- Suppose a group G acts on a set X
- Let $x \in X$
- The orbit of x, denoted $\operatorname{orb}(x)$, is $\{g \cdot x \mid g \in G\} \subseteq X$
- The stabilizer of x, denoted $\operatorname{stab}(x)$, is $\{g \in G \mid g \cdot x=x\} \subseteq G$

Centralizer

- Let G be a group, and let G act on itself by conjugation
- If $h \in G$, then $\operatorname{stab}(h)=\left\{g \in G \mid g h g^{-1}=h\right\}=\{g \in G \mid g h=h g\}$
- This set is called the centralizer of h, denoted as $C_{G}(h)$
- $C_{G}(h)$ is the set of elements in G that commute with the element h

Center

- $\bigcup_{h \in G} C_{G}(h)=Z(G)$ is called the center of G
- $Z(G)$ is the set of elements that commute with every element of G

Normalizer

- Let X be the set of subgroups of a group G
- Let G acts on X by $g \cdot H=g H g^{-1}$
- If $H \leq G$, then
- $\operatorname{stab}(H)=\left\{g \in G \mid g H g^{-1}=H\right\}=\{g \in G \mid g H=H g\}$
- This set is called the normalizer of H in G, denoted $N_{G}(H)$
- $N_{G}(H)$ is the set of elements in G that commute with the set H
- Note: $N_{G}(H)=G \Leftrightarrow H \unlhd G$

Conjugacy Class

- If G is a group, G acts on itself by conjugation: $g \cdot h=g h g^{-1}$
- The orbits under this action are called conjugacy classes
- Denote a conjugate class represented by some element $g \in G$ by conj (g)

Partition

- A partition of $n \in \mathbb{Z}_{>0}$ is a way of writing n as a sum of positive integers
- Example: 3 has 3 partitions: $3,2+1,1+1+1$

Ring

- A ring is a set R equipped with two operations + and \cdot s.t.
- $(R,+)$ is an abelian group
- . is associative
- $\exists 1 \in R$ s.t. $1 \cdot r=r=r \cdot 1$
- Distributive property:
- $\forall a, b, c \in R$
- $a \cdot(b+c)=a \cdot b+a \cdot c$
- $(a+b) \cdot c=a \cdot c+b \cdot c$

Zero-Divisor and Unit

- Let R be a ring
- A nonzero element $r \in R$ is called a zero-divisor if
- $\exists s \in R \backslash\{0\}$ s.t. $r s=0$ or $s r=0$
- Assume $1 \neq 0, u \in R$ is called a unit if
- $\exists v \in R$ s.t. $u v=1=v u$

Group of Unites

- $R^{\times}:=\{u \in R \mid u$ is a unit $\}$

Field

- A communitive ring R is called a field if
- Every nonzero element of R is a unit
- i.e. Every nonzero element of R have a multiplicative inverse

Product Ring

- Let R_{1}, R_{2} be rings
- The product ring $R_{1} \times R_{2}$ has the following ring structure
- For addition, it's just the product as groups
- For multiplication, $\left(r_{1}, r_{2}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\left(r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}\right)$ with identity $\left(1_{R_{1}}, 1_{R_{2}}\right)$

Integral Domain

- A communicative ring R is an integral domain (or just domain) if
- R contains no zero-divisors

Subring

- A subring of a ring R is a additive subgroup S of R s.t.
- S is closed under multiplication
- S contains 1

Polynomials over a ring

- Let R be a commutative ring
- A polynomial over R is the sum
- $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where
- x is a variable, and $a_{i} \in R$

Degree

- If $f=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial over R
- The degree of f, $\operatorname{denoted} \operatorname{deg}(g)$, is $\sup \left\{n \geq 0 \mid a_{n} \neq 0\right\}$
- Note: $\operatorname{deg}(0)=-\infty$

Leading Term and Leading Coefficient

- If $\operatorname{deg}(f)=n \geq 0$
- The leading term of f is $a_{n} x^{n}$
- The leading coefficient of f is a_{n}

Polynomial ring

- Let $R[x]:=\{$ Polynomials over a commutative ring $R\}$
- Then $R[x]$ is a commutative ring with
- ordinary addition and multiplication of polynomials

Ideal

- Let I be a subset of ring R, and let $r \in R$
- Define $r I:=\{r x \mid x \in I\}$
- I is a left ideal of R if
- I is an additive subgroup of R
- $r I=I, \forall r \in R$
- Right ideal is defined similarly
- I is an ideal if I is both a left and right ideal

Principal Ideal

- Let R is a commutative ring, and let $r \in R$, then
- $(r):=\{a r \mid a \in R\}$ is called the principal ideal generated by r

Quotient Ring

- Let R be a ring
- If $I \subseteq R$ is an ideal, then the quotient group R / I is a ring with multiplication
- $(r+I)\left(r^{\prime}+I\right)=r r^{\prime}+I$
- Conversely, if
- $J \subseteq R$ is an additive subgroup
- R / J is a ring with multiplication defined above
- Then J is an ideal

Ideal Generated by Subset

- Let R be a commutative ring
- If A is a subset of R, then the ideal generated by A is
- (A) $:=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n} \mid n \in \mathbb{Z}_{\geq 1}, r_{i} \in R, a_{i} \in A\right\} \subseteq R$
- If A is finite, then we write (A) as $\left(a_{1}, \ldots, a_{n}\right)$

Maximal Ideal

- An ideal M in a ring R is maximal if
- $M \neq R$, and the only ideals containing M are M and R

Prime Ideal

- Let R be a commutative ring
- An ideal $P \subsetneq R$ is prime if
- $a, b \in R$, and $a b \in P \Rightarrow a \in P$ or $b \in P$

Euclidean Domain

- Let R be a domain
- A norm on R is a function $N: R \rightarrow \mathbb{Z}_{\geq 0}$ s.t. $N(0)=0$
- R is called a Euclidean domain if R is equipped with a norm N s.t.
- $\forall a, b \in R$ with $b \neq 0, \exists q, r \in R$ s.t.
- $a=q b+r$, and
- either $r=0$ or $N(r)<N(b)$

Principal Ideal Domain

- A domain in which every ideal is principal is called a principal ideal domain

Propositions

Proposition 1: Well-ordering of \mathbb{Z}

- Every nonempty set S of $\mathbb{Z}_{\geq 0}$ has a unique minimum element
- $\exists!m \in S$ s.t. $m \leq s, \forall s \in S$

Proposition 2: The Division Algorithm

- Let $a, b \in \mathbb{Z}$, where $b>0$
- Then \exists ! $q, r \in \mathbb{Z}$ s.t. $a=q b+r$, and $0 \leq r<b$

Proposition 3: Uniqueness of Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- Suppose $\exists d, d^{\prime} \in \mathbb{Z}_{>0}$ s.t.
(1) d and d^{\prime} both divide a and b
(2) If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$, then $e \mid d$ and $e \mid d^{\prime}$
- Then $d=d^{\prime}$

Proposition 4: Lemma for Euclidean Algorithm

- Suppose $a, b \in \mathbb{Z}$, where $b \neq 0$
- Choose $q, r \in \mathbb{Z}$ s.t. $a=q b+r$, and $0 \leq r<|b|$
- If (b, r) exists, then (a, b) exists and $(a, b)=(b, r)$

Proposition 5: $(a, 0)=|a|$

- $(a, 0)=|a|, \forall a \in \mathbb{Z}$

Proposition 6: Existence of GCD

- If $a, b \in \mathbb{Z}$, then (a, b) exists

Proposition 7: Bézout's Identity

- If $a, b \in \mathbb{Z}$, then $\exists x, y \in \mathbb{Z}$ s.t. $(a, b)=a x+b y$

Proposition 8: Equivalence Classes Partition the Set

- Let X be a set with equivalence relationship ~
- If $x, x^{\prime} \in X$, then $[x]$ and $\left[x^{\prime}\right]$ are either equal or disjoint

Proposition 9: Addition and Multiplication in $\mathbb{Z} / n \mathbb{Z}$

- Let $n \in \mathbb{Z}_{>0}$, and let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$
- If $\overline{a_{1}}=\overline{b_{1}}$, and $\overline{a_{2}}=\overline{b_{2}}$ in $\mathbb{Z} / n \mathbb{Z}$
- Then $\overline{a_{1}+a_{2}}=\overline{b_{1}+b_{2}}$, and $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}$

Corollary 10: Integers Modulo n

- For $n \in \mathbb{Z}_{>0}, \mathbb{Z} / n \mathbb{Z}$ is a group under the operation

$$
\begin{aligned}
& \circ \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z} \\
& \circ(\bar{a}, \bar{b}) \mapsto \overline{a+b}
\end{aligned}
$$

- We will denote this operation by +
- So $\bar{a}+\overline{\mathrm{b}}=\overline{a+b}$

Proposition 11: $(\mathbb{Z} / n \mathbb{Z})^{\times}$

- $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a group with operation given by multiplication

Proposition 12: Properties of Group

- Let G be a group, then G has the following properties
- The identity of G is unique
- Each $g \in G$ has a unique inverse
- The Generalized Associative Law
- $(g h)^{-1}=h^{-1} g^{-1}, \forall g, h \in G$

Proposition 13: Cancellation Law

- Let G be a group, and let $a, b, u, v \in G$
- If $a u=a v$, then $u=v$
- If $u a=v a$, then $u=v$

Corollary 14: Cancellation Law and Identity

- Let G be a group, and let $g, h \in G$
- If $g h=g$, then $h=1$
- If $g h=1$, then $h=g^{-1}$

Proposition 15: Order of Symmetric Group

- $\left|S_{n}\right|=n$!

Proposition 16: Isomorphism Preserves Commutativity

- Let $f: G \rightarrow H$ be an isomorphism
- G is abelian if and only if H is abelian

Proposition 16: Injective Homomorphism Preserves Order

- Let $f: G \rightarrow H$ be an injective homomorphism
- Then $\forall g \in G,|g|=|f(g)|$

Proposition 17: The Subgroup Criterion

- A subset H of a group G is a subgroup iff
- $H \neq \emptyset$ and $\forall x, y \in H, x y^{-1} \in H$

Proposition 18: Isomorphism of Cyclic Group

- Let G be a cyclic group
- If $|G|=n<\infty$, then $G \cong \mathbb{Z} / n \mathbb{Z}$
- If $|G|=\infty$, then $G \cong \mathbb{Z}$

Proposition 19: Order of g^{a}

- If $G=\langle g\rangle$ is cyclic, and $|G|=n<\infty$, then $\left|g^{a}\right|=\frac{n}{(a, n)}$

Theorem 20: Subgroup of Cyclic Group is Cyclic

- Let $G=\langle g\rangle$ be a cyclic group
- Then every subgroup of G is cyclic
- More precisely, if $H \leq G$, then either $H=\{1\}$ or $H=\left\langle g^{d}\right\rangle$, where
- d is the smallest positive integer s.t. $g^{d} \in H$

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order

- Let $G=\langle g\rangle$ be a finite cyclic group of order n
- For all positive integers a dividing n, \exists ! subgroup $H \leq G$ of order a
- Moreover, this subgroup is $\left\langle g^{d}\right\rangle$, where $d=\frac{n}{a}$

Proposition 21: Construction of $\langle A\rangle$

- If $A \subseteq G$, then $\langle A\rangle=\left\{a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}} \mid n \in \mathbb{Z}_{>0}, a_{i} \in A, \varepsilon \in\{ \pm 1\}\right\}$

Proposition 22: Properties of Coset

- Let G be a group and $H \leq G$
- If $g_{1}, g_{2} \in G$, then $g_{1} H=g_{2} H \Leftrightarrow g_{2}^{-1} g_{1} \in H$
- The relation \sim on G given by $g_{1} \sim g_{2}$ iff $g_{1} \in g_{2} H$ is an equivalence relation
- In particular, left/right cosets are either equal or disjoint

Proposition 23

- Let N be a subgroup of a group G
- $N \unlhd G$ iff $g N=N g, \forall g \in G$

Proposition 24: Quotient Group

- If G is a group, and $N \unlhd G$, then
- the set of left costs of N, denoted as $G / N($ say " $G \bmod N$ ")
- is a group under the operation $\left(g_{1} N\right)\left(g_{2} N\right)=g_{1} g_{2} N$
- We call this group quotient group or factor group

Theorem 25: Lagrange's Theorem

- If G is finite group, and $H \leq G$, then $|G|=|H| \cdot[G: H]$
- In particular, $|H|||G|$

Corollary 26: Group of Prime Order is Cyclic

- If G is a group, and $|G|$ is prime, then G is cyclic, hence, $G \cong \mathbb{Z} / p \mathbb{Z}$

Corollary 27: $g^{|G|}=1$

- If G is a finite group, and $g \in G$, then $g^{|G|}=1$

Corollary 28: The Fundamental Theorem of Cyclic Groups

- If G is a finite cyclic group, then there is a bijection
- $\{$ positive divisors of $|G|\} \leftrightarrow\{$ subgroups of $G\}$

Proposition 29: Order of Product of Subgroups

- If H, K are finite subgroups of a group G, then $|H K|=\frac{|H| \cdot|K|}{|H \cap K|}$

Proposition 30: Permutable Subgroups

- If $H, K \leq G$, then $H K \leq G$ iff $H K=K H$

Corollary 31: Product of Subgroup and Normal Subgroup

- If $H, K \leq G$, and either H or K is normal in G, then $H K \leq G$

Theorem 32: The First Isomorphism Theorem

- If $f: G \rightarrow H$ is a homomorphism, then f induces an isomorphism
- $\bar{f}: G / \operatorname{ker} f \xrightarrow{\cong} \mathrm{im}(f)$
- $\bar{f}(g \operatorname{ker} f)=f(g)$

Corollary 33: Order of Kernel and Image

- $[G: \operatorname{ker} f]=|\operatorname{im} f|$

Theorem 34: The Second Isomorphism Theorem

- Let $A, B \leq G$, and assume $B \unlhd G$
- Then $A \cap B \unlhd A$, and $A B / B \cong A / A \cap B$

Theorem 35: The Third Isomorphism Theorem

- Let G be a group, and $H, K \unlhd G$, where $H \leq K$
- Then $K / H \unlhd G / H$, and $G / H / K / H \cong G / K$

Proposition 36: Criterion for Defining Homomorphism on Quotient

- Let G, H be groups, and $N \unlhd G$
- A homomorphism $\alpha: G \rightarrow H$ induces a homomorphism
- $\bar{\alpha}: G / N \rightarrow H$ given by $g N \mapsto \alpha(g)$
- If and only if $N \leq \operatorname{ker} \alpha$

Theorem 37: The Correspondence Theorem

- Let G be a group, and let $N \unlhd G$, then there is a bijection
- \{subgroups of $G / N\} \underset{F I}{\stackrel{F}{\rightleftarrows}}\{$ subgroups of G containing $N\}$

Proposition 38: Transposition Decomposition of Permutation

- Every $\sigma \in S_{n}$ can be written as a product of transposition

Proposition 39: ϵ^{\prime} is a Group Homomorphism

- ϵ^{\prime} is a group homomorphism

Proposition 40: Sign of Transposition

- Let $n \in \mathbb{Z}_{>0}$
- If $\tau \in S_{n}$ is transposition, then $\epsilon^{\prime}(\tau)=\overline{1}$

Corollary 41: Equivalence of Two Definitions of Sign

- ϵ is well-defined, and $\epsilon=\epsilon^{\prime}$

Corollary 42: Surjectivity of ϵ

- If $n \geq 2$, then ϵ is surjective

Proposition 43: Subgroup of Index 2 is Normal

- If G is a group, $H \leq G$, and $[G: H]=2$, then $H \unlhd G$

Proposition 44: Conjugate Cycle

- If $\left(a_{1} \ldots a_{t}\right),\left(a_{1}{ }^{\prime} \ldots a_{t}{ }^{\prime}\right)$ are t-cycles in S_{n}
- Then $\exists \sigma \in S_{n}$ s.t. $\sigma\left(a_{1} \ldots a_{t}\right) \sigma^{-1}=\left(a_{1}{ }^{\prime} . . . a_{t}{ }^{\prime}\right)$

Theorem 45: A_{4} Have No Subgroup of Order 6

- A_{4} have no subgroup of order 6

Proposition 46: Stabilizer is a Subgroup

- If G acts on X, and $x \in X$, then $\operatorname{stab}(x) \leq G$

Proposition 47: Orbits Equivalence

- Let G act on a set X
- The relation $x \sim x^{\prime}$ iff $\exists g \in G$ s.t. $g x=x^{\prime}$ is an equivalence relation on X

Proposition 48: Orbit-Stabilizer Theorem

- If G acts on X, and $x \in X$, then $|\operatorname{orb}(x)|=[G: \operatorname{stab}(x)]$

Proposition 49: Permutation Representation of Group Action

- Let G be a group acting on a finite set $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- Then each $g \in G$ determines a permutation $\sigma_{g} \in S_{n}$ by

$$
\bigcirc \sigma_{g}(i)=j \Leftrightarrow g \cdot x_{i}=x_{j}
$$

Proposition 49: Induced Homomorphism of Group Action

- The map $\Phi: G \rightarrow S_{n}$, given by $g \mapsto \sigma_{g}$ is a homomorphism

Theorem 50: Cayley's Theorem

- Every finite group is isomorphic to a subgroup of the symmetric group

Theorem 51: The Class Equation

- Let G be a finite group
- Let $g_{1}, \ldots g_{r} \in G \backslash Z(G)$ be representatives of the conjugacy classes of G
- Then $|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]$

Corollary 52: Center of p-Group is Non-Trivial

- If p is a prime, and P is a group of order $p^{\alpha}(\alpha>1)$, then $|Z(P)|>1$

Corollary 53: Group of Order Prime Squared is Abelian

- If p is a prime, and P is a group of order p^{2}, then P is abelian.
- In fact, either $P \cong \mathbb{Z} / p^{2} \mathbb{Z}$ or $P \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$

Theorem 54: Cauchy's Theorem

- If G is a finite group, and p is a prime divisor of $|G|$, then $\exists H \leq G$ of order p

Lemma 55: Recognizing Direct Products

- Let G be a group with normal subgroups N_{1}, N_{2}
- The map $N_{1} \times N_{2} \xrightarrow{\alpha} G$ given by $\left(n_{1}, n_{2}\right) \mapsto n_{1} n_{2}$ is an isomorphism
- if and only if $N_{1} N_{2}=G$ and $N_{1} \cap N_{2}=\{1\}$

Lemma 56: Coprime Decomposition of Finite Abelian Group

- Let G be a finite abelian group of order $m n$, where $(m, n)=1$
- If $M=\left\{x \in G \mid x^{m}=1\right\}, N=\left\{x \in G \mid x^{n}=1\right\}$, then
- $M, N \leq G$ and the map $\alpha: M \times N \rightarrow G$ given by $(g, h)=g h$ is an isomorphism
- Moreover, if $m, n \neq 1$, then M and N are nontrivial

Corollary 57: p-Group Decomposition of Finite Abelian Group

- Let G be a finite abelian group, and p be a prime divisor of $|G|$
- Choose $m \in \mathbb{Z}_{>0}$ s.t. $|G|=p^{m} n$ and $p \nmid n$
- Then $G \cong P \times T$, where $P, T \leq G,|P|=p^{m}$, and $p \nmid|T|$

Lemma 58: Prime Decomposition of Abelian p-Group

- If G is an abelian group of order p^{n}, where p is a prime
- Let $a \in G$ has maximal order among all the elements of G
- Then $G \cong A \times Q$, where $A=\langle a\rangle, Q \leq G$

Theorem 59: Fundamental Theorem of Finite Abelian Groups

- Every finite abelian group G is a product of cyclic groups
- If $n=p_{1}^{e_{1}} \cdots p_{n}^{e_{m}}$, where p_{i} are distinct primes
- Then the number of finite abelian groups of order n is
- $\prod_{i=1}^{m}$ number of partitions of e_{i}

Proposition 61: Properties of Ring

- Let R be a ring, then
- $0 a=0=a 0, \forall a \in R$
- $(-a) b=a(-b)=-(a b), \forall a, b \in R$
- $(-a)(-b)=a b, \forall a, b \in R$
- The multiplicative identity 1 is unique
- $-a=(-1) a, \forall a \in R$

Proposition 62: Criterion for Trivial Ring

- A ring R is trivial (i.e. have only one element) iff $1=0$

Proposition 63: One-Sided Zero Divisor and Unit

- Let R be a ring, then
- $r \in R, s \in R \backslash\{0\}$, and $s r=0 \nRightarrow \exists t \in R \backslash\{0\}$ s.t. $r t=0$
- $u \in R$, and $\exists v \in R$ s.t. $u v=1 \nRightarrow \exists w \in R$ s.t. $w u=1$

Proposition 64: Units and Zero-Divisors of $\mathbb{Z} / n \mathbb{Z}$

- Let $n>0$
- Every nonzero element in $\mathbb{Z} / n \mathbb{Z}$ is either a unit or a zero-divisor

Proposition 65: Criterion for Product Ring to be Domain

- If R_{1} and R_{2} are rings, then $R_{1} \times R_{2}$ is a domain iff
- one of the R_{1} or R_{2} is a domain, and the other is trivial

Proposition 66: Finite Domain is a Field

- A finite domain R is a field

Proposition 67: Polynomial Rings over a Domain

- Let R be a domain
- Let $p, q \in R[x] \backslash\{0\}$, then
- $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$
- $(R[x])^{\times}=R^{\times}$
- $R[x]$ is a domain

Proposition 68: Ideal Containing 1 is the Whole Ring

- If $I \subseteq R$ is an ideal, then $I=R \Leftrightarrow 1 \in I$

Proposition 69: Quotient Ring

- Let R be a ring
- If $I \subseteq R$ is an ideal, then the quotient group R / I is a ring with multiplication
- $(r+I)\left(r^{\prime}+I\right)=r r^{\prime}+I$
- Conversely, if
- $J \subseteq R$ is an additive subgroup
- R / J is a ring with multiplication defined above
- Then J is an ideal

Theorem 70: The First Isomorphism Theorem for Rings

- If $f: R \rightarrow S$ is a ring homomorphism, then there is an induced isomorphism
- $\bar{f}: R / \operatorname{ker} f \rightarrow \operatorname{im}(f)$, given by $r+\operatorname{ker} f \mapsto f(r)$

Proposition 71: Criterion for Maximal Ideal

- If R is a commutative ring, and $M \subseteq R$ is an ideal
- Then M is maximal $\Leftrightarrow R / M$ is a field

Proposition 72: Prime Ideas of \mathbb{Z}

- The prime ideals of \mathbb{Z} are ideals of the form (n), where n is prime or $n=0$

Proposition 73: Criterion for Prime Ideal

- Let R be a commutative ring, $P \subseteq R$ an ideal, then
- P is prime $\Leftrightarrow R / P$ is a domain
- In particular, R is a domain $\Leftrightarrow 0$ ideal is prime

Corollary 74: Maximal Ideal is Prime

- If R is a commutative ring, and $M \subseteq R$ is maximal, then M is prime

Proposition 75: Euclidean Domain is a Principal Ideal Domain

- Every ideal in a Euclidean domain R is principal
- More precisely, if $I \subseteq R$ is an ideal, then $I=(d)$, where
- d is an element of I with minimum norm

Theorem 76: Polynomial Division

- Let F be a field
- Then $F[x]$ is a Euclidean domain
- More specifically, if $a, b \in F[x]$ where $b \neq 0$, then
- $\exists!q, r \in F[x]$ s.t. $a=b q+r$ and $\operatorname{deg} r<\operatorname{deg} b$

Notations, Divides, Equivalence Relations

Notations

- ":=" means "equals, by definition"
- $\mathbb{Z}:=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ the set of integers
- $\mathbb{Q}:=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$ the set of rational numbers
- $\mathbb{R}:=$ the set of all real numbers
- $\mathbb{C}:=\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\}$ the set of complex numbers
- $\mathbb{Z}_{\geq 0}:=\{a \in \mathbb{Z} \mid a \geq 0\}$ the set of non-negative integers
- $\mathrm{S} \backslash\{x\}:=\{s \in S \mid s \neq x\}$
- Denote a function f from a set A to a set B by $f: A \rightarrow B$
- Denote the image of f by $\operatorname{im}(f):=\{b \in B \mid \exists a \in A$ s.t. $f(a)=b\}$

Injective, Surjective and Bijective

- Definition
- Let $f: A \rightarrow B$ be a function, then
- f is injective if $\forall a, a^{\prime} \in A, a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)$
- f is surjective if $\forall b \in B, \exists a \in A$ s.t. $f(a)=b$ (i.e. $\operatorname{im}(f)=B$)
- f is bijective if f is both injective and surjective
- Example 1
- For $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(a)=2 a$
- f is injective
- Let $a, a^{\prime} \in \mathbb{Z}$
- Suppose $f(a)=f\left(a^{\prime}\right)$
- $\Rightarrow 2 a=2 a^{\prime}$
- $\Rightarrow 2 a-2 a^{\prime}=0$
- $\Rightarrow 2\left(a-a^{\prime}\right)=0$
- $\Rightarrow a-a^{\prime}=0$
- $\Rightarrow a=a^{\prime}$
- Therefore f is injective
- f is not surjective
- Because the image of f does not contain any odd integers
- $\operatorname{im}(f)=\{$ even integer $\} \neq \mathbb{Z}$
- Example 2
- Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be given by $f(a)=2 a$
- f is injective
- Let $a, a^{\prime} \in \mathbb{Z}$, then
- $f(a)=f\left(a^{\prime}\right) \Rightarrow 2 a=2 a^{\prime} \Rightarrow a=a$
- f is surjective
- Let $b \in \mathbb{Q}$, then $\frac{b}{2} \in \mathbb{Q}$
- $f\left(\frac{b}{2}\right)=2\left(\frac{b}{2}\right)=b \in \mathbb{Q}$
- Therefore f is surjective
- f is bijective
- Because f is both injective and surjective

Divides

- Definition
- If $x, y \in \mathbb{Z}$, and $x \neq 0$
- We say x divides y and write $x \mid y$, if $\exists q \in \mathbb{Z}$ s.t. $x q=y$
- Examples
- $\forall x \in \mathbb{Z} \backslash\{0\}, x \mid 0$, since $x \cdot 0=0$
- $\forall x \in \mathbb{Z}, 1 \mid x$, since $1 \cdot x=x$
- $\forall x \in \mathbb{Z},-1 \mid x$, since $(-1) \cdot(-x)=x$

Equivalence Relations

- Cartesian Product
- If A and B are sets, then the Cartesian product of A and B is
- $A \times B:=\{(a, b) \mid a \in A, b \in B\}$
- Relations
- A relation on a set A is a subset R of $A \times A$
- We write $a \sim a^{\prime}$ if $\left(a, a^{\prime}\right) \in R$
- Equivalence Relations
- A relation R on A is an equivalence relation if R is
- Reflexive
- If $a \in A$, then $a \sim a$
- i.e. $(a, a) \in R$
- Symmetric
- If $a \sim a^{\prime}$, then $a^{\prime} \sim a$
- i.e. $\left(a, a^{\prime}\right) \in R \Rightarrow\left(a^{\prime}, a\right) \in R$
- Transitive
- If $a \sim a^{\prime}, a^{\prime} \sim a^{\prime \prime}$, then $a \sim a^{\prime \prime}$
- i.e. If $\left(a, a^{\prime}\right) \in R$ and $\left(a^{\prime}, a^{\prime \prime}\right) \in R$, then $\left(a, a^{\prime \prime}\right) \in R$
- Example 1
- Let R be a relation on set A such that $R:=\{(a, a) \mid a \in A\}$
- Then R is an equivalence relation ($a \sim a^{\prime} \Leftrightarrow a=a^{\prime}$)
- Reflexive
- If $a \in \mathrm{~A}$, then $(a, a) \in R$ by definition
- Symmetric
- If $a \sim a^{\prime}$, then $a=a^{\prime}$
- Thus $a^{\prime}=a$, hence $a^{\prime} \sim a$
- Transitive
- If $a \sim a^{\prime}, a^{\prime} \sim a^{\prime \prime}$ then $a=a^{\prime}$ and $a=a^{\prime \prime}$
- Thus $a=a^{\prime \prime}$, hence $a \sim a^{\prime \prime}$
- Example 2
- Let n be a positive integer
- $R:=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}|n|(a-b)\}$ is an equivalence relation
- Reflexive
- $n \mid(a-a), \forall a \in \mathbb{Z}$, since $n \mid 0$
- It follows that $a \sim a, \forall a \in \mathbb{Z}$
- Symmetric
- Let $a, b \in \mathbb{Z}$
- Suppose $a \sim b$, then $n \mid(a-b)$
- Choose $q \in \mathbb{Z}$ s.t. $n q=a-b$
- $\operatorname{Then} n(-q)=-(a-b)=b-a$
- Thus, $n \mid(b-a)$, and so $b \sim a$
- Transitive
- Suppose $a, b, c \in \mathbb{Z}$, and we have $a \sim b, b \sim c$
- Then $n \mid(a-b)$ and $n \mid(b-c)$
- Choose $q, q^{\prime} \in \mathbb{Z}$ s.t. $n q=a-b, n q^{\prime}=b-c$
- Then $n\left(q+q^{\prime}\right)=(a-b)+(b-c)=a-c$
- Thus, $n \mid(a-c)$, and so $a \sim c$

Induction, Well-Ordering of \mathbb{Z}

Induction

- Prove $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \forall n \geq 1$
- Base case
- When $n=1, \sum_{i=1}^{i} i=1=\frac{1 \times 2}{2}$
- Induction step
- For $n>1$
- Assume $\forall k$ s.t. $1 \leq k<n, \sum_{i=1}^{k} i=\frac{k(k+1)}{2}$
- Then $\sum_{i=1}^{n} i=\left(\sum_{i=1}^{n-1} i\right)+n=\frac{(n-1) n}{2}+n=\frac{n(n+1)}{2}$

Proposition 1: Well-Ordering of \mathbb{Z}

- Statement
- Every nonempty subset S of $\mathbb{Z}_{\geq 0}$ has a unique minimum element
- That is, \exists ! $\boldsymbol{m} \in \boldsymbol{S}$ s.t. $\boldsymbol{m} \leq \boldsymbol{s}, \forall \boldsymbol{s} \in \boldsymbol{S}$
- Proof (Existence)
- Assume S is finite
- We argue by induction on $|S|$
- Base case
- When $|S|=1$, this is clear
- Inductive step
- Assume $|S|>1$
- Choose $x \in S$, then $|S \backslash\{x\}|=|S|-1$
\square By induction $S \backslash\{x\}$ has a minimum value: call it m
- Case 1: $x<m$, then x is a minimum value of S
- Case 2: $m<x$, then m is a minimum value of S
- When S is infinite
- Choose $x \in S$
- Let $S^{\prime}:=\{s \in S \mid s \leq x\}$
- Then $\left|S^{\prime}\right| \leq x+1<\infty$ i.e. S^{\prime} is finite
- So we can choose a minimum element of S^{\prime} : call it m
- Let $s \in S$
\square If $s \in S^{\prime}$, then $m \leq s$
\square If $s \notin S^{\prime}$, then $m \leq x<s$
- In either case, $m \leq s$, so m is a minimum element of S
- This proves existence
- Proof (Uniqueness)
- Suppose m and m^{\prime} are both minimum elements of S
- $m \leq m^{\prime}$, and $m^{\prime} \leq m$
- Thus, $m=m^{\prime}$
- This proves uniqueness

Division Algorithm, Greatest Common Divisor

Proposition 2: The Division Algorithm

- Statement
- Let $a, b \in \mathbb{Z}$, where $b>0$
- Then \exists ! $\boldsymbol{q}, \boldsymbol{r} \in \mathbb{Z}$ s.t. $\boldsymbol{a}=\boldsymbol{q} \boldsymbol{b}+\boldsymbol{r}$, and $\mathbf{0} \leq \boldsymbol{r}<\boldsymbol{b}$
- Proof (Existence)
- Let $S:=\{a-b q \mid q \in \mathbb{Z}, a-b q \geq 0\} \subseteq \mathbb{Z}_{\geq 0}$
- S is not empty
- Let $q \in \mathbb{Z}$ s.t. $q \leq \frac{a}{b}$
- Then $b q \leq a$
- $\Rightarrow 0 \leq a-b q$
- i.e. $a-b q \in S$
- Thus, S contains a unique minimum element: call it r
- Choose $q \in \mathbb{Z}$ s.t.
- $a-b q=r$
- $\Rightarrow a=b q+r$
- We still need to show that $0 \leq r<b$
- Since $r \in S$, we know $0 \leq r$
- So we just need to show that $r<b$
- If $r \geq b$, then $a-b(q+1)=a-b q-b=r-b \geq 0$
- Then $a-b(q+1) \in S$, and it is less than r
- This is impossible, since r is the minimum element of S
- Thus, $r<b$
- Therefore we've proven the existence of q and r
- Proof (Uniqueness)
- Suppose $\exists q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$ s.t.
- $a=b q+r$, where $0 \leq r<b$
- $a=b q^{\prime}+r^{\prime}$, where $0 \leq r^{\prime}<b$
- We must show that $q=q^{\prime}$ and $r=r^{\prime}$
- Suppose $r \neq r^{\prime}$
- Without loss of generality, assume $r^{\prime}>r$
- Then $0<r^{\prime}-r=\left(a-b q^{\prime}\right)-(a-b q)=b\left(q-q^{\prime}\right)$
- Thus, $b \mid\left(r^{\prime}-r\right)$, but $0<r^{\prime}-r \leq r^{\prime}<b$.
- This is impossible, thus $r=r^{\prime}$
- We have $b q+r=b q^{\prime}+r \Rightarrow q=q^{\prime}$
- Therefore we've proven the uniqueness of q and r
- Note we can prove the following stronger statement
- If $a, b \in \mathbb{Z}$, and $\boldsymbol{b} \neq \mathbf{0}$, then \exists ! $\boldsymbol{q}, \boldsymbol{r} \in \mathbb{Z}$ s.t.
- $\boldsymbol{a}=\boldsymbol{b} \boldsymbol{q}+\boldsymbol{r}$ and $0 \leq \boldsymbol{r}<|\boldsymbol{b}|$
- Proof (Existence)
- Assume $b<0$
- Choose $q, r \in \mathbb{Z}$ s.t. $a=(-b) q+r$, and $0 \leq r<-b$
- Then $a=b(-q)+r$, and $0 \leq r<|b|$
- This proves existence
- Proof (Uniqueness)
- Assume $b<0$
- Suppose $\exists q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$ s.t.
- $a=b q+r$, where $0 \leq r<b$
- $a=b q^{\prime}+r^{\prime}$, where $0 \leq r^{\prime}<b$
- Then
- $a=(-b)(-q)+r$, where $0 \leq r<|b|=-b$
- $a=(-b)\left(-q^{\prime}\right)+r^{\prime}$, where $0 \leq r^{\prime}<|b|=-b$
- Since $-b>0$, our previous result implies $-q=-q^{\prime}$
- Therefore $q=q^{\prime}$ and $r=r^{\prime}$

Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- A greatest common divisor of a and b is a positive integer d s.t.
- $d \mid a$ and $d \mid b$
- If $\boldsymbol{e} \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$ then $e \mid d$
- We write the greatest common divisor of a and b, if it exists, as (a, b)
- As a convention $(0,0):=0$

Proposition 3: Uniqueness of Greatest Common Divisor

- Statement
- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- Suppose $\exists d, d^{\prime} \in \mathbb{Z}_{>0}$ s.t.
(1) d and d^{\prime} both divide a and b
(2) If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$, then $e \mid d$ and $e \mid d^{\prime}$
- Then $d=d^{\prime}$
- Proof
- Combining properties (1) and (2), we have $d \mid d^{\prime}$ and $d^{\prime} \mid d$
- Choose $q, q^{\prime} \in \mathbb{Z}$ s.t. $d q=d^{\prime}$ and $d^{\prime} q^{\prime}=d$
- By substitution, we get $d q q^{\prime}=d$
- Then $q q^{\prime}=1 \Rightarrow q=q^{\prime}= \pm 1$
- If $q=q^{\prime}=-1$, then $d=-d^{\prime}<0$.
- This is impossible since d and d^{\prime} are both positive
- Therefore $q=q^{\prime}=1$ and $d=d^{\prime}$

Proposition 4: Lemma for Euclidean Algorithm

- Statement
- Suppose $a, b \in \mathbb{Z}$, where $b \neq 0$
- Choose $q, r \in \mathbb{Z}$ s.t. $\boldsymbol{a}=\boldsymbol{q} \boldsymbol{b}+\boldsymbol{r}$, and $\mathbf{0} \leq \boldsymbol{r}<|\boldsymbol{b}|$
- If (b, r) exists, then (a, b) exists and $(\boldsymbol{a}, \boldsymbol{b})=(\boldsymbol{b}, \boldsymbol{r})$
- Proof
- Set $d:=(b, r)$
- $d \mid a$ and $d \mid b$
- Choose $q_{1}, q_{2} \in \mathbb{Z}$ s.t. $d q_{1}=b$ and $d q_{2}=r$
- Then $a=q b+r=q q_{1} d+q_{2} d=d\left(q q_{1}+q_{2}\right)$, so $d \mid a$
- And we already know $d \mid b$, since $(b, r) \mid b$
- If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$, then $e \mid d$
- Let $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$
- Choose $q_{3}, q_{4} \in \mathbb{Z}$ s.t. $e q_{3}=a$ and $e q_{4}=b$
- $a=q b+r$
- $\Rightarrow a-q b=r$
- $\Rightarrow e q_{3}-q e q_{4}=r$
- $\Rightarrow e\left(q_{3}-q q_{4}\right)=r$
- Thus $e \mid r$
- Since $e \mid b$ and $d=(b, r)$
- We can conclude that $e \mid d$
- By Proposition 3, $(a, b)=(b, r)$

Proposition 5: $(a, 0)=|a|$

- Statement
- $(\boldsymbol{a}, \mathbf{0})=|a|, \forall a \in \mathbb{Z}$
- Proof
- If $a=0$
- This is true by our convention
- If $a \neq 0$
- Certainly $|a| \mid a$, and $|a| \mid 0$
- If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid 0$, then $e||a|$
- Therefore $(a, 0)=|a|$

Euclidean Algorithm, Bézout's Identity

Proposition 6: Existence of GCD

- Statement
- If $a, b \in \mathbb{Z}$, then (a, b) exists
- Proof
- By Proposition 5, we may assume that $b \neq 0$
- Choose $q, r \in \mathbb{Z}$ s.t. $a=b q+r$, where $0 \leq r<|b|$
- We argue by induction on r
- Base case
- Suppose $r=0$, then $a=b q$
- We have $|b| \mid a$ and $|b| \mid b$
- If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$, then $e||b|$
- Therefore (a, b) exists, and equals $|b|$
- Inductive hypothesis
- If $a^{\prime}, b^{\prime} \in \mathbb{Z}$ s.t. $b^{\prime} \neq 0$, and $a^{\prime}=b^{\prime} q^{\prime}+r^{\prime}$, where $0 \leq r^{\prime}<r$
- Then $\left(a^{\prime}, b^{\prime}\right)$ exists
- Inductive step
- Suppose $r>0$
- Choose $q^{\prime}, r^{\prime} \in \mathbb{Z}$ s.t. $b=q^{\prime} r+r^{\prime}$, where $0 \leq r^{\prime}<r$
- By inductive hypothesis, (b, r) exists
- By Proposition 4, (a, b) exists, and equals (b, r)

The Euclidean Algorithm

- Input
- $a, b \in \mathbb{Z}$ with $|b| \leq|a|$
- Output
- (a, b)
- Algorithm
(0) If $b=0$, output $|a|$

Else, proceed to step (1)
(1) Since $b \neq 0$, we can find $q, r \in \mathbb{Z}$ s.t. $a=b q+r$, where $0 \leq r<|b|$
(2) If $r=0$, output $|b|$

Otherwise, repeat step (1) with b and r playing the roles of a and b

- Note
- The algorithm terminates
- Since the remainder decreases at each application of step (1)
- By Proposition 4, the output will be (a, b)
- Example: use the Euclidean Algorithm to compute $(4148,2057)$
- Take $a=4148, b=2057$
- $\underbrace{4148}_{a}=\underbrace{2057}_{b} \times \underbrace{2}_{q}+\underbrace{34}_{r}$
- $\underbrace{2057}_{a}=\underbrace{34}_{b} \times \underbrace{60}_{q}+\underbrace{17}_{r}$
- $\underbrace{34}_{a}=\underbrace{17}_{b} \times \underbrace{2}_{q}+\underbrace{0}_{r}$
- Here $r=0$, so the algorithm terminates
- Thus, $(4148,2057)=17$

Proposition 7: Bézout's Identity

- Statement
- If $a, b \in \mathbb{Z}$, then $\exists x, y \in \mathbb{Z}$ s.t. $(a, b)=a x+b y$
- Note
- x, y need not to be unique
- Proof
- If $a=b=0$
- We can take $x=y=0$
- In fact, any pair of (x, y) works
- If $a=0$ or $b=0$
- Without loss of generality, assume $b=0$
- Then $(a, b)=|a|= \pm a+b$
- We can take $x= \pm 1, y=1$
- If $a \neq 0$ and $b \neq 0$
- Without loss of generality, assume $|a| \geq|b|$
- Choose $q, r \in \mathbb{Z}$ s.t. $a=q b+r$, where $0 \leq r<|b|$
- We argue by induction on r
- Base case
- When $r=0$
- $(a, b)=|b|=0 \cdot a+(\pm 1) \cdot b$
- So we can take $x=0, y= \pm 1$
- Inductive step
- Suppose $r>0$
- Choose $q^{\prime}, r^{\prime} \in \mathbb{Z}$ s.t. $b=q^{\prime} r+r^{\prime}$, where $0 \leq r^{\prime}<r$
- By induction, $\exists x^{\prime}, y^{\prime} \in \mathbb{Z}$ s.t. $(b, r)=b x^{\prime}+r y^{\prime}$
- Thus, by Proposition 4
$\square(a, b)=(b, r)=b x^{\prime}+r y^{\prime}=b x^{\prime}+(a-b q) y^{\prime}=a y^{\prime}+b\left(x^{\prime}-q y^{\prime}\right)$
- So we can take $x=y^{\prime}$ and $y=x^{\prime}-q y^{\prime}$
- Example: Express $(4148,2057)$ as $4148 x+2057 y$ where $x, y \in \mathbb{Z}$
- Recall when we computed $(4148,2057)$, we had
- $4148=2057 \times 2+34$
- $2057=34 \times 60+17$
- $34=17 \times 2+0$
- Let's now find $x, y \in \mathbb{Z}$ s.t. $(4148,2057)=17=4148 x+2057 y$
- Start with the second to last equation, and "back-fill"
- $17=2057-34 \times 60$
- $=2057-(4148-2 \times 2057) \times 60$
- $=4148 \times(-60)+2057 \times 121$
- Therefore $x=-60, y=121$

Equivalence Class, $\mathbb{Z} / n \mathbb{Z}$, Group

Homework 1 (a): Injective Function Has a Left Inverse

- Let A and B be two nonempty sets
- Let $f: A \rightarrow B$ be a injective function
- Prove that f has a left inverse
- Since f is injective, $\forall b \in \operatorname{im}(f), \exists!a \in A$ s.t. $f(a)=b$
- Define $g: B \rightarrow A$ in the following way
- Choose $a_{0} \in A$
- If $b \in \operatorname{im}(f)$
- Choose $a \in A$ s.t. $f(a)=b$
- Define $g(b)=a$
- If $b \notin \operatorname{im}(f)$
- Define $g(b)=a_{0}$
- Check that g is a left inverse
- If $a \in A,(g \circ f)(a)=g(f(a))=a$
- Thus, $g \circ f=i d_{A}$

Example of The Euclidean Algorithm

- Let $a=97, b=20$
- Use the Euclidean Algorithm to find (a, b)
- $97=20 \times 4+17$
- $20=17 \times 1+3$
- $17=3 \times 5+2$
- $3=2 \times 1+1$
- Therefore $(a, b)=1$
- Find $x, y \in \mathbb{Z}$ s.t. $(a, b)=a x+b y$
- $(a, b)=1=3-2 \times 1$
- $=3-(17-3 \times 5) \times 1$
- $=3 \times 6-17 \times 1$
- $=(20-17 \times 1) \times 6-17$
- $=20 \times 6-17 \times 7$
- $=20 \times 6-(97-20 \times 4) \times 7$
- $=97 \times(-7)+20 \times 34$
- So we can take $x=-7, y=34$

Equivalence Class

- Let X be a set, and let \sim be an equivalence relation on X
- If $x \in X$, then the equivalence class represented by x is the set
- $[x]=\left\{x^{\prime} \in X \mid x \sim x^{\prime}\right\} \subseteq X$

Proposition 8: Equivalence Classes Partition the Set

- Statement
- Let X be a set with equivalence relationship ~
- If $x, x^{\prime} \in X$, then $[x]$ and $\left[x^{\prime}\right]$ are either equal or disjoint
- Proof
- Suppose $\exists y \in[x] \cap\left[x^{\prime}\right]$
- It suffices to show that if $z \in X$, then $x \sim z \Leftrightarrow x^{\prime} \sim z$
- $x \sim z \Rightarrow x^{\prime} \sim z$
- Suppose $x \sim z$
- $\Rightarrow z \sim x$ (Symmetry)
- $\Rightarrow z \sim y$ (Transitivity)
- $\Rightarrow y \sim z$ (Symmetry)
- $\Rightarrow x^{\prime} \sim z \quad$ (Transitivity)
- $x \sim Z \Leftarrow x^{\prime} \sim z$
- Suppose $x^{\prime} \sim z$
- $\Rightarrow z \sim x^{\prime}$ (Symmetry)
- $\Rightarrow z \sim y$ (Transitivity)
- $\Rightarrow y \sim z$ (Symmetry)
- $\Rightarrow x \sim z$ (Transitivity)

Integers Modulo n

- Let $n \in \mathbb{Z}_{>0}$
- The relation on \mathbb{Z} given by $a \sim b \Leftrightarrow n \mid(a-b)$ is an equivalence relation
- The set of equivalence classes under \sim is denoted as $\mathbb{Z} / n \mathbb{Z}$
- We call this set integers modulo n (or integers mod n)
- We can check that there are n elements in $\mathbb{Z} / n \mathbb{Z}$
- We use \bar{a} to denote the equivalence class in $\mathbb{Z} / n \mathbb{Z}$
- Then $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$

Group

- Definition
- If G is a set equipped with a binary operation
- $G \times G \rightarrow G$
- $(g, h) \mapsto g \cdot h$
- that satisfies
- Associativity: $\forall g, h, k \in G, g \cdot(h \cdot k)=(g \cdot h) \cdot k$
- Identity: $\exists 1 \in G$ s.t. $\forall g \in G, 1 \cdot g=g \cdot 1=g$
- Inverses: $\forall g \in G, \exists g^{-1} \in G$ s.t. $g g^{-1}=g^{-1} g=1$
- Then we say G is a group under this operation
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups with operation +
- If $a, b \in \mathbb{Z}$, then $a+b \in \mathbb{Z}$ (Similarly for $\mathbb{Q}, \mathbb{R}, \mathbb{C}$)
- + is certainly associative in all 4 sets
- 0 is the identity in each case
- If $a \in \mathbb{Z}($ or $\mathbb{Q}, \mathbb{R}, \mathbb{C})$, then the inverse of a is $-a$

Examples of Groups, Well-definedness, $\mathbb{Z} / n \mathbb{Z}$

Examples of Groups

- Is \mathbb{Z} a group under multiplication?
- No, because there is no inverses for 2
- Let $x \in \mathbb{Z} \backslash\{ \pm 1\}$, then the multiplicative inverse of x is not an integer
- Are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ groups under multiplication?
- No, because 0 still has no multiplicative inverse
- Multiplicative group of $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- Let $\mathbb{Q}^{\times}=\mathbb{Q} \backslash\{0\}$ and $\mathbb{R}^{\times}, \mathbb{C}^{\times}$similarly
- Then $\mathbb{Q}^{\times}, \mathbb{R}^{\times}, \mathbb{C}^{\times}$are groups with operation given by multiplication
- We argue this for \mathbb{Q}^{\times}; the same proof works for \mathbb{R}^{\times}and \mathbb{C}^{\times}
- Multiplication is an operation on \mathbb{Q}^{\times}
- If $a, b \in \mathbb{Q}^{\times}$, then $a b \in \mathbb{Q}^{\times}$
- Associativity
- This is clear
- Identity
- $1 \in \mathbb{Q}^{\times}$is the identity
- Inverses
- $\forall a \in \mathbb{Q}^{*}, \frac{1}{a} \in \mathbb{Q}^{\times}$is the inverse of a
- Is \mathbb{Z} a group with operation given by subtraction?
- No, because subtraction is not associative
- $(1-2)-3=-4$
- $1-(2-3)=2$
- General Linear Group
- Let $n \in \mathbb{Z}_{>0}$
- $G L_{n}(\mathbb{R}):=\{$ invertible $n \times n$ matrices with entries in $\mathbb{R}\}$
- $G L_{n}(\mathbb{R})$ is a group under matrix multiplication
- Matrix multiplication is an operation on $\mathrm{GL}_{n}(\mathbb{R})$
- If $A, B \in G L_{n}(\mathbb{R})$
- Then, $A B \in G L_{n}(\mathrm{R})$, since $(A B)^{-1}=B^{-1} A^{-1}$
- Associativity
- This is clear
- Identity
- The $n \times n$ identity matrix I_{n} is the identity
- Inverses
- If $A \in G L_{n}(\mathbb{R})$, its inverse is A^{-1}
- Note
- When $n>1$, the operation in $G L_{n}(\mathbb{R})$ is not commutative

Abelian Group

- We say a group G is abelian, if $a b=b a, \forall a, b \in G$

Proposition 9: Addition and Multiplication in $\mathbb{Z} / n \mathbb{Z}$

- Statement
- Let $n \in \mathbb{Z}_{>0}$, and let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$
- If $\overline{a_{1}}=\overline{b_{1}}$, and $\overline{a_{2}}=\overline{b_{2}}$ in $\mathbb{Z} / n \mathbb{Z}$
- Then $\overline{a_{1}+a_{2}}=\overline{b_{1}+b_{2}}$, and $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}$
- Proof: $\overline{a_{1}+a_{2}}=\overline{b_{1}+b_{2}}$
- Choose $c_{1}, c_{2} \in \mathbb{Z}$ s.t. $c_{1} n=a_{1}-b_{1}$ and $c_{2} n=a_{2}-b_{2}$

○ Then $\left(c_{1}+c_{2}\right) n=a_{1}-b_{1}+a_{2}-b_{2}=\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)$

- Thus, $n \mid\left(\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)\right)$
- So, $\overline{a_{1}+a_{2}}=\overline{b_{1}+b_{2}}$
- Proof: $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}$
- Choose $c_{1}, c_{2} \in \mathbb{Z}$ s.t. $c_{1} n=a_{1}-b_{1}$ and $c_{2} n=a_{2}-b_{2}$
- Then
- $a_{1} a_{2}-b_{1} b_{2}$
- $=a_{1} a_{2}+\left(a_{1} b_{2}-a_{1} b_{2}\right)-b_{1} b_{2}$
- $=a_{1}\left(a_{2}-b_{2}\right)+\left(a_{1}-b_{1}\right) b_{2}$
- $=a_{1} c_{2} n+b_{2} c_{1} n$
- $=\left(a_{1} c_{2}+b_{2} c_{1}\right) n$
- Thus, $n \mid\left(a_{1} c_{2}+b_{2} c_{1}\right)$
- So, $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}$

Well-definedness

- Example
- Say we want to "define" a map
- $f: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z}$
- $f(\bar{a})=a$
- Note that f is not a function
- $\overline{1}=\overline{3}$ in $\mathbb{Z} / 2 \mathbb{Z}$
- But $f(\overline{1})=1 \neq f(\overline{3})=3$
- So we say that f is not well defined
- How to check well-definedness
- To check that a purported function $f: A \rightarrow B$ is well-defined,
- One needs to check that $a=a^{\prime} \Rightarrow f(a)=f\left(a^{\prime}\right)$

Corollary 10: Addition Group of $\mathbb{Z} / n \mathbb{Z}$

- Statement
- Let $n \in \mathbb{Z}_{>0}$ be fixed
- $\mathbb{Z} / n \mathbb{Z}$ is a group under the operation
- $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$
- $(\bar{a}, \bar{b}) \mapsto \overline{a+b}$
- We will denote this operation by +
- So $\bar{a}+\overline{\mathrm{b}}=\overline{a+b}$
- Proof
- Well-definedness
- By proposition 9, the operation $\bar{a}+\bar{b}=\overline{a+b}$ is well-defined
- Associative
- Associativity is inherited from the associativity of addition for \mathbb{Z}
- Identity
- The identity is $\overline{0}$
- $\forall \bar{a} \in \mathbb{Z} / n \mathbb{Z}, \bar{a}+\overline{0}=\overline{a+0}=\bar{a}=\overline{0+a}=\overline{0}+\bar{a}$
- Inverses
- $\forall \bar{a} \in \mathbb{Z} / n \mathbb{Z}$, the inverse of \bar{a} is $\overline{-a}$
- $\bar{a}+\overline{-a}=\overline{a-a}=\overline{0}=\overline{-a+a}=\overline{=}+\bar{a}$

(Z $/ n \mathbb{Z})^{\times}$, Properties of Group

$\mathbb{Z} / n \mathbb{Z}$ is Not a Group Under Multiplication

- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Proposition 9 implies that there is a well-defined function
- $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$
- $(\bar{a}, \bar{b}) \rightarrow \overline{a b}$
- Check group property
- Identity: $\overline{1} \cdot \bar{a}=\overline{1 \cdot a}=\overline{1}$
- This operation is associative
- $\overline{1}$ is a reasonable candidate for an identity, but there is no inverse
- Example in $\mathbb{Z} / 4 \mathbb{Z}$
- $\overline{2} \cdot \overline{0}=\overline{0}$
- $\overline{2} \cdot \overline{1}=\overline{2}$
- $\overline{2} \cdot \overline{2}=\overline{0}$
- $\overline{2} \cdot \overline{3}=\overline{2}$

Proposition 11: $(\mathbb{Z} / n \mathbb{Z})^{\times}$

- Definition
- Define $(\mathbb{Z} / n \mathbb{Z})^{\times}:=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid(a, n)=1\}$
- By HW 2 \#2,
- $\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{\times} \Leftrightarrow \exists \bar{c} \in \mathbb{Z} / n \mathbb{Z}$ s.t. $\bar{a} \bar{c}=\overline{1}$
- Statement
- $(\mathbb{Z} / \boldsymbol{n} \mathbb{Z})^{\times}$is a group with operation given by multiplication
- Proof
- Closure: If $\bar{a}, \bar{b} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, then $\overline{a b} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$as well
- Associativity: Clear, from associativity of multiplication of integers
- Identity: $\overline{1}$
- Inverses: Built in HW 2 \#2

List of Groups

Set	Operation
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$	+
$\mathbb{Q}^{*}, \mathbb{R}^{*}, \mathbb{C}^{*}$	\cdot
$G L_{n}(\mathbb{R}), n>0$	Matrix multiplication
$\mathbb{Z} / n \mathbb{Z}, n>0$	+

Proposition 12: Properties of Group

- Let G be a group, then G has the following properties
- The identity of G is unique
- In other word
- If $\exists 1,1^{\prime} \in G$ s.t.
- $\forall g \in G, 1 g=g 1=g$ and $1^{\prime} g=g 1^{\prime}=g$
- Then $1=1^{\prime}$
- Proof
- $1=1 \cdot 1^{\prime}=1^{\prime}$
- Each $g \in G$ has a unique inverse
- In other word
- If $g \in G$ and $\exists h, h^{\prime} \in G$ s.t.
- $h g=g h=1$ and $h^{\prime} g=g h^{\prime}=1$
- Then $h=h^{\prime}$
- Proof
- Let $g \in G$, and suppose $h, h^{\prime} \in G$ are both inverses of g
- Then $h=h \cdot 1=h\left(g h^{\prime}\right)=(h g) h^{\prime}=1 \cdot h^{\prime}=h^{\prime}$
- $\left(g^{-1}\right)^{-1}=\boldsymbol{g}, \forall \boldsymbol{g} \in \boldsymbol{G}$
- Let $g \in G$, then $g g^{-1}=1=g^{-1} g$
- Since the inverse is unique, $g=\left(g^{-1}\right)^{-1}$

- The Generalized Associative Law

- i.e. If $g_{1}, \ldots, g_{n} \in G$, then $g_{1} \ldots g_{n}$ is independent of how it is bracketed
- First show the result is true for $n=1,2,3$
- Assume for any $k<n$ any bracketing of a product of k elements
- $b_{1} b_{2} \cdots b_{k}$ can be reduced to an expression of the form $b_{1}\left(b_{2}\left(b_{3} \cdots b_{k}\right)\right)$
- Then any bracketing of the product $a_{1} a_{2} \cdots a_{n}$ must break into
- 2 sub-products, say $\left(a_{1} a_{2} \cdots a_{k}\right)\left(a_{k+1} a_{k+2} \cdots a_{n}\right)$
- where each sub-product is bracketed in some fashion
- Apply the induction assumption to each of these two sub-products
- Reduce the result to the form $a_{1}\left(a_{2}\left(a_{3} \ldots a_{n}\right)\right)$ to complete the induction
- $(g h)^{-1}=h^{-1} g^{-1}, \forall g, h \in G$
- By the generalized associative law
- $(g h)\left(h^{-1} g^{-1}\right)=g\left(h h^{-1}\right) g^{-1}=g g^{-1}=1$
- $\left(h^{-1} g^{-1}\right)(g h)=h\left(g g^{-1}\right) h^{-1}=h h^{-1}=1$
- Notation
- We will apply the Generalized Associative Law without mentioning it
- In particular, if G is a group and $n \in \mathbb{Z}_{>0}$, we will write
- $g^{n}=\underbrace{g \ldots g}_{n \text { copies }}$
- $g^{-n}=\underbrace{g^{-1} \ldots g^{-1}}_{n \text { copies }}$
- $g^{0}=1$

Proposition 13: Cancellation Law

- Statement
- Let G be a group, and let $a, b, u, v \in G$
- If $\boldsymbol{a u}=\boldsymbol{a v}$, then $\boldsymbol{u}=\boldsymbol{v}$
- If $\boldsymbol{u a}=\boldsymbol{v a}$, then $\boldsymbol{u}=\boldsymbol{v}$
- Proof
- $a u=a v \Rightarrow a^{-1} a u=a^{-1} a v \Rightarrow u=v$
- $u a=v a \Rightarrow u a a^{-1}=v a a^{-1} \Rightarrow u=v$
- Warning
- $u a=a v \nRightarrow u=v$
- This holds in abelian groups, but not in general

Corollary 14: Cancellation Law and Identity

- Let G be a group, and let $g, h \in G$
- If $\boldsymbol{g h}=\boldsymbol{g}$, then $\boldsymbol{h}=\mathbf{1}$
- $g h=g$
- $\Rightarrow g h=g 1$
- $\Rightarrow h=1$
- If $\boldsymbol{g} h=1$, then $h=g^{-1}$
- $g h=1$
- $\Rightarrow g h=g g^{-1}$
- $\Rightarrow h=g^{-1}$

Order, Definition of S_{n}

Order

- Definition
- If G is a group, and $g \in G$
- The order of g is the smallest positive integer \boldsymbol{n} s.t. $\boldsymbol{g}^{\boldsymbol{n}}=\mathbf{1}$
- If n is the order of g, write $|g|=n$
- If no such integer exists, write $|g|=\infty$

○ i.e. $|\boldsymbol{g}|:=\inf \left\{n \in \mathbb{Z}_{>0} \mid \boldsymbol{g}^{\boldsymbol{n}}=\mathbf{1}\right\}$

- Note
- The order of the identity is 1
- Example 1
- Let $A:=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right) \in G L_{2}(\mathbb{R})$
- $A^{3}=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)^{3}=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$
- Therefore, $|A|=3$
- Example 2
- In $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, every nonzero element has infinite order
- The identity 0 has order of 1
- Example 3
- In \mathbb{Q}^{*} and \mathbb{R}^{*}, the elements of finite order are
- $|1|=1$
- $|-1|=2$
- In \mathbb{C}^{*}, there are lots more
- Elements of order n in \mathbb{C} are called $n^{\text {th }}$ roots of unity
- i is the fourth root of unity
- i.e. $i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$
- Example 4
- What are the orders of the elements in $\mathbb{Z} / 6 \mathbb{Z}$?

Elements	Order	Note
$\overline{0}$	1	$\overline{0}$ is the identity
$\overline{1}$	6	$\overline{1} \cdot 6=\overline{6}=\overline{0}$
$\overline{2}$	3	$\overline{2} \cdot 3=\overline{6}=\overline{0}$
$\overline{3}$	2	$\overline{3} \cdot 2=\overline{6}=\overline{0}$
$\overline{4}$	3	$\overline{4} \cdot 3=\overline{12}=\overline{0}$

$$
\begin{array}{|l|l|l}
\overline{5} & 6 & \overline{5} \cdot 6=\overline{30}=\overline{0}
\end{array}
$$

- In general, if $\bar{a} \in \mathbb{Z} / \mathrm{nZ}$, then the " nth power" of \bar{a} is $\overline{n a}$
- Note that all the orders are divisors of 6 (Lagrange Theorem)
- Example 5
- What are the orders of the elements in $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$?
- $(\mathbb{Z} / 5 \mathbb{Z})^{\times}=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Elements	Order	Note
$\overline{1}$	1	$\overline{1}$ is the identity
$\overline{2}$	4	$\overline{2}^{4}=\overline{16}=\overline{1}$
$\overline{3}$	4	$\overline{3}^{4}=8 \overline{1}=\overline{1}$
$\overline{4}$	2	$\overline{4}^{2}=\overline{16}=\overline{1}$

- Note: $(0,5)=0 \neq 1$, so $\overline{0} \notin \mathbb{Z} / 5 \mathbb{Z}^{\times}$

Symmetric Group (Section 1.3)

- Definition
- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Let $\boldsymbol{S}_{\boldsymbol{n}}:=\{$ bijective functions $\{\mathbf{1}, \ldots, \boldsymbol{n}\} \rightarrow\{\mathbf{1}, \ldots, \boldsymbol{n}\}\}$
- (i.e. S_{n} is the set of all permutations of $\{1, \ldots, n\}$)
- Then S_{n} is a group with operation given by function composition
- We call this group symmetric group of degree n
- Proof
- Function composition is an operation on S_{n}
- The composition of bijective functions is still bijective
- Therefore, function composition is an operation on S_{n}
- Associativity
- Suppose $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$
- $((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))$
- $(h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x)))$
- Thus $(h \circ g) \circ f=h \circ(g \circ f)$
- Identity
- The identity map is the identity
- Inverses
- Bijective functions all have inverse functions

Properties of S_{n}, Properties of Cycles

Proposition 15: Order of Symmetric Group

- Statement
- $\left|\boldsymbol{S}_{\boldsymbol{n}}\right|=\boldsymbol{n}$!
- Proof
- First, we prove that
- If X and Y are sets of order n
- Then there are n ! injective functions from X to Y
- We argue by induction on n
- When $n=1$, this is clear
- For $n>1$
- Suppose $f: X \rightarrow Y$ is injective
- Let $x \in X$, then there are n possibilities for $f(x)$
- f restricts to an injective function $X \backslash\{x\} \rightarrow Y \backslash\{f(x)\}$
- There are $(n-1)$! such functions, by induction
- Thus, there are $n(n-1)!=n$! injective functions $X \rightarrow Y$
- Now, take $X=\{1, \ldots, n\}=Y$
- Since injection between finite sets of the same order is bijective
- We can conclude that $\left|S_{n}\right|=n$!
- Note
- The sets must be finite
- Counterexample: $f: \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto 2 n$ is not bijective

Cycle

- Definition
- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Let $a_{1}, \ldots, a_{t} \in\{1, \ldots, n\}$
- The element of S_{n} given by
- $a_{i} \mapsto a_{i+1}$ for $1 \leq i \leq t-1$
- $a_{t} \mapsto a_{1}$
- $j \mapsto j$ if $j \notin\left\{a_{1}, \ldots a_{t}\right\}$
\circ is denoted by $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{t}}\right)$ and is called a cycle of length \boldsymbol{t}
- Example
- Let $\sigma=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \in S_{4}$, then
- $\left(\begin{array}{ccccc}i & 1 & 2 & 3 & 4 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \sigma(i) & 3 & 1 & 2 & 4\end{array}\right)$
- Notice: $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)=\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)=\left(\begin{array}{lll}2 & 1 & 3\end{array}\right)$

Disjoint Cycles

- Definition
- Two cycles $\left(a_{1}, \ldots a_{t}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ are disjoint if
- $\left\{a_{1}, \ldots \boldsymbol{a}_{t}\right\} \cap\left\{b_{1}, \ldots, b_{k}\right\}=\varnothing$
- Example
- (12), (3 4) $\in S_{4}$ are disjoint
- Fact
- Every element of $\boldsymbol{S}_{\boldsymbol{n}}$ can be written as a product of disjoint cycles
- $S_{1}=\{(1)\}$
- $S_{2}=\{(1),(12)\}$
- $S_{3}=\left\{(1),(12),(13),\left(\begin{array}{ll}2 & 3\end{array}\right),(123),(132)\right\}$
- $S_{4}=\left\{(1),(12),(13),(14),(23),(24),\left(\begin{array}{ll}2\end{array}\right),(123),(124),(132),(142),(1\right.$ 3 4), (143), (2 34), (2 4 3), (1 23 4), (1 24 3), (1 324), (1 34 2), (1 423), (1432), (12)(34), (14)(23), (13)(24)\}
- Note: We write the identity of S_{n} as (1)

Cycle Decomposition for Permutations

- Algorithm

Step	Example
Let $a:=\min \{x \in \mathbb{N} \mid x$ not appeared in previous cycles $\}$ Begin the new cycle: (a	(1
Let $b:=\sigma(a)$ If $b=a$ - close the cycle with a right parenthesis - return to step 1 If $b \neq a$ - write b next to a in this cycle: $(a b$	$\begin{aligned} & \sigma(1)=12=b \\ & 12 \neq 1 \\ & \text { So write (1 } 12 \end{aligned}$
Let $c:=\sigma(b)$ If $c=a$ - close the cycle with a right parenthesis - return to step 1 If $c \neq a$ - write c next to in this cycle: ($a b c$ $b:=c$ and repeat this step until the cycle closes	$\begin{aligned} & \sigma(12)=8 \\ & 8 \neq 1 \end{aligned}$ So continue the cycle as: $\text { (1 } 128$
Naturally this process stops when all the numbers from	$\sigma=(1128104)(213)$

$\{1,2, \ldots, n\}$ have appeared in some cycle.	$(3)\left(\begin{array}{llll}5 & 1 & 1 & 7\end{array}\right)\left(\begin{array}{ll}6 & 9\end{array}\right)$
Remove all cycles of length 1	$\sigma=\left(\begin{array}{llll}1 & 1 & 2 & 8\end{array} 104\right)\left(\begin{array}{lll}2 & 1 & 3 \\ (5) & 1 & 7\end{array}\right)\left(\begin{array}{ll}6 & 9\end{array}\right)$

- Example
- Take $\sigma \in S_{13}$ to be the following
$\circ\left(\begin{array}{cccccccccccccc}i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ \downarrow & \downarrow \\ \sigma(i) & 12 & 13 & 3 & 1 & 11 & 9 & 5 & 10 & 6 & 4 & 7 & 8 & 3\end{array}\right)$
- Start with $1, \sigma(1)=12$, so write 12 after 1 .
- Keep going until you cycle back to 1
- Start with the smallest number which hasn't yet appeared, and repeat.
- Repeat this step until $1, \ldots, 13$ have all appeared.

Product of Cycles

- Reminder
- Read from right to left
- Example
- Write $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)(12)(34)$ as a product of disjoint cycles
- What is $\sigma(1)$?
- (3 4) maps 1 to 1
- (12) maps 1 to 2
- (12 3) maps 2 to 3
- Thus $\sigma(1)=3$
- Similarly $\sigma(3)=4, \sigma(4)=1$
- Thus we close the cycle (1 34)
- We won't write down (2), since it is the identity
- Thus $\sigma=\left(\begin{array}{ll}1 & 3\end{array}\right)(2)=\left(\begin{array}{ll}1 & 3\end{array}\right)$
- Note: $\sigma \in S_{4}$, but it make sense to think of $\sigma \in S_{n}$ for $n>4$
- Commutativity of S_{n}
- $\left(\begin{array}{ll}1 & 2\end{array}\right)(123)=\left(\begin{array}{ll}2 & 3\end{array}\right)$
- $(123)(12)=\left(\begin{array}{ll}3 & 1\end{array}\right)$
- In particular S_{3} is not abelian
- Therefore $\boldsymbol{S}_{\boldsymbol{n}}$ is not abelian for $n \geq 3$

Homomorphism, Isomorphism

Homomorphism

- Definition
- Let G, H be groups
- A function $f: G \rightarrow H$ is a homomorphism if
- $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right), \forall g_{1}, g_{2} \in G$
- One says f "respects", or "preserves" the group operation
- Trivial Examples
- Let G be a group
- The identity map $f: G \rightarrow G$ given by $g \mapsto g$ is a homomorphism
- $f\left(g_{1}\right) f\left(g_{2}\right)=1 \cdot 1=1=f\left(g_{1} g_{2}\right)$
- The map $f: G \rightarrow G$ given by $g \mapsto 1$ is a homomorphism
- This only works if we send every element of G to 1
- If $x \in G \backslash\{1\}$, and $f: G \rightarrow G$ is given by $g \mapsto x, \forall g$
- $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right)\left(g_{2}\right) \Rightarrow x=x^{2}$
- Thus $x=1$
- This is impossible since $x \in G \backslash\{1\}$
- Example 1
- Let $f: \mathbb{R} \rightarrow \mathbb{R}^{\times}$be given by $f(x)=e^{x}$
- Then f is a homomorphism
- $f\left(x_{1}+x_{2}\right)=e^{x_{1}+x_{2}}=e^{x_{1}} e^{x_{2}}=f\left(x_{1}\right) f\left(x_{2}\right)$
- Example 2
- Let G be a group, and let $x \in G$
- The map $f: G \rightarrow G, g \mapsto x g x^{-1}$ is a homomorphism
- $f\left(g_{1} g_{2}\right)=x g_{1} g_{2} x^{-1}=x g_{1} x^{-1} x g_{2} x^{-1}=f\left(g_{1}\right) f\left(g_{2}\right)$
- This homomorphism is called conjugation by \boldsymbol{x}
- Example 3
- Let $n \in \mathbb{Z}$ be fixed
- Is $f: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto x+n$ a homomorphism?
- Only when $n=0$
- $f(0)+f(0)=f(0) \Rightarrow n+n=n \Rightarrow n=0$
- Example 4
- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Is $\alpha: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto x^{n}$ a homomorphism?
- Only when $n=1$
- When $n=0$
- $\alpha(x)=x^{0}=1, \forall x \backslash\{0\}$
- Only constant mapping to identity is a homomorphism
- But 1 is not the identity (0 is)
- So this doesn't work
- For $n \geq 2$
- $\alpha\left(x_{1}+x_{2}\right)=\alpha\left(x_{1}\right)+\alpha\left(x_{2}\right) \Leftrightarrow\left(x_{1}+x_{2}\right)^{n}=x_{1}^{n}+x_{2}^{n}$
- But this is not always true
- For instance, when $x_{1}=x_{2}=1,2^{n} \neq 2$ for $n \geq 2$
- Example 5
- Let $n \in \mathbb{Z}$ be fixed
- $\beta: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto n x$ is a homomorphism
- $\beta\left(x_{1}+x_{2}\right)=n\left(x_{1}+x_{2}\right)=n x_{1}+n x_{2}=\beta\left(x_{1}\right)+\beta\left(x_{2}\right)$
- Example 6
- The previous examples is a special case of the following:
- Let G be a group, and $n \in \mathbb{Z}$
- Define $\beta: G \rightarrow G, g \mapsto g^{n}$, then
- β is a homomorphism $\forall n \in \mathbb{Z} \Leftrightarrow G$ is abelian
- Proof: homomorphism \Rightarrow abelian
- $\operatorname{Say} n=-1$
- Let $g_{1}, g_{2} \in G$
- Since β is a homomorphism
- $\beta\left(g_{1}, g_{2}\right)=\beta\left(g_{1}\right) \beta\left(g_{2}\right)$
- $\left(g_{1} g_{2}\right)^{-1}=g_{1}^{-1} g_{2}^{-1}$
- $g_{2}^{-1} g_{1}^{-1}=g_{1}^{-1} g_{2}^{-1}$
- $\left(g_{2}^{-1} g_{1}^{-1}\right)^{-1}=\left(g_{1}^{-1} g_{2}^{-1}\right)^{-1}$
- $\left(g_{1}^{-1}\right)^{-1}\left(g_{2}^{-1}\right)^{-1}=\left(g_{2}^{-1}\right)^{-1}\left(g_{1}^{-1}\right)^{-1}$
- $g_{1} g_{2}=g_{2} g_{1}$
- Thus G is abelian
- Proof: abelian \Rightarrow homomorphism
- Let $g, h \in G$
- First, suppose $n \geq 0$
\square We argue by induction on n
- If $n=0$, this is obvious
- Suppose $n>0$, then
- $\beta(g h)=(g h)^{n}=g h(g h)^{n-1}=g h g^{n-1} h^{n-1}$

$$
\square=g g^{n-1} h h^{n-1}=g^{n} h^{n}=\beta(g) \beta(h)
$$

- Now suppose $n<0$
- Then $x \mapsto x^{-n}$ is a homomorphism, by the above argument
- So $(a b)^{-m}=a^{-m} b^{-m}, \forall a, b \in G$
- Now, take $a=g^{-1}$ and $b=h^{-1}$ to obtain the result

Isomorphism

- Definition
- Let G, H be groups
- A homomorphism $\alpha: G \rightarrow H$ is a isomorphism if
- there is a homomorphism $\beta: H \rightarrow G$ s.t.
- $\boldsymbol{\alpha} \boldsymbol{\beta}=\boldsymbol{i d} \boldsymbol{d}_{\boldsymbol{H}}$, and
- $\beta \alpha=i d_{G}$
- In this case, we say G and H are isomorphic
- Fact
- $\alpha: G \rightarrow H$ is an isomorphism $\Leftrightarrow \alpha$ is a bijective homomorphism
- Proof: isomorphism \Rightarrow bijective homomorphism
- This is clear
- Proof: bijective homomorphism \Rightarrow isomorphism
- We need to show that α^{-1} is a homomorphism
- Let $h_{1}, h_{2} \in H$
- Choose $g_{1}, g_{2} \in G$ s.t. $\alpha\left(g_{1}\right)=h_{1}$ and $\alpha\left(g_{2}\right)=h_{2}$
- Then

$$
\begin{aligned}
& \square \\
& \quad \alpha^{-1}\left(h_{1} h_{2}\right) \\
& \square=\alpha^{-1}\left(\alpha\left(g_{1}\right) \alpha\left(g_{2}\right)\right) \\
& \square=\alpha^{-1}\left(\alpha\left(g_{1} g_{2}\right)\right) \\
& \square=g_{1} g_{2} \\
& \square=\alpha^{-1}\left(h_{1}\right) f^{-1}\left(h_{2}\right)
\end{aligned}
$$

- Example
- $\mathbb{R}_{>0}:=\{r \in \mathbb{R} \mid r>0\}$ is a group under multiplication
- Define $f: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ where $f(x)=e^{x}$
- Then f is a homomorphism
- Moreover, f is an isomorphism
- The inverse of f is \ln
- Observation
- If G, H are isomorphic groups, then $|\boldsymbol{G}|=|\boldsymbol{H}|$

Homomorphism, Isomorphism, Subgroup

Proposition 16: Isomorphism Preserves Commutativity

- Statement
- Let $f: G \rightarrow H$ be an isomorphism
- \boldsymbol{G} is abelian if and only if \boldsymbol{H} is abelian
- Proof
- (\Rightarrow) Suppose G is abelian
- Let $h, h^{\prime} \in H$
- Choose $g, g^{\prime} \in G$ s.t. $f(g)=h, f\left(g^{\prime}\right)=h^{\prime}$
- Then $h h^{\prime}=f(g) f\left(g^{\prime}\right)=f\left(g g^{\prime}\right)=f\left(g^{\prime} g\right)=f\left(g^{\prime}\right) f(g)=h^{\prime} h$
- (\Longleftarrow) Apply the same argument with $f^{-1}: H \rightarrow G$

Proposition 16: Injective Homomorphism Preserves Order

- Statement
- Let $f: G \rightarrow H$ be an injective homomorphism
- Then $\forall \boldsymbol{g} \in \boldsymbol{G},|\boldsymbol{g}|=|\boldsymbol{f}(\boldsymbol{g})|$
- Proof
- $f\left(1_{G}\right)=1_{H}$
- Let $g \in G$, then
- $f(g)=f\left(1_{G} \cdot g\right)=f\left(1_{G}\right) \cdot f(g)$
- By Cancellation Law, $f\left(1_{G}\right)=1_{H}$
- When $|g|<\infty$
- Let $n:=|g|$, then
- $1_{H}=f\left(1_{G}\right)=f\left(g^{n}\right)=f(g)^{n}$
- (This last equality follows from an induction argument)
- Therefore, $|f(g)| \leq n$
- Now, apply this same argument with f replaced by f^{-1}
- So we can conclude that $|f(g)|=n$
- When $|g|=\infty$
- If $|f(g)|<\infty$
- The above argument shows $|g|<\infty$
- This is impossible
- Thus, $|f(g)|=\infty$
- G, H are groups, and $|G|=|H|$, is it the case that $G \cong H$? No
- Example $1: \mathbb{Z} \nsubseteq \mathbb{Q}$
- In fact, any homomorphism $f: \mathbb{Z} \rightarrow \mathbb{Q}$ is not surjective
- Let $f: \mathbb{Z} \rightarrow \mathbb{Q}$ be a homomorphism
- If $f(a)=0, \forall a \in \mathbb{Z}$
- Obviously f is not surjective
- Assume otherwise
- By induction, $f(a)=f \underbrace{(1+1+\cdots+1)}_{n \text { copies }}=a \cdot f(1)$
- By assumption, $f(1) \neq 0$, since otherwise $f=0$
- We know that $\frac{f(1)}{2} \in \mathbb{Q}$
- But $\nexists a \in \mathbb{Z}$ s.t. $\frac{f(1)}{2}=a f(1)$
- i. e. $\frac{f(1)}{2} \notin \operatorname{im}(f)$
- Thus f is not surjective
- Example $2: \mathbb{Z} / 6 \mathbb{Z} \neq S_{3}$
- $|\mathbb{Z} / 6 \mathbb{Z}|=\left|S_{3}\right|$, but $\mathbb{Z} / 6 \mathbb{Z} \nsubseteq S_{3}$
- Because $\mathbb{Z} / 6 \mathbb{Z}$ is abelian, but S_{3} is not
- Also $|\overline{1}|=6$ in $\mathbb{Z} / 6 \mathbb{Z}$, but S_{3} have no element of order 6

Orders of Elements in S_{n}

- Let $\sigma \in S_{n}$
- If $\sigma=\sigma_{1} \cdots \sigma_{m}$, where $\sigma_{1} \cdots \sigma_{m}$ are disjoint cycles, then $|\sigma|=\operatorname{lcm}\left(\left|\sigma_{1}\right|, \ldots,\left|\sigma_{m}\right|\right)$
- If σ is a t-cycle, then $|\sigma|=t$

Subgroup

- Definition
- Let G be a group, and let $H \subseteq G$
- H is a subgroup if
- $H \neq \emptyset$ (nonempty)
- If $h, h^{\prime} \in H$, then $h h^{\prime} \in H$ (closed under the operation)
- If $h \in H$, then $h^{-1} \in H$ (closed under inverse)
- If H is a subgroup of G, we write $H \leq G$
- Note
- Subgroups of a group are also groups
- Example 1
\circ If G is a group, then $\boldsymbol{G} \leq \boldsymbol{G}$ and $\{\mathbf{1}\} \leq \boldsymbol{G}$
- Example 2
- If $m, n \in \mathbb{Z}_{>0}$, and $\boldsymbol{n} \leq \boldsymbol{m}$, then $\boldsymbol{S}_{\boldsymbol{n}} \leq \boldsymbol{S}_{\boldsymbol{m}}$
- Example 3
- Let G be a group, and let $g \in G$
- Then $\langle\boldsymbol{g}\rangle:=\left\{\boldsymbol{g}^{\boldsymbol{n}} \mid \boldsymbol{n} \in \mathbb{Z}\right\} \leq \boldsymbol{G}$
- $\langle g\rangle$ is called the cyclic subgroup generated by \boldsymbol{g}
- $\langle g\rangle \neq \emptyset$, since $g \in\langle g\rangle$
- Let $g^{i}, g^{j} \in\langle g\rangle$, then $g^{i} g^{j}=g^{i j} \in\langle g\rangle$
- If $g^{i} \in\langle g\rangle$, then $\left(g^{i}\right)^{-1}=g^{-i} \in\langle g\rangle$

$D_{2 n}$, Subgroup Criterion, Special Subgroups

Regular n-gon

- A regular n-gon is a polygon with all sides and angles equal
$n=3$

equilateral triangle

square

regular
hexagon

regular
 pentagon

Symmetry

- Definition
- A symmetry of a regular n-gon is a way of
- picking up a copy of it
- moving it around in 3d
- setting it back down
- so that it exactly covers the original
- Examples
- Rotations
- Reflection

Dihedral Groups (Section 1.2)

- Definition
- $D_{2 n}:=\{$ symmetries of the n-gon $\}$ is called \boldsymbol{n}-th dihedral groups
- Note
- $\left|D_{2 n}\right|=2 n$ (proof on page 24)
- There are \boldsymbol{n} rotations and \boldsymbol{n} reflections
- Symmetries of n-gons are determined by
- the permutations of the vertices they induce
- Example: $n=3$
- Rotations
- $120^{\circ}:(123)$
- 240ㅇ(132)
- $360^{\circ}:(1)$
- Reflections
- (2 3)
- (13)
- (12)
- $D_{6} \cong\{(1),(23),(13),(12),(132),(123)\}=S_{3}$

- Example: $n=4$
- Rotations
- $90^{\circ}:\left(\begin{array}{ll}1 & 2\end{array} 4\right)$
- $180^{\circ}:(13)(24)$
- $270^{\circ}:(1432)$
- 360° : (1)
- Reflections
- (24)
- (13)
- (1 4)(2 3)
- (12)(34)
- $D_{8} \cong\{(1),(1234),(13)(24),(1432),(13),(24),(14)(23),(12)(34)\} \leq S_{4}$

- Fact
- In general $D_{2 n}$ is isomorphic to a subgroup of $\boldsymbol{S}_{\boldsymbol{n}}$
- Every finite group is isomorphic to a subgroup of a symmetric group

Proposition 17: The Subgroup Criterion

- Statement
- A subset H of a group G is a subgroup iff
- $\boldsymbol{H} \neq \emptyset$ and $\forall x, y \in H, \boldsymbol{x y}^{\mathbf{- 1}} \in \boldsymbol{H}$
- Recall the original definition
- A subset H of a group G is a subgroup iff
- $\boldsymbol{H} \neq \varnothing$
- $\forall \boldsymbol{h}, \boldsymbol{h}^{\prime} \in \boldsymbol{H}, \boldsymbol{h} \boldsymbol{h}^{\prime} \in \boldsymbol{H}$
- $\forall h \in H, h^{-1} \in H$
- Proof (\Rightarrow)
- This is Clear
- Proof ($\Leftarrow)$
- Closed under multiplication
- Let $x \in H$
- $1 \cdot x^{-1} \in H$
- Thus, $x^{-1} \in H$
- Closed under inversion
- Let $x, y \in H$, then $y^{-1} \in H$
- So $x\left(y^{-1}\right)^{-1} \in H$
- Thus, $x y \in H$

Examples of Subgroups

- Example 1
- $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$
- Example 2
- Definition
- Fix $n \in \mathbb{Z}_{>0}$
- $\mathrm{SL}_{n}(\mathbb{R}):=\left\{A \in \mathrm{GL}_{n}(\mathbb{R}) \mid \operatorname{det} A=1\right\}$ is called the special linear group
- Claim
- $\mathrm{SL}_{n}(\mathbb{R}) \leq \mathrm{GL}_{n}(\mathbb{R})$
- Proof
- $\mathrm{SL}_{n}(\mathbb{R}) \neq \emptyset$, since $I_{n} \in \mathrm{SL}_{n}(\mathbb{R})$
- Let $A, B \in \mathrm{SL}_{n}(\mathbb{R})$
- $\operatorname{det}\left(A B^{-1}\right)=\operatorname{det} A \cdot \operatorname{det} B^{-1}=\frac{\operatorname{det} A}{\operatorname{det} B}=\frac{1}{1}=1$
- Example 3
- Definition
- If G is a group
- $Z(G):=\{a \in G \mid a g=g a, \forall g \in G\}$ is called the center or G
- Claim
- $Z(G) \leq G$
- Proof
- $Z(G) \neq \emptyset$, since $1 \in Z(G)$
- Let $a, b \in Z(G)$
- If $g \in G, a b g=a g b=g a b$
- so $Z(G)$ is closed under multiplication
- Also $a^{-1} g=\left(g^{-1} a\right)^{-1}=\left(a g^{-1}\right)^{-1}=g a^{-1}$
- so $Z(G)$ is closed under inversion

Properties of Cyclic Group, Order of g^{a}

Cyclic Group

- Definition
- A group G is cyclic if $\exists \boldsymbol{g} \in \boldsymbol{G}$ s.t. $\langle\boldsymbol{g}\rangle=\boldsymbol{G}$
- Note
- A finite group \boldsymbol{G} of order \boldsymbol{n} is cyclic iff $\exists \boldsymbol{g} \in \boldsymbol{G}$ s.t. $|\boldsymbol{g}|=\boldsymbol{n}$
- Example $1: \mathbb{Z}$ is cyclic
- $\mathbb{Z}=\langle 1\rangle$
- $\mathbb{Z}=\langle-1\rangle$
- Example 2: $\mathbb{Z} / n \mathbb{Z}$ is cyclic
- If $(a, n)=1$, then $\mathbb{Z} / n \mathbb{Z}=\langle\bar{a}\rangle$
- Example 3: S_{3} is not cyclic
- Note: If $\left(a_{1}, \ldots, a_{t}\right) \in S_{n}$ is a t-cycle, then $\left|\left(a_{1}, \ldots, a_{t}\right)\right|=t$
- $S_{3}=\{(1),(12),(13),(23),(123),(132)\}$
- Every element in S_{3} have order 1,2, or 3
- So S_{3} cannot be cyclic

Proposition 18: Isomorphism of Cyclic Group

- Let G be a cyclic group
- If $|\boldsymbol{G}|=\boldsymbol{n}<\infty$, then $\boldsymbol{G} \cong \mathbb{Z} / \boldsymbol{n} \mathbb{Z}$
- Choose $g \in G$ s.t. $G=\langle g\rangle$
- Define a map $f: \mathbb{Z} / n \mathbb{Z} \rightarrow G$ given by $\bar{a} \mapsto g^{a}$
- Well-definedness
- We need to check that f is well-defined.
- That is we must show that if $\bar{a}=\bar{b}$ in $\mathbb{Z} / n \mathbb{Z}$, then $f(\bar{a})=f(\bar{b})$
- Let $a, b \in \mathbb{Z}$, suppose $\bar{a}=\bar{b}$ in $\mathbb{Z} / n \mathbb{Z}$
- Choose $q \in \mathbb{Z} \mathrm{~s}, \mathrm{t}, n q=a-b$
- $f(\bar{a})=g^{a}=g^{n q+b}=g^{n q} g^{b}=g^{b}=f(\bar{b})$
- Thus, f is well-defined
- Homomorphism
- $f(\bar{a}+\bar{b})=g^{a+b}=g^{a} g^{b}=f(\bar{a}) f(\bar{b})$
- Thus, f is a homomorphism
- Surjectivity
- Surjectivity is clear by definition
- Injectivity
- If $f(\bar{a})=f(\bar{b})$
- $g^{a}=g^{b}$
- $g^{a-b}=1$
- $|g| \mid(a-b)$
- $n \mid(a-b)$
- $\bar{a}=\bar{b}$
- Thus f is injective
- If $|\boldsymbol{G}|=\infty$, then $\boldsymbol{G} \cong \mathbb{Z}$
- Choose $g \in G$ s.t. $G=\langle g\rangle$
- Define a map $f: \mathbb{Z} \rightarrow G$ given by $n \mapsto g^{n}$
- Homomorphism
- If $n_{1}, n_{2} \in \mathbb{Z}$
- then $f\left(n_{1}+n_{2}\right)=g^{n_{1}+n_{2}}=g^{n_{1}} g^{n_{2}}=f\left(n_{1}\right) f\left(n_{2}\right)$
- Thus, f is a homomorphism
- Surjectivity
- Surjectivity is clear
- Injectivity
- Suppose $f\left(n_{1}\right)=f\left(n_{2}\right)$
- Then $g^{n_{1}}=g^{n_{2}}$
- Without loss of generality, assume $n_{1} \geq n_{2}$
- Then $g^{n_{1}-n_{2}}=1$
- Since $|g|=\infty$
- $n_{1}-n_{2}=0$
- i.e. $n_{1}=n_{2}$
- Thus f is injective

Least Common Multiple

- Definition
- Let $a, b \in \mathbb{Z}$ where one of a, b is nonzero.
- A least common multiple of a and b is a positive integer m s.t.
- $a \mid m$ and $b \mid m$
- If $a \mid m^{\prime}$ and $b \mid m^{\prime}$, then $m \mid m^{\prime}$
- We denote the least common multiple of a and b by $[a, b]$
- Define $[0,0]:=0$
- Uniqueness
- Similar to the proof of uniqueness of greatest common divisor
- Existence: If $a, b \in \mathbb{Z}$, and one of a, b is nonzero, then $[\boldsymbol{a}, \boldsymbol{b}]=\frac{\boldsymbol{a b}}{(\boldsymbol{a}, \boldsymbol{b})}$
- Let $m:=\frac{a b}{(a, b)}$
- $a \mid m$ and $b \mid m$
- This is true since $\frac{a b}{(a, b)}$ is a multiple of a and b
- Suppose $a \mid m^{\prime}$ and $b \mid m^{\prime}$
- Choose $q, q^{\prime} \in \mathbb{Z}$ s.t. $a q=m^{\prime}$ and $b q^{\prime}=m^{\prime}$
- Choose $x, y \in \mathbb{Z}$ s.t. $a x+b y=(a, b)$, then

$$
\begin{aligned}
& \square m^{\prime}(a, b) \\
& =m^{\prime}(a x+b y) \\
& =m^{\prime} a x+m^{\prime} b y \\
& =b q^{\prime} a x+a q b y \\
& =a b\left(q^{\prime} x+q y\right)
\end{aligned}
$$

- Thus $a b \mid\left(m^{\prime}(a, b)\right)$
- Therefore $\frac{a b}{(a, b)}\left|m^{\prime} \Rightarrow m\right| m^{\prime}$

Proposition 19: Order of g^{a}

- Statement
- If $\boldsymbol{G}=\langle\boldsymbol{g}\rangle$ is cyclic, and $|G|=n<\infty$, then $\left|\boldsymbol{g}^{\boldsymbol{a}}\right|=\frac{\boldsymbol{n}}{(\boldsymbol{a}, \boldsymbol{n})}$
- Proof
- Let $a \in \mathbb{Z}$
- When $a=0$, this is clear, since $\left|g^{0}\right|=\frac{n}{(0, n)}=\frac{n}{n}=1$
- So assume $a \neq 0$
- $\left|g^{a}\right| \left\lvert\, \frac{n}{(a, n)}\right.$
- $\left(g^{a}\right)^{\frac{n}{(a, n)}}=g^{\frac{a n}{(a, n)}}=g^{[a, n]}=g^{k n}$ for some integer k
- Thus, $\left(g^{a}\right)^{\frac{n}{(a, n)}}=\left(g^{n}\right)^{k}=1$, since $n=|g|$
- $\frac{n}{(a, n)}\left|\left|g^{a}\right|\right.$
- Let $t=\left|g^{a}\right|$, then $\left(g^{a}\right)^{t}=1$
- By HW3 \#1, $g^{a t}=1 \Rightarrow n \mid a t$
- Thus, at is a common multiple of n and a
- $\quad[a, n]\left|a t \Rightarrow \frac{a n}{(a, n)}\right| a t \Rightarrow \frac{n}{(a, n)}\left|t \Rightarrow \frac{n}{(a, n)}\right|\left|g^{a}\right|$
- Therefore $\frac{n}{(a, n)}=\left|g^{a}\right|$

Subgroups of Cyclic Groups, $\langle A\rangle$

Friday, February 23, 2018

Theorem 20: Subgroup of Cyclic Group is Cyclic

- Statement
- Let $G=\langle g\rangle$ be a cyclic group
- Then every subgroup of \boldsymbol{G} is cyclic
- More precisely, if $H \leq G$, then either $\boldsymbol{H}=\{\mathbf{1}\}$ or $\boldsymbol{H}=\left\langle\boldsymbol{g}^{\boldsymbol{d}}\right\rangle$, where
- d is the smallest positive integer s.t. $g^{d} \in H$
- Proof
- Assume $H \neq\{1\}$
- Let $S:=\left\{b \in \mathbb{Z}_{>0} \mid g^{b} \in H\right\}$
- $\left\langle g^{d}\right\rangle \subseteq H$
- Choose $a \in \mathbb{Z} \backslash\{0\}$ s.t. $g^{a} \in H$, then $\left(g^{a}\right)^{-1}=g^{-a} \in H$
- Thus, H contains some positive power of g, and so $S \neq \emptyset$
- By the Well-Ordering Principle, S contains a minimum element d
- Therefore, $\left\langle g^{d}\right\rangle \subseteq H$
- $H \subseteq\left\langle g^{d}\right\rangle$
- Let $h \in H$, then $h=g^{a}$ for some $a \in \mathbb{Z}$
- Choose $q, r \in \mathbb{Z}$ s.t. $a=q d+r, 0 \leq r<d$
- $g^{d} \in H \Rightarrow g^{a-q d} \in H \Rightarrow g^{r} \in H$
- If $r>0$, then $r \in S$, which is impossible since $r<d$
- The minimality of d forces $r=0$
- So $h=g^{a}=g^{q d} \in\left\langle g^{d}\right\rangle, \forall h \in H$
- Therefore $H \subseteq\left\langle g^{d}\right\rangle$
- Therefore $H=\left\langle g^{d}\right\rangle$

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order

- Statement
- Let $G=\langle g\rangle$ be a finite cyclic group of order n

○ For all positive integers \boldsymbol{a} dividing \boldsymbol{n}, \exists ! subgroup $\boldsymbol{H} \leq \boldsymbol{G}$ of order \boldsymbol{a}

- Moreover, this subgroup is $\left\langle\boldsymbol{g}^{\boldsymbol{d}}\right\rangle$, where $\boldsymbol{d}=\frac{\boldsymbol{n}}{\boldsymbol{a}}$
- Proof
- Let a be a positive divisor of n, and let $d:=\frac{n}{a}$
- Existence
- $\left|\left\langle g^{d}\right\rangle\right|=\frac{n}{(d, n)}=\frac{n}{d}=a$ by Proposition 19
- Uniqueness
- Suppose $H \leq G$ and $|H|=a$
- Then, $H=\left\langle g^{b}\right\rangle$, where b is the smallest positive integer s.t. $g^{b} \in H$
- We have $\frac{n}{d}=a=|H|=\left|\left\langle g^{b}\right\rangle\right|=\frac{n}{(n, b)}$ by Proposition 19
- Thus $d=(n, b)$ i.e. $d \mid b$
- So $g^{b} \in\left\langle g^{d}\right\rangle \Rightarrow H=\left\langle g^{b}\right\rangle \leq\left\langle g^{d}\right\rangle$
- Since $|H|=\left|\left\langle g^{d}\right\rangle\right|=a$, we have $H=\left\langle g^{d}\right\rangle$

Lemma: Intersection of Subgroups is Again a Subgroup

- Statement
- If $\left\{H_{i}\right\}_{i \in I}$ is a family of subgroups of G, then $\bigcap_{i \in I} \boldsymbol{H}_{\boldsymbol{i}} \leq \boldsymbol{G}$
- Proof
- Let $H:=\bigcap_{i \in I} H_{i}$
- $H \neq \varnothing$
- Since $1 \in H_{i}, \forall i \in I$
- Let $h_{1}, h_{2} \in H$
- Then $h_{1}, h_{2} \in H_{i}, \forall i \in I$
- $\Rightarrow h_{1} h_{2}^{-1} \in H_{i}, \forall i \in I$
- $\Rightarrow h_{1} h_{2}^{-1} \in H$

Subgroups Generated by Subsets of a Group (Section 2.4)

- Definition
- Let G be a group and $A \subseteq G$
- The subgroup generated by \boldsymbol{A} is
- the intersection of every subgroup of G containing A
- $\langle A\rangle:=\bigcap_{\substack{H \leq G \\ A \subseteq H}} H$
- Example
- If $A=\emptyset$, then $\langle A\rangle=\{1\}$
- If $A=\{1\}$, then $\langle A\rangle=\{1\}$

$\langle A\rangle$, Finitely Generated Group

Proposition 21: Construction of $\langle A\rangle$

- Statement
- If $A \subseteq G$, then $\langle\boldsymbol{A}\rangle=\left\{\boldsymbol{a}_{\mathbf{1}}^{\varepsilon_{1}} \boldsymbol{a}_{\mathbf{2}}^{\varepsilon_{2}} \ldots \boldsymbol{a}_{\boldsymbol{n}}^{\varepsilon_{n}} \mid \boldsymbol{n} \in \mathbb{Z}_{>0}, \boldsymbol{a}_{\boldsymbol{i}} \in \boldsymbol{A}, \boldsymbol{\varepsilon} \in\{ \pm \mathbf{1}\}\right\}$
- Note: When $n=0$, we get 1
- Proof
- Denote the right hand side by \bar{A}
- $\bar{A} \leq \mathrm{G}$
- $\bar{A} \neq \emptyset$, since $1 \in \bar{A}$ (take $n=0$)
- If $a=a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}}, b=b_{1}^{\delta_{1}} b_{2}^{\delta_{2}} \ldots b_{m}^{\delta_{m}} \in \bar{A}$
- Then $a b^{-1}=a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}} b_{m}^{-\delta_{1}} b_{m-1}^{-\delta_{2}} \ldots b_{1}^{-\delta_{m}} \in \bar{A}$
- Therefore $\bar{A} \leq \mathrm{G}$
- $\langle A\rangle \subseteq \bar{A}$
- Because $A \subseteq \bar{A}$, and $\langle A\rangle$ is the smallest subgroup of G containing A
- $\bar{A} \subseteq\langle A\rangle$
- Because every subgroup of G containing A (i.e. $\langle A\rangle)$ must contain
- every finite product of elements of A and their inverses.
- Therefore $\langle A\rangle=\bar{A}=\left\{a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}} \mid n \in \mathbb{Z}_{>0}, a_{i} \in A, \varepsilon \in\{ \pm 1\}\right\}$
- Example
- If G is a group, and $g \in G$, then $\langle\{g\}\rangle=\langle g\rangle$
- Note
- When G is abelian and $A \subseteq G$, then we have
$\circ\langle A\rangle=\left\{a_{1}^{n_{1}} \ldots a_{m}^{n_{m}} \mid n_{i} \in \mathbb{Z}, a_{i} \in A, m \in \mathbb{Z}_{\geq 0}\right\}$

Finitely Generated Group

- Definition
- A group G is finitely generated if
- There is a finite subset A of G s.t. $\langle\boldsymbol{A}\rangle=\boldsymbol{G}$
- Example 1
- Cyclic groups are finitely generated
- Example 2
- Finite groups are finitely generated
- Example 3
\circ If $\boldsymbol{G}, \boldsymbol{H}$ are finitely generated, then $\boldsymbol{G} \times \boldsymbol{H}$ is also finitely generated
- For instance, $\mathbb{Z} \times \mathbb{Z}$ is finitely generated by $A=\{(1,0),(0,1)\}$
- In particular, products of cyclic groups are finitely generated
- Every finitely generated abelian group is a product of cyclic groups
- (This is called the Fundamental Theorem of Finite Abelian Groups)
- Example 4

- Every finitely generated subgroup of \mathbb{Q} is cyclic.

- It follows that \mathbb{Q} is not finitely generated, since \mathbb{Q} is not cyclic $(\mathbb{Q} \neq \mathbb{Z})$
- Suppose $H \leq \mathbb{Q}$, and $H=\left\langle\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n}}{b_{n}}\right\rangle$ where $a_{i}, b_{i} \in \mathbb{Z}$ and $b_{i} \neq 0$
- Without loss of generality, assume $a_{i} \neq 0$
- Let $S:=\left\{x \in \mathbb{Z}_{>0} \left\lvert\, \frac{x}{b_{1} b_{2} \ldots b_{n}} \in H\right.\right\}$
- $S \neq \emptyset$, since $\pm \frac{a_{1} a_{2} \ldots a_{n}}{b_{1} b_{2} \ldots b_{n}} \in H$
- Applying the Well-Ordering Principle
- We can choose a minimum element $e \in S$
- Claim: $H=\left\langle\frac{e}{b_{1} b_{2} \ldots b_{n}}\right\rangle$
- Notice that $H=\left\{\left.c_{1} \frac{a_{1}}{b_{1}}+c_{2} \frac{a_{2}}{b_{2}}+\cdots+c_{n} \frac{a_{n}}{b_{n}} \right\rvert\, c_{i} \in \mathbb{Z}\right\}$
- So we only need to check that $\frac{a_{i}}{b_{i}} \in\left\langle\frac{e}{b_{1} b_{2} \ldots b_{n}}\right\rangle \forall i$
- Let i be fixed
- Set $z:=b_{1} \ldots b_{i-1} a_{i} b_{i+1} \ldots b_{n}$
- So $\frac{a_{i}}{b_{i}}=\frac{z}{b_{1} b_{2} \ldots b_{n}}$
- Choose $q, r \in \mathbb{Z}$ s.t $z=q e+r, 0 \leq r<e$
- $\frac{z}{b_{1} b_{2} \ldots b_{n}}-q\left(\frac{e}{b_{1} b_{2} \ldots b_{n}}\right)=\frac{z-q e}{b_{1} b_{2} \ldots b_{n}} \in H \Rightarrow \frac{r}{b_{1} b_{2} \ldots b_{n}} \in H$
- The minimality of e forces $r=0$
- This shows $e \mid z$
- So $\frac{a_{i}}{b_{i}}=\frac{z}{b_{1} b_{2} \ldots b_{n}} \in\left\langle\frac{e}{b_{1} b_{2} \ldots b_{n}}\right)$
- Therefore $H=\left\langle\frac{e}{b_{1} b_{2} \ldots b_{n}}\right)$

Coset, Normal Subgroup

Coset

- If G is a group, $H \leq G$, and $g \in G$
- $g H:=\{g h \mid h \in H\}$ is called a left coset
- $H g:=\{h g \mid h \in H\}$ is called a right coset
- An element of a coset is called a representative of the coset

Proposition 22: Properties of Coset

- Let G be a group and $H \leq G$, then
- For $g_{1}, g_{2} \in G, \boldsymbol{g}_{\mathbf{1}} \boldsymbol{H}=\boldsymbol{g}_{\mathbf{2}} \boldsymbol{H} \Leftrightarrow \boldsymbol{g}_{\mathbf{2}}^{\mathbf{- 1}} \boldsymbol{g}_{\mathbf{1}} \in \boldsymbol{H}$
- (\Rightarrow) Choose $h \in H$ s.t. $g_{1}=g_{2} h\left(\right.$ since $\left.g_{1}=g_{1} \cdot 1 \in g_{1} H=g_{2} H\right)$
- Therefore $g_{2}^{-1} g_{1}=h \in H$
- (\Longleftarrow) Choose $h \in H$ s.t. $g_{1}=g_{2} h$
- $\forall h^{\prime} \in H, g_{1} h^{\prime}=g_{2} \underbrace{h h^{\prime}}_{\in H} \in g_{2} H \Rightarrow g_{1} H \subseteq g_{2} H$
- $\forall h^{\prime} \in H, g_{2} h^{\prime}=g_{1} \underbrace{h^{-1} h^{\prime}}_{\epsilon H} \in g_{1} H \Rightarrow g_{2} H \subseteq g_{1} H$
- Therefore $g_{1} H=g_{2} H$
- The relation \sim on G given by $g_{1} \sim g_{2}$ iff $g_{1} \in g_{2} H$ is an equivalence relation
- Reflexive
- If $g \in G$, then $g=g \cdot 1 \in g H$
- So $g \sim g$
- Symmetric
- If $g_{1}, g_{2} \in G$, and $g_{1} \sim g_{2}$ i.e. $g_{1} \in g_{2} H$, then
- $g_{1}=g_{2} h$ for some $h \in H$
- Thus $g_{1} h^{-1}=g_{2}$
- So $g_{2} \in g_{1} H$, which means $g_{2} \sim g_{1}$
- Transitive
- Suppose $g_{1} \sim g_{2}$ and $g_{2} \sim g_{3}$
- This means $g_{1} \in g_{2} H$ and $g_{2} \in g_{3} H$
- Choose $h_{1}, h_{2} \in H$ s.t. $g_{1}=g_{2} h$, and $g_{2}=g_{3} h$
- Then $g_{1}=g_{3} h_{2} h_{1} \in g_{3} H$
- So $g_{1} \sim g_{2}$
- In particular, left/right cosets are either equal or disjoint
- Suppose $g_{1}, g_{2} \in G$, and $z \in g_{1} H \cap g_{2} H$
- Suppose $x \in g_{1} H$, then $x \sim g_{1} \sim z \sim g_{2}$
- So $x \in g_{2} H$
- This implies that $g_{1} H \subseteq g_{2} H$
- To get $g_{2} H \subseteq g_{1} H$, exchange the roles of g_{1} and g_{2}
- Therefore $g_{1} H=g_{2} H$
- Example 1
- Let G be a group, $H \leq G$
- If $\boldsymbol{h} \in \boldsymbol{H}$, then $\boldsymbol{h} \boldsymbol{H}=\boldsymbol{H}$
- Let $h^{\prime} \in H$, then $h^{\prime}=h\left(h^{-1} h^{\prime}\right) \in h H$
- Thus $H \subseteq h H$
- By closure under the operation, $h H \subseteq H$
- Therefore $h H=H$
- Example 2
- Let $G=\mathbb{Z} / 6 \mathbb{Z}$, and $H=$ unique subgroup of $\mathbb{Z} / 6 \mathbb{Z}$ of order 2
- $H=\{\overline{0}, \overline{3}\} \leq \mathbb{Z} / 6 \mathbb{Z}$
- Left cosets of H in G
- $\overline{0}+\{\overline{0}, \overline{3}\}=\{\overline{0}, \overline{3}\}$
- $\overline{1}+\{\overline{0}, \overline{3}\}=\{\overline{1}, \overline{4}\}$
- $\overline{2}+\{\overline{0}, \overline{3}\}=\{\overline{2}, \overline{5}\}$
- $\overline{3}+\{\overline{0}, \overline{3}\}=\{\overline{0}, \overline{3}\}$
- $\overline{4}+\{\overline{0}, \overline{3}\}=\{\overline{1}, \overline{4}\}$
- $\overline{5}+\{\overline{0}, \overline{3}\}=\{\overline{2}, \overline{5}\}$
- Note
- $|G|=6,|H|=2$, and H has 3 distinct cosets $(2 \cdot 3=6)$
- If G is a finite group, and $H \leq G$, then $|H|||G|$, and
- H has $\frac{|G|}{|H|}$ distinct left (or right) cosets in G
- This is called the Lagrange's Theorem

Normal Subgroup

- Definition
- Let G be a group, $N \leq G$
- N is a normal subgroup if $\boldsymbol{g n g}^{-\mathbf{1}} \in \boldsymbol{N}, \forall \boldsymbol{n} \in \boldsymbol{N}, \forall \boldsymbol{g} \in \boldsymbol{G}$
- In other words, \boldsymbol{N} is closed under conjugation
- If $N \leq G$ is normal, we write $N \unlhd G$
- Example 1
- If \boldsymbol{G} is abelian, every subgroup of \boldsymbol{G} is normal
- Suppose $H \leq G$
- Let $h \in H$ and $g \in G$
- Then $g h g^{-1}=h g g^{-1}=h \in H$
- Example 2
- Let $G=S_{3}, H=\langle(12)\rangle$
- Suppose $g=\left(\begin{array}{ll}1 & 3\end{array}\right) \in G$, and $h=(12) \in H$

- Therefore $H \nsubseteq G$
- Example 3
- 〈(1 2 3) \rangle in S_{3} is normal
- Note
- In $G L_{n}(\mathbb{R})$, conjugation amounts to changing basis
- Let $G=G L_{n}(\mathbb{R})$
- Let $P, A \in G$, then $P A P^{-1}$ is change of basis matrix
- Example 4
- Let $f: G \rightarrow H$ be a homomorphism, then $\operatorname{ker} \boldsymbol{f} \unlhd \boldsymbol{G}$
- $\operatorname{ker} f \leq G$
- $\operatorname{ker} f \neq \emptyset$, since $f\left(1_{G}\right)=1_{H}$
- If $k_{1}, k_{2} \in \operatorname{ker} f$
- $f\left(k_{1} k_{2}^{-1}\right)=f\left(k_{1}\right) f\left(k_{2}\right)^{-1}=1_{H}$
- Thus $k_{1} k_{2}^{-1} \in \operatorname{ker} f$
- Therefore ker $f \leq G$
- $\operatorname{ker} f$ is normal
- Let $g \in G, k \in \operatorname{ker} f$
- $f\left(g k g^{-1}\right)=f(g) f(k) f(g)^{-1}=f(g) f(g)^{-1}=1_{H}$
- $\Rightarrow g k g^{-1} \in \operatorname{ker} f$

Proposition 23: Criteria for a Subgroup to be Normal

- Statement
- Let N be a subgroup of a group G
- $\boldsymbol{N} \unlhd \boldsymbol{G} \Leftrightarrow \boldsymbol{g} \boldsymbol{N}=\boldsymbol{N} \boldsymbol{g}, \forall \boldsymbol{g} \in \boldsymbol{G}$
- Proof (\Rightarrow)
- Suppose $N \unlhd G$
- Let $g \in G, n \in N$
- $g n=g n\left(g^{-1} g\right)=\underbrace{g n g^{-1}}_{\in N} g \in N g \Rightarrow g N \subseteq N g$
- $n g=\left(g g^{-1}\right) n g=g \underbrace{g^{-1} n g}_{\epsilon N} \in g N \Rightarrow N g \subseteq g N$
- Therefore $g N=N g$
- Proof ($\Leftarrow)$
- Suppose $g N=N g, \forall g \in G$
- Let $g \in G, n \in N$
- We must show that $g_{n g}{ }^{-1} \in N$
- Choose $n^{\prime} \in N$ s.t. $g n=n^{\prime} g$
- Then $g n g^{-1}=n^{\prime} \in N$
- Therefore $N \unlhd G$

Quotient Group, Index, Lagrange's Theorem

Proposition 24: Quotient Group

- Statement
- Let G be a group, $N \unlhd G$
- The set of left costs of \boldsymbol{N} is a group under the operation
- $\left(g_{1} N\right)\left(g_{2} N\right)=g_{1} g_{2} N$
- This group is denoted as $\boldsymbol{G} / \boldsymbol{N}($ say $" G \bmod N$ ")
- We call this group quotient group or factor group
- Proof
- Check $G / N \times G / N \rightarrow G / N$, given by $\left(g_{1} N, g_{2} N\right) \mapsto g_{1} g_{2} N$ is well-defined
- Suppose $g_{1} N=g_{1}^{\prime} N$, and $g_{2} N=g_{2}^{\prime} N$

$$
\square g_{1} N=g_{1}^{\prime} N \Leftrightarrow\left(g_{1}^{\prime}\right)^{-1} g_{1} \in N
$$

$$
\square g_{2} N=g_{2}^{\prime} N \Leftrightarrow\left(g_{2}^{\prime}\right)^{-1} g_{2} \in N
$$

- $\left(g_{1}^{\prime} g_{2}^{\prime}\right)^{-1} g_{1} g_{2} \in N$
- $\left(g_{1}^{\prime} g_{2}^{\prime}\right)^{-1} g_{1} g_{2}$
- $=\left(g_{2}^{\prime}\right)^{-1}\left(g_{1}^{\prime}\right)^{-1} g_{1} g_{2}$
$\square=\left(g_{2}^{\prime}\right)^{-1}\left(g_{1}^{\prime}\right)^{-1} g_{1}\left[g_{2}^{\prime}\left(g_{2}^{\prime}\right)^{-1}\right] g_{2}$
$\square=\left(g_{2}^{\prime}\right)^{-1} \underbrace{\left(g_{1}^{\prime}\right)^{-1} g_{1}}_{\in N} g_{2}^{\prime} \underbrace{\left(g_{2}^{\prime}\right)^{-1} g_{2}}_{\in N}$
$\square=\underbrace{\left(g_{2}^{\prime}\right)^{-1}\left(g_{1}^{\prime}\right)^{-1} g_{1} g_{2}^{\prime}}_{\in N} \underbrace{\left(g_{2}^{\prime}\right)^{-1} g_{2}}_{\in N} \in N$
- Therefore $g_{1} g_{2} N=g_{1}^{\prime} g_{2}^{\prime} N$
- So the operation is well-defined
- Identity
- $1 \cdot N=N$
- Inverse
- $(g N)^{-1}=g^{-1} N$
- Since $(g N)\left(g^{-1} N\right)=g g^{-1} N=N$
- Associativity
- $\left(g_{1} N g_{2} N\right)\left(g_{3} N\right)$
- $=\left(g_{1} g_{2} N\right)\left(g_{3} N\right)$
- $=g_{1} g_{2} g_{3} N$
- $=g_{1} N\left(g_{2} g_{3} N\right)$
- $=g_{1} N\left(g_{2} N g_{3} N\right)$
- Note
- If $N \unlhd G$, then there is a surjective homomorphism
- $f: G \rightarrow G / N$ given by $g \mapsto g N$ with $\operatorname{ker} f=N$
- Since $f(g)=1_{G / N} \Leftrightarrow g N=N \Leftrightarrow g \in N$
- This shows that, if $H \leq G$, then
- $H \unlhd G \Leftrightarrow H$ is the kernel of a homomorphism from G to some other group
- Example 1
- Let H be a subgroup of \mathbb{Z}
- Then $H \unlhd \mathbb{Z}$ since \mathbb{Z} is abelian
- Since \mathbb{Z} is cyclic, H is also cyclic
- So we can write $H=\langle n\rangle$
- There is isomorphism
- $\mathbb{Z} /\langle n\rangle \rightarrow \mathbb{Z} / n \mathbb{Z}$
- $a+\langle n\rangle \rightarrow \bar{a}$
- Example 2
- If G is a group, then $\left\{1_{G}\right\} \unlhd G$ and $G \unlhd G$
- $G /\left\{1_{G}\right\} \cong G$
- $G / G \cong *$, where $*$ is the trivial group of order 1
- Intuition: The bigger the subgroup, the smaller the quotient

Index of a Subgroup

- Definition
- If G is a group, and $H \leq G$, then
- The index of H is the number of distinct left cosets of H in G
- Denote the index by $[G: H]$
- Note
- If $N \unlhd G$, then $[G: N]=|G / N|$
- Example
- $[\mathbb{Z}:\langle n\rangle]=|\mathbb{Z} / n \mathbb{Z}|=n$

Theorem 25: Lagrange's Theorem

- Statement
- If G is finite group, and $H \leq G$, then $|\boldsymbol{G}|=|\boldsymbol{H}| \cdot[\boldsymbol{G}: \boldsymbol{H}]$
- In particular, $|\boldsymbol{H}|||\boldsymbol{G}|$
- Notice
- If in the setting of Lagrange's Theorem, $H \unlhd G$, then
- $|G|=|H| \cdot|G / H| \Rightarrow|G / H|=\frac{|G|}{|H|}$
- Proof
- Let $n:=|H|$, and $k:=[G: H]$
- Cosets partition G
- Let g_{1}, \ldots, g_{k} be the representatives of the distinct cosets of H in G
- (In other words: if $g \in G$, then $g H \in\left\{g_{1} H, g_{2} H, \ldots, g_{k} H\right\}$)
- By proposition 22, left costs are either equal or disjoint
- So, $G=g_{1} H \cup g_{2} H \cup \cdots \cup g_{k} H$
- Cosets have the same size
- Let $g \in G$, then there is a function $f: H \rightarrow g H$ given by $h \mapsto g h$
- f is certainly surjective
- f is also injective since if $g h_{1}=g h_{2}$, then $h_{1}=h_{2}$
- Thus, $|g H|=|H|$
- Therefore $|G|=\left|g_{1} H\right|+\cdots+\left|g_{k} H\right|=\underbrace{n+n+\cdots+n}_{k \text { copies }}=k n=|H| \cdot[G: H]$

Lagrange's Theorem, Product of Subgroups

Corollary 26: Group of Prime Order is Cyclic

- Statement
- If G is a group, and $|G|$ is prime, then G is cyclic
- Hence, $G \cong \mathbb{Z} / p \mathbb{Z}$
- Proof
- If $g \in G$, then $|g|=|\langle g\rangle|$
- By Lagrange's Theorem, $|\langle g\rangle|||G|$
- Thus, $|g| \in\{1,|G|\}$
- It follows that if $g \in G \backslash\{1\}$, then $|g|=|G|$
- Therefore $\langle g\rangle=G$
- i.e. G is cyclic

Groups of Small Order

Order	Property
2	Cyclic
3	Cyclic
4	Cyclic or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
5	Cyclic
6	Cyclic or S_{3}

Corollary 27: $g^{|G|}=1$

- Statement
- If G is a finite group, and $g \in G$, then $\boldsymbol{g}^{|G|}=\mathbf{1}$
- Proof
- By Lagrange's Theorem, $|\langle g\rangle|||G|$
- Since $|g|=|\langle g\rangle|$, we have $|g|||G|$
- Thus, $g^{|G|}=g^{|g| m}$ for some integer m
- Therefore $g^{|G|}=\left(g^{|g|}\right)^{m}=1$

Corollary 28: The Fundamental Theorem of Cyclic Groups

- Statement
- If G is a finite cyclic group, then there is a bijection
- \{positive divisors of $|\boldsymbol{G}|\} \leftrightarrow\{$ subgroups of $\mathbf{G}\}$
- Proof
- (\Rightarrow) Divisor m of $|G| \mapsto$ the unique subgroup G with order m
- (\Longleftarrow) Subgroup H of $G \mapsto|H|$

Product of Subgroups

- Let G be a group and $H, K \leq G$
- Define $\boldsymbol{H} \boldsymbol{K}:=\{\boldsymbol{h} \boldsymbol{k} \mid \boldsymbol{h} \in \boldsymbol{H}, \boldsymbol{k} \in \boldsymbol{K}\}$

Proposition 29: Order of Product of Subgroups

- Statement
- If H, K are finite subgroups of a group G, then $|\boldsymbol{H} \boldsymbol{K}|=\frac{|\boldsymbol{H}| \cdot|\boldsymbol{K}|}{|\boldsymbol{H} \cap \boldsymbol{K}|}$
- Proof
- Notice that $H K$ is the union of left cosets of K
- $H K=\bigcup_{h \in H} h K$
- In the proof of Lagrange's Theorem, we know that $|h K|=|K|$
- We want to show that there are $\frac{|H|}{|H \cap K|}$ cosets of the form $h K$, where $h \in H$
- Let $h_{1}, h_{2} \in H$
- $h_{1} K=h_{2} K$
- $\Leftrightarrow h_{2}^{-1} h_{1} \in K$
- $\Leftrightarrow h_{2}^{-1} h_{1} \in H \cap K$
- $\Leftrightarrow h_{1}(H \cap K)=h_{2}(H \cap K)$
- By Lanrange's Theorem, the number of distinct cosets of the form $h K, h \in H$ is - $[H: H \cap K]=\frac{|H|}{|H \cap K|}$
- Thus $H K$ consists of $\frac{|H|}{|H \cap K|}$ distinct cosets of K
- Therefore, $|H K|=\frac{|H| \cdot|K|}{|H \cap K|}$
- Note: $\boldsymbol{H} \boldsymbol{K}$ is not always a subgroup
- Let $G=S_{3}, H=\langle(12)\rangle, K=\langle(13)\rangle$
- $|H K|=\frac{|H| \cdot|K|}{|H \cap K|}=\frac{2 \times 2}{1}=4$
- But $|H K|$ is not a divisor of S_{3}
- By Lagrange's Theorem, $H K$ is not a subgroup of S_{3}

Proposition 30: Permutable Subgroups

- Statement
- If $H, K \leq G$, then $\boldsymbol{H} \boldsymbol{K} \leq \boldsymbol{G} \Leftrightarrow \boldsymbol{H} \boldsymbol{K}=\boldsymbol{K} \boldsymbol{H}$
- Note
- $H K=K H$ is not equivalent to $h k=k h, \forall h \in H, k \in K$
- It implies that every product $h k$ is of the form $k^{\prime} h^{\prime}$ and conversely
- Proof (\Rightarrow)
- $K H \subseteq H K$
- This is true because $H \leq H K, K \leq H K$
- $H K \subseteq K H$
- Let $h k \in H K$
- Set $a:=(h k)^{-1}$, then $a \in H K$
- So, $a=h^{\prime} k^{\prime}$ for some $h^{\prime} \in H, k^{\prime} \in K$
- Then $h k=a^{-1}=\left(h^{\prime} k^{\prime}\right)^{-1}=\left(k^{\prime}\right)^{-1}\left(h^{\prime}\right)^{-1} \in K H$
- $\operatorname{Proof}(\Leftarrow)$
- $H K \neq \emptyset$, since $1 \cdot 1=1 \in H K$
- Let $h k, h^{\prime} k^{\prime} \in H K$
- We must show that $h k\left(h^{\prime} k^{\prime}\right)^{-1} \in H K$
- $h k\left(h^{\prime} k^{\prime}\right)^{-1}=h \underbrace{k\left(k^{\prime}\right)^{-1}\left(h^{\prime}\right)^{-1}}_{\in K H}$
- Choose $h^{\prime \prime} \in H, k^{\prime \prime} \in K$ s.t. $\underbrace{k\left(k^{\prime}\right)^{-1}\left(h^{\prime}\right)^{-1}}_{\epsilon K H}=\underbrace{h^{\prime \prime} k^{\prime \prime}}_{\epsilon H K}$
- Then $h k\left(h^{\prime} k^{\prime}\right)^{-1}=h \underbrace{h^{\prime \prime} k^{\prime \prime}}_{\epsilon H K}=\underbrace{h h^{\prime \prime}}_{\in H} \underbrace{k^{\prime \prime}}_{\in K} \in H K$
- Therefore $H K \leq G$
- Example
- Let $G=S_{3}, H=\langle(12)\rangle, K=\langle(13)\rangle$
- $H K=\{(1),(12),(13),(132)\}$
- $K H=\{(1),(12),(13),(123)\}$
- Thus $H K \neq K H$
- Therefore $H K$ is not a subgroup of S_{3}

Corollary 31: Product of Subgroup and Normal Subgroup

- Statement
- If $H, K \leq G$, and either \boldsymbol{H} or \boldsymbol{K} is normal in \boldsymbol{G}, then $\boldsymbol{H} \boldsymbol{K} \leq \boldsymbol{G}$
- Proof
- Without loss of generality, assume $K \unlhd G$
- Let $h \in H, k \in K$
- $h k=h k\left(h^{-1} h\right)=\underbrace{h k h^{-1}}_{\in K} h \in K H \Rightarrow H K \leq K H$
- $k h=\left(h h^{-1}\right) k h=h \underbrace{h^{-1} k h}_{\in K} \in H K \Rightarrow K H \leq H K$
- Therefore $H K=K H$

The First \& Second Isomorphism Theorems

Theorem 32: The First Isomorphism Theorem

- Statement
- If $f: G \rightarrow H$ is a homomorphism, then f induces an isomorphism
- $\bar{f}: G / \operatorname{ker} f \xrightarrow{\cong} \operatorname{im}(f)$
- $g \operatorname{ker} f \mapsto f(g)$
- Intuition
- This is an analogue of the Rank-Nullity Theorem in Linear Algebra
- Given vector space V, W and a linear transformation $A: V \rightarrow W$
- $V / \operatorname{ker} A \cong \operatorname{im}(A)$
$0 \Rightarrow \operatorname{dim}(V / \operatorname{ker} A)=\operatorname{dim}(\operatorname{im}(A))$
- $\Rightarrow \operatorname{dim} V-$ nullity $A=\operatorname{rank} A$
- Proof
- \bar{f} is well-defined and injective
- Let $g_{1}, g_{2} \in G$
- $g_{1} \operatorname{ker} f=g_{2} \operatorname{ker} f$
- $\Leftrightarrow g_{2}^{-1} g_{1} \in \operatorname{ker} f$
- $\Leftrightarrow f\left(g_{2}^{-1} g_{1}\right)=1$
- $\Leftrightarrow f\left(g_{2}\right)^{-1} f\left(g_{1}\right)=1$
- $\Leftrightarrow f\left(g_{1}\right)=f\left(g_{2}\right)$
- $\Leftrightarrow \bar{f}\left(g_{1} \operatorname{ker} f\right)=\bar{f}\left(g_{2} \operatorname{ker} f\right)$
- Thus f is well-defined and injective
- \bar{f} is surjective
- Let $h \in \operatorname{im} f$
- Choose $g \in G$ s.t. $f(g)=h$
- Then $\bar{f}(g \operatorname{ker} f)=h$
- \bar{f} is a homomorphism
- If $g_{1} \operatorname{ker} f, g_{2} \operatorname{ker} f \in G / \operatorname{ker} f$
- $\bar{f}\left(g_{1} \operatorname{ker} f \cdot g_{2} \operatorname{ker} f\right)$
- $=\bar{f}\left(g_{1} g_{2} \operatorname{ker} f\right)$
- $=f\left(g_{1} g_{2}\right)$
- $=f\left(g_{1}\right) f\left(g_{2}\right)$

$$
\text { - }=\bar{f}\left(g_{1} \operatorname{ker} f\right) \bar{f}\left(g_{2} \operatorname{ker} f\right)
$$

Corollary 33: Order of Kernel and Image

- Statement
- $[G: \operatorname{ker} f]=|\operatorname{im} f|$
- Example
- Let $m, n \in \mathbb{Z}$ be coprimes
- Then any homomorphism $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is trivial
- i.e. $f(\bar{n})=\overline{0}, \forall \bar{n} \in \mathbb{Z} / m \mathbb{Z}$
- Proof
- Let f be such a homomorphism
- By the First Isomorphism Theorem, $\left.\right|^{\mathbb{Z} / n \mathbb{Z}} /$ ker $f|=|\operatorname{im} f|$
- So $\frac{n}{|\operatorname{ker} f|}=|\operatorname{im} f|$, where
- $\frac{n}{|\operatorname{ker} f|}$ is a divisor of n, and
- $|\operatorname{im} f|$ is a divisor of m, by Lagrange's Theorem
- Thus, $|\operatorname{im} f|=1$, so $\operatorname{im} f=\{\overline{0}\}$
- Note
- The same proof tells us that
- If G, H are finite groups such that $(|\boldsymbol{G}|,|\boldsymbol{H}|)=\mathbf{1}$, then
- All homomorphism between them are trivial

Theorem 34: The Second Isomorphism Theorem

- Statement
- If $\boldsymbol{A} \leq \boldsymbol{G}$, and $\boldsymbol{B} \unlhd \boldsymbol{G}$
- Then $A \cap B \unlhd A$, and $A B / B \cong A / A \cap B$
- Intuition

- Note
- $B \unlhd A B \leq G$ by Corollary 31
- So, $A B / B$ make sense
- Proof
- We have homomorphisms
- $\alpha: A \rightarrow A B$ given by $a \mapsto a$
- $\beta: A B \rightarrow A B / B$ given by $x \mapsto x B$
- Let $f:=\beta \circ \alpha$, then
- $f: A \rightarrow A B / B$, where $a \mapsto a B$
- f is certainly surjective
- Compute ker f
- Let $a \in A$
- $f(a)=1_{A B / B} \Leftrightarrow a B=B \Leftrightarrow a \in B$
- Thus, $\operatorname{ker} f=A \cap B \unlhd A$
- The First Isomorphism Theorem gives an isomorphism
- $\bar{f}: A / A \cap B \xrightarrow{\cong} A B / B$

The Third \& Fourth Isomorphism Theorem

Theorem 35: The Third Isomorphism Theorem

- Statement
- Let G be a group, and $\boldsymbol{H}, \boldsymbol{K} \unlhd \boldsymbol{G}$, where $\boldsymbol{H} \leq \boldsymbol{K}$
- Then $\boldsymbol{K} / \boldsymbol{H} \unlhd \boldsymbol{G} / \boldsymbol{H}$, and $\boldsymbol{G} / \boldsymbol{H} / \boldsymbol{K} / \boldsymbol{H} \cong \boldsymbol{G} / \boldsymbol{K}$
- Note
- $K / H:=\{g H \in G / H \mid g \in K\}$
- Also, $H \unlhd G \Rightarrow H \unlhd K$, and so K / H makes sense
- Intuition

- Proof
- $K / H \leq G / H$
- Certainly $K / H \neq \emptyset$ since $K \neq \emptyset$
- Let $k_{1} H, k_{2} H \in K / H$
- Then $k_{1} H\left(k_{2} H\right)^{-1}=k_{1} H k_{2}^{-1} H=k_{1} k_{2}^{-1} H \in K / H$
- $K / H \unlhd G / H$
- Let $k H \in K / H$ and $g H \in G / H$
- Then $g H k H(g H)^{-1}=\underbrace{g k g^{-1}}_{\epsilon K} H \in K / H$
- Define a homomorphism $\alpha: G / H \rightarrow G / K$ given by $g H \mapsto g K$
- α is well-defined
- Suppose $g_{1} H=g_{2} H$
- Then $g_{2}^{-1} g_{1} \in H$
- Since $H \leq K$, we have $g_{2}^{-1} g_{1} \in K$
- So $g_{1} K=g_{2} K$
- i.e. $\alpha\left(g_{1} H\right)=\alpha\left(g_{1} H\right)$
- α is surjective
- If $g K \in G / K$, then $\alpha(g H)=g K$
- Compute ker α
- $\operatorname{ker} \alpha=\{g H \in G / H \mid g K=K\}=\{g H \in G / H \mid g \in K\}=K / H$
- By First Isomorphism Theorem
- $G / H /_{K / H}=G / H / \operatorname{ker} \alpha \cong \operatorname{im} \alpha=G / K$
- Example
- Let $G=\mathbb{Z}, K=\mathbb{Z} / 2 \mathbb{Z}, H=\mathbb{Z} / 4 \mathbb{Z}$
- Then the Third Isomorphism Theorem tells us that
- The map $f: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ given by $\bar{a} \rightarrow \bar{a}$ is well-defined and surjective
- $\operatorname{ker} f=2 \mathbb{Z} / 4 \mathbb{Z}=\{\overline{0}, \overline{2}\} \subseteq \mathbb{Z} / 4 \mathbb{Z}$
- Therefore, ${ }^{\mathbb{Z} / 4 \mathbb{Z}} / 2 \mathbb{Z} / 4 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z}$

Proposition 36: Criterion for Defining Homomorphism on Quotient

- Statement
- Let G, H be groups, and $N \unlhd G$
- A homomorphism $\alpha: G \rightarrow H$ induces a homomorphism
- $\bar{\alpha}: G / N \rightarrow H$ given by $g N \mapsto \alpha(g)$
- If and only if $\boldsymbol{N} \leq \boldsymbol{\operatorname { k e r } \boldsymbol { \alpha }}$
- Proof (\Rightarrow)
- Let $n \in N$, then
- $\bar{\alpha}(n N)=1_{H}$ since homomorphisms preserve identities
- $\bar{\alpha}(n N)=\alpha(n)$, by definition of $\bar{\alpha}$
- Thus, $\alpha(n)=1_{H}$
- i.e. $N \subseteq \operatorname{ker} \alpha$
- And N certainly meets the Subgroup Criteria
- Therefore $N \leq \operatorname{ker} \alpha$
- Proof ($\Leftarrow)$
- $\bar{\alpha}: G / N \rightarrow H, g N \mapsto \alpha(g)$ is well-defined
- Suppose $g_{1} N=g_{2} N$, we must check that $\alpha\left(g_{1}\right)=\alpha\left(g_{2}\right)$
- $g_{1} N=g_{2} N$
- $\Leftrightarrow g_{2}^{-1} g_{1} \in N$
- $\Rightarrow \alpha\left(g_{2}^{-1} g_{1}\right)=1_{H}($ since $N \leq \operatorname{ker} \alpha)$
- $\Leftrightarrow \alpha\left(g_{2}\right)^{-1} \alpha\left(g_{1}\right)=1_{H}$
- $\Leftrightarrow \alpha\left(g_{2}\right)=\alpha\left(g_{1}\right)$
- $\bar{\alpha}$ is a homomorphism
- $\bar{\alpha}\left(g_{1} H g_{2} H\right)=\bar{\alpha}\left(g_{1} g_{2} H\right)=\alpha\left(g_{1} g_{2}\right)=\alpha\left(g_{1}\right) \alpha\left(g_{2}\right)=\bar{\alpha}\left(g_{1} H\right) \bar{\alpha}\left(g_{2} H\right)$

Theorem 37: The Correspondence Theorem

- Statement
- Let G be a group, and let $N \unlhd G$, then there is a bijection
- \{subgroups of $\boldsymbol{G} / \boldsymbol{N}\} \underset{F \prime}{\stackrel{F}{\rightleftarrows}}\{$ subgroups of \boldsymbol{G} containing $\boldsymbol{N}\}$
- Proof
- Define
- $F(H)=\{g \in G \mid g N \in H\}$
- $F^{\prime}(K)=K / N:=\{g N \in G / N \mid g \in K\}$
- $F(H)$ is a subgroup of G containing N
- If $n \in N$, then $n N=i d_{G / N} \in H$
- Thus, $N \subseteq F(H)$
- This also shows that $F(H) \neq \varnothing$
- If $g_{1}, g_{2} \in F(H)$, then

$$
\begin{aligned}
& \square g_{1} N, g_{2} N \in H \\
& \square \Rightarrow g_{1} N\left(g_{2} N\right)^{-1}=g_{1} g_{2}^{-1} N \in H \\
& \Rightarrow g_{1} g_{2}^{-1} \in F(H)
\end{aligned}
$$

- $F \circ F^{\prime}$ and $F^{\prime} \circ F$ are the identity maps
- $\left(F \circ F^{\prime}\right)(K)=F(K / N)=\{g \in G \mid g N \in K / N\}=K$
- $\left(F^{\prime} \circ F\right)(H)=F^{\prime}(\{g \mid g N \in H\})=\{g \mid g N \in H\} /_{N}=H$

Transposition, Sign of Permutation

Transposition

- Fix n to be a positive integer
- A 2-cycle $(i j)$ in S_{n} is a transposition

Proposition 38: Transposition Decomposition of Permutation

- Statement
- Every $\boldsymbol{\sigma} \in \boldsymbol{S}_{\boldsymbol{n}}$ can be written as a product of transposition
- Example
- $(15324)=(14)(12)(13)(15)$
- $(35)=(15)(13)(15)$
- Proof
- Fix $\sigma \in S_{n}$
- We may assume that σ is a cycle $\sigma=\left(a_{1} a_{2} \ldots a_{t}\right)$
- By induction on t, we claim
- $\left(a_{1} a_{2} \ldots a_{t}\right)=\left(a_{1} a_{t}\right)\left(a_{1} a_{t-1}\right) \ldots\left(a_{1} a_{2}\right)$
- Base case: $t=2$
- $\left(a_{1} a_{2}\right)=\left(a_{1} a_{2}\right)$
- Inductive step: $t>2$
- $\left(a_{1} a_{t}\right)\left(a_{1} a_{t-1}\right) \ldots\left(a_{1} a_{2}\right)$
- $=\left(a_{1} a_{t}\right)\left(a_{1} a_{2} \ldots a_{t-1}\right)$
- $=\left(a_{1} a_{2} \ldots a_{t-1} a_{t}\right)$
- Note
- S_{n} is generated by $\{(12),(13), \ldots,(1 n)\}$

Sign of Permutation ϵ (Transposition Definition)

- Intuition
- The numbers of transposition used to write some $\sigma \in S_{n}$
- is not well-defined, but it is always either even or odd
- Definition
- Let $\epsilon: S_{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$

$$
\sigma \mapsto \begin{cases}\overline{0} & \sigma \text { is a product of even number of transposition } \\ \overline{1} & \sigma \text { is a product of odd number of transposition }\end{cases}
$$

- Then ϵ is a group homomorphism
- $A_{n}:=\operatorname{ker} \epsilon$ is the alternating group of degree n

Sign of Permutation ϵ^{\prime} (Auxiliary Polynomial Definition)

- Auxiliary Polynomial Δ
- $\Delta:=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$
- For $\sigma \in S_{n}$, define $\sigma(\Delta):=\prod_{1 \leq i<j \leq n}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)$
- Then $\sigma(\Delta)$ is always either Δ or $-\Delta$
- Example
- Let $n=4$ and $\sigma=(1234)$
- $\Delta=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{3}-x_{4}\right)$
- $\sigma(\Delta)=\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{2}-x_{1}\right)\left(x_{3}-x_{4}\right)\left(x_{3}-x_{1}\right)\left(x_{4}-x_{1}\right)=-\Delta$
- Definition
- Let $\epsilon^{\prime}: S_{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$

$$
\sigma \mapsto\left\{\begin{array}{cc}
\overline{0} & \sigma(\Delta)=\Delta \\
\overline{1} & \sigma(\Delta)=-\Delta
\end{array}\right.
$$

- $\epsilon^{\prime}(\sigma)$ is the sign of σ, often denoted as sgn σ
- σ is even if $\epsilon^{\prime}(\sigma)=\overline{0}$
- σ is odd if $\epsilon^{\prime}(\sigma)=\overline{1}$

Proposition 39: ϵ^{\prime} is a Group Homomorphism

- Statement
- $\boldsymbol{\epsilon}^{\prime}$ is a group homomorphism
- Example
- Let $\sigma=\left(\begin{array}{ll}12\end{array}\right), \tau=(123) \Rightarrow \tau \sigma=(13)$
- Let $\Delta=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$
- $\sigma(\Delta)=\left(x_{2}-x_{1}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)=-\Delta$
- $\tau(\Delta)=\left(x_{2}-x_{3}\right)\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)=(-1)^{2} \Delta=\Delta$
- $(\tau \sigma)(\Delta)=\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right)=(-1)^{3} \Delta=-\Delta$
- $\epsilon^{\prime}(\tau \sigma)=\epsilon^{\prime}(\tau) \epsilon^{\prime}(\sigma)$, since
- $\epsilon^{\prime}(\tau \sigma)=\overline{1}$
- $\epsilon^{\prime}(\tau) \epsilon^{\prime}(\sigma)=\overline{0}+\overline{1}=\overline{1}$
- Proof
- Fix $\sigma, \tau \in S_{n}$
- Let $\Delta:=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$, then
- $\tau(\Delta)=\prod_{1 \leq i<j \leq n}\left(x_{\tau(i)}-x_{\tau(j)}\right)$
- $\sigma(\Delta)=\prod_{1 \leq i<j \leq n}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)$
- $(\tau \sigma)(\Delta)=\prod_{1 \leq i<j \leq n}\left(x_{(\tau \sigma)(i)}-x_{(\tau \sigma)(j)}\right)$
- Suppose $\sigma(\Delta)$ has k "reversed factor" (i.e. factors $\left(x_{j}-x_{i}\right)$, where $i<j$), then
- $(\tau \sigma)(\Delta)$
.$=\prod_{1 \leq i<j \leq n}\left(x_{\tau(\sigma(i))}-x_{\tau(\sigma(j))}\right)$
- $=(-1)^{k} \prod_{1 \leq i<j \leq n}\left(x_{\tau(i)}-x_{\tau(j)}\right)$
- $=(-1)^{k} \tau(\Delta)$
- $=\sigma(\Delta) \tau(\Delta)$
- Therefore $\epsilon^{\prime}(\tau \sigma)=\epsilon^{\prime}(\tau) \epsilon^{\prime}(\sigma)$

Homework 6

Homework 6 Question 1

- Statement
- Suppose $A, B \unlhd H, A B=H$
- Then there is an isomorphism $\boldsymbol{H} / \boldsymbol{A} \cap \boldsymbol{B} \xrightarrow{\cong}(\boldsymbol{H} / \boldsymbol{A}) \times(\boldsymbol{H} / \boldsymbol{B})$
- Proof
- Define a map
- $f: H \rightarrow(H / A) \times(H / B)$

$$
h \mapsto(h A, h B)
$$

- Check f is a homomorphism
- $f\left(h_{1} h_{2}\right)$
- $=\left(h_{1} h_{2} A, h_{1} h_{2} B\right)$
- $=\left(h_{1} A h_{2} A, h_{1} B h_{2} B\right)$
- $=\left(h_{1} A, h_{1} B\right)\left(h_{2} A, h_{2} B\right)$
- $=f\left(h_{1}\right) f\left(h_{2}\right)$
- Compute ker f
- Let $h \in \operatorname{ker} f$
- $\Leftrightarrow f(h)=\left(1_{H / A}, 1_{H / B}\right)=(A, B)$
- $\Leftrightarrow h \in A$ and $h \in B$
- $\Leftrightarrow h \in A \cap B$
- Therefore $\operatorname{ker} f=A \cap B$
- Prove surjectivity
- Let $\left(h_{1} A, h_{2} B\right) \in(H / A) \times(H / B)$
- Choose $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ s.t.

$$
\begin{aligned}
& \square h_{1}=a_{1} b_{1} \\
& \square h_{2}=a_{2} b_{2}
\end{aligned}
$$

- Then
- $h_{1} A=A h_{1}=A a_{1} b_{1}=A b_{1}$
- $h_{2} B=a_{2} b_{2} B=a_{2} B$
- $f\left(a_{2} b_{1}\right)=\left(h_{1} A, h_{2} B\right)$
- $f\left(a_{2} b_{1}\right)$
$\square=\left(a_{2} b_{1} A, a_{2} b_{1} B\right)$
- $=\left(A a_{2} b_{1}, a_{2} B\right)$

$$
\begin{aligned}
& \square=\left(A b_{1}, a_{2} B\right) \\
& \square=\left(h_{1} A, h_{2} B\right)
\end{aligned}
$$

- Therefore f is surjective
- By the First Isomorphism theorem, there is an isomorphism
- $\bar{f}: H / \operatorname{ker} f \rightarrow \operatorname{im} f$
- $\Rightarrow \bar{f}:{ }^{H} / A \cap B \rightarrow(H / A) \times(H / B)$
- Note
- Given two homomorphism $f_{1}: G \rightarrow H_{1}, f_{2}: G \rightarrow H_{2}$
- Then their direct product
- $f: G \rightarrow H_{1} \times H_{2}$ given by $g \rightarrow\left(f_{1}(g), f_{2}(g)\right)$
- is also a homomorphism

Homework 6 Question 2

- Statement
- \boldsymbol{G} is abelian $\Leftrightarrow \boldsymbol{G} / \boldsymbol{Z}(\boldsymbol{G})$ is cyclic
- Proof (\Rightarrow)
- Suppose G is abelian, then $G=Z(G)$
- So $G / Z(G)$ is the trivial group
- Therefore $G / Z(G)$ is cyclic
- Proof (\Leftarrow)
- Suppose $G / Z(G)$ is cyclic
- Choose $g Z(G) \in G / Z(G)$ s.t. $\langle g Z(G)\rangle=G / Z(G)$
- Let $x \in G$, then
- $x Z(G)=g^{k} Z(G)$ for some $k \in \mathbb{Z}$, and $g^{-k} x \in Z(G)$
- Let $a, b \in G$
- Choose $k_{1}, k_{2} \in \mathbb{Z}$ and $z_{1}, z_{2} \in Z(G)$ s.t
- $g^{-k_{1}} a=z_{1}$ and $g^{-k_{2}} b=z_{2}$
- So, $a=g^{k_{1}} Z_{1}, b=g^{k_{2}} Z_{2}$
- Then $a b=g^{k_{1}} z_{1} g^{k_{2}} z_{2}=g^{k_{2}} z_{2} g^{k_{1}} z_{1}=b a$

Homework 6 Question 4

- Statement
- $G=\langle g\rangle$ is cyclic of order $n, d \mid n, d>0$
- Then $G /\left\langle g^{d}\right\rangle$ is cyclic of order d
- Proof: If H is a cyclic group and $A \leq H$, then H / A is also cyclic
- Choose a generator $h \in H$
- Then $h A$ is a generator of H / A
- If $h^{\prime} A \in H / A$
- Choose $k \in \mathbb{Z}$ s.t. $h^{\prime}=h^{k}$
- Therefore $h^{\prime} A=h^{k} A=(h A)^{k}$
- Proof
- $\left|\left\langle g^{d}\right\rangle\right|=\frac{n}{(n, d)}=\frac{n}{d}$
- By Lagrange's Theorem
- $n=|G|=\left|\left\langle g^{d}\right\rangle\right| \cdot\left[G:\left\langle g^{d}\right\rangle\right]=\frac{n}{d}\left|G /\left\langle g^{d}\right\rangle\right|$
$\circ \Rightarrow\left|G /\left\langle g^{d}\right\rangle\right|=d$

Sign of Permutation, A_{n}

Recall

- $\epsilon: S_{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$
$\sigma \mapsto \begin{cases}\overline{0} & \sigma \text { is a product of even number of transposition } \\ \overline{1} & \sigma \text { is a product of odd number of transposition }\end{cases}$
- $\epsilon^{\prime}: S_{n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$

$$
\sigma \mapsto\left\{\begin{array}{cc}
\overline{0} & \sigma(\Delta)=\Delta \\
\overline{1} & \sigma(\Delta)=-\Delta
\end{array}\right.
$$

- $\Delta:=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right), \sigma(\Delta):=\prod_{1 \leq i<j \leq n}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)$

Proposition 40: Sign of Transposition

- Statement
- Let $n \in \mathbb{Z}_{>0}$
- If $\tau \in S_{n}$ is transposition, then $\boldsymbol{\epsilon}^{\prime}(\boldsymbol{\tau})=\overline{\mathbf{1}}$
- Example
- Suppose $n=4, \tau=(12)$
- $\Delta=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{3}-x_{4}\right)$
- $\tau(\Delta)=\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{3}-x_{4}\right)$
- $\tau(\Delta)=-\Delta \Rightarrow \epsilon^{\prime}(\tau)=\overline{1}$
- Proof
- Suppose $\tau=(12)$
- Say $\left(x_{i}-x_{j}\right)$ is a factor of Δ
- Then $\tau(i)>\tau(j) \Leftrightarrow i=1, j=2$
- Thus $\tau(\Delta)=-\Delta$
- So $\epsilon^{\prime}(\tau)=\overline{1}$
- Suppose $\tau=(i j), 1 \leq i<j \leq n$
- Let $\lambda \in S_{n}$ denote the following permutation
- $\lambda(1)=i$
- $\lambda(2)=j$
- $\lambda(i)=1$
- $\lambda(j)=2$

口 $\lambda(k)=k, k \notin\{1,2, i, j\}$

- $(i j)=\lambda(12) \lambda$
- $[\lambda(12) \lambda](i)=[\lambda(12)](1)=\lambda(2)=j$
- $[\lambda(12) \lambda](j)=[\lambda(12)](2)=\lambda(1)=i$
- Without loss of generality, assume $i, j \notin\{1,2\}$
$\square \quad[\lambda(12) \lambda](1)=[\lambda(12)](i)=\lambda(i)=1$
- $[\lambda(12) \lambda](2)=[\lambda(12)](j)=\lambda(j)=2$
- For $k \notin\{1,2, i, j\}$
$\square \quad[\lambda(12) \lambda](k)=[\lambda(12)](k)=\lambda(k)=k$
- We know ϵ^{\prime} is a homomorphism, so

$$
\begin{aligned}
& \square \\
& \\
& \\
& \\
& \\
& \\
& \\
& = \\
& =\epsilon^{\prime}(\lambda)+\epsilon^{\prime}(\lambda)+\epsilon^{\prime}(12)+\epsilon^{\prime}(\lambda(12) \lambda) \\
& =\overline{0}+\overline{1}=\overline{1}
\end{aligned}
$$

Corollary 41: Equivalence of Two Definitions of Sign

- Statement
$\circ \epsilon$ is well-defined, and $\boldsymbol{\epsilon}=\boldsymbol{\epsilon}^{\prime}$
- Proof
- Let $\sigma \in S_{n}$
- Say $\sigma=\tau_{1} \cdots \tau_{k}$ where τ_{i} is a transposition, then
- $\epsilon^{\prime}(\sigma)=\epsilon^{\prime}\left(\tau_{1}\right)+\cdots+\epsilon^{\prime}\left(\tau_{k}\right)=\underbrace{\overline{1}+\cdots+\overline{1}}_{k \text { copies }}=\bar{k}$
- If k is odd, then
- σ cannot be written as a product of an even number of transpositions
- So $\epsilon(\sigma)=\epsilon^{\prime}(\sigma)=\overline{0}$ for σ with odd k, and vice verse
- This shows ϵ is well-defined, and $\epsilon=\epsilon^{\prime}$

Corollary 42: Surjectivity of ϵ

- Statement
- If $n \geq 2$, then ϵ is surjective
- Proof
- $\epsilon(1)=\overline{0}$, and $\epsilon(12)=\overline{1}$
- Since $\mathbb{Z} / 2 \mathbb{Z}$ has only 2 elements, ϵ is surjective

Alternating Group

- Definition
- The alternative group, denoted as A_{n} is the kernel of ϵ
- That is, A_{n} contains of all even permutations in S_{n}
- Order of A_{n}
- By the First Isomorphism Theorem
- We have an isomorphism $S_{n} / A_{n} \cong \mathbb{Z} / 2 \mathbb{Z}$
- By Lagrange's Theorem, $\left|A_{n}\right|\left[S_{n}: A_{n}\right]=\left|S_{n}\right|$
$\circ \Rightarrow\left|\boldsymbol{A}_{\boldsymbol{n}}\right|=\frac{\left|S_{n}\right|}{\left[S_{n}: A_{n}\right]}=\frac{\boldsymbol{n}!}{\mathbf{2}}$
- Note
- We showed earlier that, if $\left(a_{1} \ldots a_{t}\right) \in S_{n}$,
- $\left(a_{1} \ldots a_{t}\right)=\underbrace{\left(a_{1} a_{t}\right)\left(a_{1} a_{t-1}\right) \cdots\left(a_{1} a_{2}\right)}_{t-1 \text { terms }}$
- t-cycle is even when t is odd, and vise versa
- Thus, $\left(a_{1} \ldots a_{t}\right) \in A_{\boldsymbol{n}} \Leftrightarrow \boldsymbol{t}$ is odd
- Examples
- $A_{2}=$ trivial group
- $A_{3}=\left\{(1),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$
- $A_{4}=\left\{(1),(123),(132),(124),(142),(134),(143),\left(\begin{array}{ll}2 & 4\end{array}\right),\left(\begin{array}{l}2\end{array} 4\right.\right.$ 3), (1 2) (3 4), (13)(2 4), (14)(23)\}
- Subgroups of A_{4}

Order	Subgroup
1	\{(1) \}
2	$\begin{aligned} & \left\{(1),\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right)\right\} \\ & \{(1),(13) \\ & \left\{(1),\left(\begin{array}{ll} 1 & 4 \end{array}\right)\left(\begin{array}{ll} 2 & 3 \end{array}\right)\right\} \end{aligned}$
3	$\begin{aligned} & \left\{(1),\left(\begin{array}{lll} 1 & 2 & 3 \end{array}\right),\left(\begin{array}{lll} 1 & 3 & 2 \end{array}\right)\right\} \\ & \left\{(1),\left(\begin{array}{lll} 1 & 2 & 4 \end{array}\right),\left(\begin{array}{ll} 1 & 4 \end{array}\right)\right\} \\ & \left\{(1),\left(\begin{array}{lll} 1 & 4 \end{array}\right),\left(\begin{array}{ll} 1 & 4 \end{array}\right)\right\} \\ & \left\{(1),\left(\begin{array}{ll} 2 & 3 \end{array}\right),\left(\begin{array}{ll} 2 & 4 \end{array}\right)\right\} \end{aligned}$
4	$\{(1),(12)(34),(13)(24),(14)(23)\}$
6	None
12	A_{4}

Converse of Lagrange's Theorem

- A_{4} has no subgroup of order 6
- This shows that the converse of Lagrange's Theorem is false
- If $d \| G \mid$, there is not necessarily a subgroup of G with order d
- But the converse does hold for finite cyclic groups
- Cauchy's Theorem
- If p is a prime, and $p\|G\|$, then G contains a subgroup of order p
- Sylow's Theorem
- If $|G|=p^{\alpha} m$, where p is prime and $(p, m)=1$
- Then G contains a subgroup of order \boldsymbol{p}^{α}

Subgroups of A_{4}, Group Action, Orbit, Stabilizer
 Wednesday, March 21, 2018

Proposition 43: Subgroup of Index 2 is Normal

- Statement
- If G is a group, $\boldsymbol{H} \leq \boldsymbol{G}$, and $[\boldsymbol{G}: \boldsymbol{H}]=\mathbf{2}$, then $\boldsymbol{H} \unlhd \boldsymbol{G}$
- Proof
- If $g \in H$, then $g H=H=H g$
- If $g \notin H$, then $g H=G \backslash H=H g$
- Therefore $g H=H g, \forall g \in G$
- So $H \unlhd G$
- Corollary (See HW8 \#2)
- Let p be the smallest prime dividing $|G|$
- If $[G: H]=p$, then $H \unlhd G$

Proposition 44: Conjugate Cycle

- Statement
- If $\left(a_{1} \ldots a_{t}\right),\left(a_{1}{ }^{\prime} \ldots a_{t}{ }^{\prime}\right)$ are t-cycles in S_{n}

○ Then $\exists \sigma \in S_{n}$ s.t. $\sigma\left(a_{1} \ldots a_{t}\right) \sigma^{-1}=\left(a_{1}{ }^{\prime} \ldots a_{t}{ }^{\prime}\right)$

- Proof
- Choose $\sigma \in S_{n}$ s.t. $\sigma\left(a_{i}\right)=a_{i}^{\prime}, \forall i \in\{1, \ldots, t\}$
- By HW 7 \#1, $\sigma\left(a_{1} \ldots a_{t}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right) \ldots \sigma\left(a_{t}\right)\right)=\left(a_{1}{ }^{\prime} \ldots a_{t}{ }^{\prime}\right)$

Theorem 45: A_{4} Have No Subgroup of Order 6

- Statement
- \boldsymbol{A}_{4} have no subgroup of order 6
- Proof
- By way of contradiction, suppose $H \leq G$, and $|H|=6$
- Then $\left[A_{4}: H\right]=2$ and thus $H \unlhd A_{4}$
- Since A_{4} contains eight 3-cycles, H must contain some 3-cycle α
- Write $\alpha=(a b c)$, then
- $(a b d)(a b c)(a b d)^{-1}=(b d c) \in H$
- $(b c d)(a b c)(b c d)^{-1}=(a c d) \in H$
- $(b d c)(a b c)(b d c)^{-1}=(a d b) \in H$
- So far, we have (1), ($a b c$), $(b d c),(a c d),(a d b) \in H$
- Also, since H is closed under inverses, $(a c b),(b c d) \in H$
- Thus, $|H| \geq 7$, which makes a contradiction
- Therefore A_{4} have no subgroup of order 6

Group Action

- Definition
- An action of G on X is a function $G \times X \rightarrow X,(g, x) \mapsto g x$ s.t.
- $1_{G} x=x, \forall x \in X$
- $\boldsymbol{g}(\boldsymbol{h} \boldsymbol{x})=(\boldsymbol{g h}) \boldsymbol{x}, \forall \boldsymbol{g}, \boldsymbol{h} \in \boldsymbol{G}, \boldsymbol{x} \in \boldsymbol{X}$
- Examples

Set	Group	Action
\mathbb{R}^{n}	$G L_{n}(\mathbb{R})$	$(A, v) \mapsto A v$
$\{1, \ldots, n\}$	S_{n}	$(\sigma, i) \mapsto \sigma(i)$
Group G	Group G	$(g, h) \mapsto g h$
Group G	Group G	$(g, h) \mapsto g h g^{-1}$
Set of cosets of $H \leq G$	Group G	$\left(g, g^{\prime} H\right) \mapsto g g^{\prime} H$
Set of all subgroups of group G	Group G	$(g, H) \mapsto g H g^{-1}$

- Proof: Conjugation on subgroup is a group action
- If $H \leq G$, and $g \in G$, then $g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} \leq G$
- $g H g^{-1} \neq \emptyset$, since $g 1 g^{-1}=1 \in g H g^{-1}$
- If $g h g^{-1}, g h^{\prime} g^{-1} \in g H g^{-1}$, then
- $g h g^{-1}\left(g h^{\prime} g^{-1}\right)^{-1}=g h g^{-1} g\left(h^{\prime}\right)^{-1} g^{-1}=g h\left(h^{\prime}\right)^{-1} \in g H g^{-1}$

Orbit and Stabilizer

- Suppose a group G acts on a set X
- Let $x \in X$
- The orbit of x, denoted $\operatorname{orb}(x)$, is $\{g \cdot x \mid g \in G\} \subseteq X$
- The stabilizer of x, denoted $\operatorname{stab}(x)$, is $\{g \in G \mid g \cdot x=x\} \subseteq G$

Proposition 46: Stabilizer is a Subgroup

- Statement
- If G acts on X, and $x \in X$, then $\operatorname{stab}(x) \leq G$
- Proof
- $\operatorname{stab}(x) \neq \emptyset$, because $1 x=x$
- Let $g, h \in \operatorname{stab}(x)$
- $(g h) x=g(h x)=g x=x \Rightarrow g h \in \operatorname{stab}(x)$
- $x=1 \cdot x=\left(g^{-1} g\right) x=g^{-1}(g x)=g^{-1} x \Rightarrow g^{-1} \in \operatorname{stab}(x)$

Centralizer

- Let G be a group, and let G act on itself by conjugation
- If $h \in G$, then $\operatorname{stab}(h)=\left\{g \in G \mid g h g^{-1}=h\right\}=\{g \in G \mid g h=h g\}$
- This set is called the centralizer of h, denoted as $C_{G}(h)$
- $C_{G}(h)$ is the set of elements in \boldsymbol{G} that commute with the element \boldsymbol{h}

Center

- Intersections of subgroups are subgroup
- Thus if G acts on a set $X, \bigcup_{x \in X} \operatorname{stab}(x) \leq G$
- In the example above, $\bigcup_{h \in G} C_{G}(h)=Z(G)$ is called the center of G
- $Z(G)$ is the set of elements that commute with every element of G

Normalizer

- Let X be the set of subgroups of a group G
- Let G acts on X by $g \cdot H=g H g^{-1}$
- If $H \leq G$, then
- $\operatorname{stab}(H)=\left\{g \in G \mid g H g^{-1}=H\right\}=\{g \in G \mid g H=H g\}$
- This set is called the normalizer of H in G, denoted $N_{G}(H)$
- $N_{G}(H)$ is the set of elements in \boldsymbol{G} that commute with the set \boldsymbol{H}
- Note: $N_{G}(H)=G \Leftrightarrow H \unlhd G$

Orbit, Stabilizer, Cayley's Theorem

Proposition 47: Orbits Equivalence

- Statement
- Let G act on a set X
- The relation $x \sim x^{\prime} \Leftrightarrow \exists \boldsymbol{g} \in \boldsymbol{G}$ s.t. $\boldsymbol{g} \boldsymbol{x}=\boldsymbol{x}^{\prime}$ is an equivalence relation
- Proof
- Reflexive
- $1 \cdot x=x$
- Symmetric
- Suppose $x \sim x^{\prime}$, then $\exists g \in G$ s.t. $g x=x^{\prime} \Rightarrow x=g^{-1} x^{\prime}$
- Transitive
- Suppose $x \sim x^{\prime}$ and $x^{\prime} \sim x^{\prime \prime}$
- Choose $g, h \in G$ s.t. $g x=x^{\prime}$ and $h x^{\prime}=x^{\prime \prime}$
- Then $g h x=h x^{\prime}=x^{\prime \prime}$
- Note
- The equivalence classes are the orbits of the group action
- Thus, the orbits partition X

Proposition 48: Orbit-Stabilizer Theorem

- Statement
- If G acts on X, and $x \in X$, then $|\boldsymbol{o r b}(\boldsymbol{x})|=[\boldsymbol{G}: \mathbf{\operatorname { s t a b }}(\boldsymbol{x})]$
- Proof
- Define a function
- $F: \operatorname{orb}(x) \rightarrow\{$ left costs of $\operatorname{stab}(x)\}$
- $g x \mapsto g \operatorname{stab}(x)$
- F is injective
- $g \operatorname{stab}(x)=g^{\prime} \operatorname{stab}(x)$
- $\Leftrightarrow\left(g^{\prime}\right)^{-1} g \in \operatorname{stab}(x)$
- $\Leftrightarrow\left(g^{\prime}\right)^{-1} g x=x$
- $\Leftrightarrow g x=g^{\prime} x$
- F is surjective
- This is clear
- So $\operatorname{orb}(x) \cong\{$ left costs of $\operatorname{stab}(x)\}$
- Therefore $|\operatorname{orb}(x)|=[G: \operatorname{stab}(x)]$

Proposition 49: Permutation Representation of Group Action

- Statement
- Let G be a group acting on a finite set $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- Then each $\boldsymbol{g} \in \boldsymbol{G}$ determines a permutation $\sigma_{g} \in S_{n}$ by
- $\sigma_{g}(i)=j \Leftrightarrow g \cdot x_{i}=x_{j}$
- Proof
- The map $f: X \rightarrow X$, given by $x \mapsto g \cdot x$ is bijection $\forall g \in G$
- Injectivity: $g \cdot x=g \cdot x^{\prime} \Rightarrow\left(g^{-1} g\right) \cdot x=\left(g^{-1} g\right) \cdot x^{\prime} \Rightarrow x=x^{\prime}$
- Surjectivity: $f\left(g^{-1} \cdot x\right)=\left(g g^{-1}\right) \cdot x=x$
- So each $g \in G$ determines a permutation $\sigma_{g} \in S_{n}$ where
- $\sigma_{g}(i)=j \Leftrightarrow g \cdot x_{i}=x_{j}$

Proposition 49: Induced Homomorphism of Group Action

- Statement
- The map $\boldsymbol{\Phi}: \boldsymbol{G} \rightarrow \boldsymbol{S}_{\boldsymbol{n}}$, given by $\boldsymbol{g} \mapsto \boldsymbol{\sigma}_{\boldsymbol{g}}$ is a homomorphism
- Proof
- Let $g, h \in G, i \in\{1, \ldots, n\}$
- Suppose $\sigma_{g h}(i)=j$ for some j
- Then $(g h) x_{i}=x_{j}$
- Write $h x_{i}=x_{k}$ for some k, then $\sigma_{h}(i)=k$
- $(g h) x_{i}=x_{j} \Leftrightarrow g x_{k}=x_{j} \Leftrightarrow \sigma_{g}(k)=j \Leftrightarrow \sigma_{g}\left(\sigma_{h}(i)\right)=j$
- Therefore $\sigma_{g h}(i)=\sigma_{g} \sigma_{h}(i), \forall i \in\{1, \ldots, n\}$

Theorem 50: Cayley's Theorem

- Statement
- Every finite group is isomorphic to a subgroup of the symmetric group
- Proof
- Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ act on itself by left multiplication $g \cdot h=g h$
- Then this action determines a homomorphism
- $\Phi: G \rightarrow S_{n}$
- $g \mapsto \sigma_{g}$, where $\sigma_{g}(i)=j \Leftrightarrow g \cdot g_{i}=g_{j}$
- Φ is injective
- $\Phi(g)=\Phi(h) \Leftrightarrow \sigma_{g}=\sigma_{h} \Leftrightarrow g g i=h g i, \forall i \Leftrightarrow g=h$
- Thus $G \cong \operatorname{im}(\Phi) \leq S_{n}$
- Example
- Klein 4 group $K=\{1, a, b, c\}$
- where $a^{2}=b^{2}=c^{2}=1 \Leftrightarrow a b=c, b c=a, a c=b$

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

- Label the group elements with 1, 2, 3, 4
- $1 \mapsto \sigma_{1}=(1)$ since
- $\sigma_{1}(1)=1$
- $\sigma_{2}(2)=2$
- $\sigma_{3}(3)=3$
- $\sigma_{4}(4)=5$
- $\quad a \mapsto \sigma_{a}=(12)(34)$ since
- $\sigma_{a}(1)=2$
- $\sigma_{a}(2)=1$
- $\sigma_{a}(3)=4$
- $\sigma_{a}(4)=3$
- $b \mapsto \sigma_{b}=(13)(24)$ since
- $\sigma_{b}(1)=3$
- $\sigma_{b}(2)=4$
- $\sigma_{b}(3)=1$
- $\sigma_{b}(4)=2$
- $c \mapsto \sigma_{c}=(14)(23)$ since
- $\sigma_{c}(1)=4$
- $\sigma_{c}(2)=3$
- $\sigma_{c}(3)=2$
- $\sigma_{c}(4)=1$
- Therefore $K \cong\{(1),(12)(34),(13)(24),(14)(23)\} \leq S_{4}$

Conjugacy Class, The Class Equation

Conjugacy Class

- Definition
- If G is a group, G acts on itself by conjugation: $g \cdot h=g h g^{-1}$
- The orbits under this action are called conjugacy classes
- Denote a conjugate class represented by some element $g \in G$ by $\mathbf{c o n j}(\boldsymbol{g})$
- Example 1
- If $g \in G$, and $g \in Z(G)$, then $\operatorname{conj}(g)=\{g\}$
- Since $h g h^{-1}=h h^{-1} g=g, \forall h \in G$
- The converse is also true: If $\operatorname{conj}(g)=\{g\}$, then $g \in Z(G)$
- Example 2
- Let $G=S_{n}$
- If $\sigma \in S_{n}$, then $\operatorname{conj}(\boldsymbol{g})=\{$ all permutations of the same cycle type as $\boldsymbol{\sigma}\}$
- For instance
- If σ is a t-cycle, then $\operatorname{conj}(\sigma)=\{$ all t-cycles $\}$
- More generally
- Let $\sigma=\left(a_{1}^{(1)} \ldots a_{t_{1}}^{(1)}\right) \cdots\left(a_{1}^{(m)} \ldots a_{t_{m}}^{(m)}\right)$ be a product of disjoint cycles
- Then $\operatorname{conj}(\sigma)=\left\{\right.$ all products of disjoint cycles of length $\left.t_{1}, \ldots, t_{m}\right\}$

Theorem 51: The Class Equation

- Statement
- Let G be a finite group
- Let $g_{1}, \ldots g_{r} \in G$ be
- representatives of the conjugacy classes of G that are
- not contained in the center $Z(G)$
- Then $|\boldsymbol{G}|=|\boldsymbol{Z}(\boldsymbol{G})|+\sum_{i=1}^{r}\left[\boldsymbol{G}: \boldsymbol{C}_{\boldsymbol{G}}\left(\boldsymbol{g}_{\boldsymbol{i}}\right)\right]$
- Recall: $C_{G}\left(g_{i}\right)=\left\{g \in G \mid g g_{i}=g_{i} g\right\}$
- Proof
- G is the disjoint union of its disjoint conjugate classes
- Then $G=Z(G) \cup \bigcup_{i=1}^{r} \operatorname{conj}\left(g_{i}\right)$
$\bigcirc \Rightarrow|G|=|Z(G)|+\sum_{i=1}^{r}\left|\operatorname{conj}\left(g_{i}\right)\right|$
$\bigcirc \Rightarrow|G|=|Z(G)|+\sum_{i=1}^{r}\left|\operatorname{orb}\left(g_{i}\right)\right|$ (under conjugacy action)
$\circ \Rightarrow|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: \operatorname{stab}\left(g_{i}\right)\right]$ by Proposition 48
$\circ \Rightarrow|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]$

Corollary 52: Center of p-Group is Non-Trivial

- Statement
- If p is a prime, and P is a group of order $\boldsymbol{p}^{\alpha}(\alpha>1)$, then $|\boldsymbol{Z}(\boldsymbol{P})|>\mathbf{1}$
- Note
- Group of order p^{α} for prime p is called a \boldsymbol{p}-group
- Proof
- By the class equation, $|Z(P)|=|P|-\sum_{i=1}^{r}\left[P: C_{P}\left(p_{i}\right)\right]$, where $p_{1}, \ldots p_{r} \in P$ are
- representatives of the conjugate classes of P not contained in $Z(P)$
- $g_{i} \notin Z(P) \Rightarrow C_{P}\left(g_{i}\right) \neq P \Rightarrow\left[P: C_{P}\left(g_{i}\right)\right] \neq 1$
- By Lagrange's Theorem, $\left[P: C_{P}\left(g_{i}\right)\right] \mid p^{\alpha}$
- Combing previous two results, $p \mid\left[P: C_{P}\left(g_{i}\right)\right]$
- Thus, $p\left|\left(|P|-\sum_{i=1}^{r}\left[P: C_{P}\left(g_{i}\right)\right]\right)=|Z(P)|\right.$, since $\left.p\right||P|$
- $\Rightarrow|Z(P)| \neq 1$

Corollary 53: Group of Order Prime Squared is Abelian

- Statement
- If p is a prime, and P is a group of order \boldsymbol{p}^{2}, then P is abelian.
- In fact, either $\boldsymbol{P} \cong \mathbb{Z} / \boldsymbol{p}^{2} \mathbb{Z}$ or $\boldsymbol{P} \cong \mathbb{Z} / \boldsymbol{p} \mathbb{Z} \times \mathbb{Z} / \boldsymbol{p} \mathbb{Z}$
- Proof
- By Corollary 52 and Lagrange's Theorem, $|Z(P)|=p$ or p^{2}
- Suppose $|Z(P)|=p$
- $|P / Z(P)|=[P: Z(P)]=\frac{|P|}{|Z(P)|}=\frac{p^{2}}{p}=p$
- By Corollary $26, P / Z(P)$ is cyclic
- By HW6 \#2, P is abelian
- In this case $Z(P)=P \Rightarrow|Z(P)|=p^{2}$
- Therefore $|Z(P)|=p$ is impossible
- Suppose $|Z(p)|=p^{2}$
- We have $|Z(p)|=|P| \Rightarrow Z(P)=P$
- So P is abelian
- If P is cyclic, then clearly $P \cong \mathbb{Z} / p^{2} \mathbb{Z}$
- If P is not cyclic, we need to show that $P \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$
- Let $z \in P \backslash\{1\}$, then $|z|=p$
- Let $y \in P \backslash\langle z\rangle$
- Set $H:=\langle z\rangle, K:=\langle y\rangle$, then $H \cap K=\{1\}$
- Since any non-identity element of H or K is a generator
- For instance, if $1 \neq y^{k} \in H$ for some k, then $y \in H$
- This is impossible, so $H \cap K=\{1\}$
- $|H K|=\frac{|H| \cdot|K|}{|H \cap K|}=|H| \cdot|K|=p^{2}=|P| \Rightarrow H K=P$
- By HW6 \#1, there exists an isomorphism $P \xrightarrow{\cong} P / H \times P / K$
- $|P / H|=[P: H]=\frac{|P|}{|H|}=\frac{p^{2}}{p}=p \Rightarrow P / H \cong \mathbb{Z} / p \mathbb{Z}$
- Similarly for P / K
- Therefore $P=H K \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$

Cauchy's Theorem, Recognizing Direct Products

Theorem 54: Cauchy's Theorem

- Statement
- If G is a finite group, and \boldsymbol{p} is a prime divisor of $|\boldsymbol{G}|$, then $\exists \boldsymbol{H} \leq \boldsymbol{G}$ of order \boldsymbol{p}
- Proof
- Write $|G|=m p$
- We argue by strong induction on m
- When $m=1$, this is trivial, since any non-identity element of G has order p
- Suppose $m>1$, and $\forall n \in\{1, \ldots, m-1\}$ if $\left|G^{\prime}\right|=n p$, then $\exists H^{\prime} \leq G^{\prime}$ of order p
- If G is abelian
- Let $x \in G \backslash\{1\}$
- If $\langle x\rangle=G$
- By the Fundamental Theorem of Cyclic Groups,
$\square G=\langle x\rangle$ contains a (unique) subgroup of order p
- If $\langle x\rangle \neq G$
- Set $H:=\langle x\rangle \unlhd G$
- By the Lagrange's Theorem, $|G|=|H|[G: H]=|H| \cdot|G / H|$
- Since $p||G|$, either $p||H|$ or $p||G / H|$
- If $p||H|$
- Since H is cyclic, H contains a (unique) subgroup of order p
- It follows that G contains a subgroup of order p
- If $p||G / H|$
- $|G / H|<|G|$, so, by induction, $\exists g H \in G / H$ s.t. $|g H|=p$
- So we only need to prove $|g H|||g|$
\diamond If $K \xrightarrow{f} K^{\prime}$ is a group homomorphism, $|f(k)|||k|, \forall k \in K$
\diamond Now, take $K=G, K^{\prime}=G / H, f$ the usual surjection $g \mapsto g H$
- Therefore $p||g|$
- Since $\langle g\rangle$ is cyclic, $\langle g\rangle$ contains a (unique) subgroup of order p
- It follows that G contains a subgroup of order p
- If G is not abelian
- By the Lagrange's Theorem, $|G|=\left|C_{G}\left(g_{i}\right)\right| \cdot\left[G: C_{G}\left(g_{i}\right)\right], \forall i \in\{1, \ldots, r\}$
- Since $p||G|$, either $p|\left|C_{G}\left(g_{i}\right)\right|$ or $p \mid\left[G: C_{G}\left(g_{i}\right)\right]$
- If $p\left|\left|C_{G}\left(g_{i}\right)\right|\right.$ for some i
\square Since G is not abelian, $C_{G}\left(g_{i}\right) \varsubsetneqq G$ for all i
- Apply the induction hypothesis, $C_{G}\left(g_{i}\right)$ contains a subgroup of order p

It follows that G contains a subgroup of order p

- If $p \mid\left[G: C_{G}\left(g_{i}\right)\right], \forall i$

By the Class Equation, $|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]$ where g_{1}, \ldots, g_{r} $\in G$
\square are the representatives of the conjugate classes not contained in $Z(G)$

- It follows that $p\left|\left(|G|-\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]\right)=|Z(G)|\right.$
- G is not abelian, so $Z(G) \varsubsetneqq G$
\square Apply the induction hypothesis, $Z(G)$ contains a subgroup of order p
\square It follows that G contains a subgroup of order p

Lemma 55: Recognizing Direct Products

- Statement
- Let G be a group with normal subgroups N_{1}, N_{2}
- The map $\alpha: \boldsymbol{N}_{\mathbf{1}} \times \boldsymbol{N}_{\mathbf{2}} \rightarrow \boldsymbol{G}$ given by $\left(n_{1}, n_{2}\right) \mapsto n_{1} n_{2}$ is an isomorphism
\circ if and only if $\boldsymbol{N}_{\mathbf{1}} \boldsymbol{N}_{\mathbf{2}}=\boldsymbol{G}$ and $\boldsymbol{N}_{\mathbf{1}} \cap \boldsymbol{N}_{\mathbf{2}}=\{\mathbf{1}\}$
- Proof (\Rightarrow)
- Since α is surjective, $N_{1} N_{2}=G$
- Suppose $n \in N_{1} \cap N_{2}$
- Then $\alpha(n, 1)=n=\alpha(1, n)$
- Since α is injective, $(1, n)=(n, 1) \Rightarrow n=1$
- So $N_{1} \cap N_{2}=\{1\}$
- Proof (\Leftarrow)
- α is surjective
- This is true since $N_{1} N_{2}=G$
- α is a homomorphism
- $\alpha\left(\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right)\right)=\alpha\left(\left(n_{1} n_{1}^{\prime}, n_{2} n_{2}^{\prime}\right)\right)=n_{1} n_{1}^{\prime} n_{2} n_{2}^{\prime}$
- $\alpha\left(n_{1}, n_{2}\right) \alpha\left(n_{1}^{\prime}, n_{2}^{\prime}\right)=n_{1} n_{2} n_{1}^{\prime} n_{2}^{\prime}$
- We want show that $\alpha\left(\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right)\right)\left(\alpha\left(n_{1}, n_{2}\right) \alpha\left(n_{1}^{\prime}, n_{2}^{\prime}\right)\right)^{-1}=1$
- $\left(n_{1} n_{1}^{\prime} n_{2} n_{2}^{\prime}\right)\left(n_{1} n_{2} n_{1}^{\prime} n_{2}^{\prime}\right)^{-1}=n_{1} n_{1}^{\prime} n_{2} n_{2}^{\prime}\left(n_{2}^{\prime}\right)^{-1}\left(n_{1}^{\prime}\right)^{-1} n_{2}^{-1} n_{1}^{-1}$
- $=n_{1} \underbrace{n_{1}^{\prime} n_{2}\left(n_{1}^{\prime}\right)^{-1}}_{\in N_{2}} n_{2}^{-1} n_{1}^{-1}=n_{1} \underbrace{n_{1}^{\prime} n_{2}\left(n_{1}^{\prime}\right)^{-1} n_{2}^{-1}}_{\in N_{2}} n_{1}^{-1} \in N_{2}$
- $=n_{1} n_{1}^{\prime} \underbrace{n_{2}\left(n_{1}^{\prime}\right)^{-1} n_{2}^{-1}}_{\in N_{1}} n_{1}^{-1}=n_{1} \underbrace{n_{1}^{\prime} n_{2}\left(n_{1}^{\prime}\right)^{-1} n_{2}^{-1}}_{\in N_{1}} n_{1}^{-1} \in N_{1}$
- Thus $\left(n_{1} n_{1}^{\prime} n_{2} n_{2}^{\prime}\right)\left(n_{1} n_{2} n_{1}^{\prime} n_{2}^{\prime}\right)^{-1} \in N_{1} \cap N_{2}=\{1\}$
- Therefore $\alpha\left(\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right)\right)=\alpha\left(\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right)\right)$
- α is injective
- If $\left(n_{1}, n_{2}\right)=1$
- $\Rightarrow n_{1} n_{2}=1$
- $\Rightarrow n_{1}=n_{2}^{-1}$
- $\Rightarrow n_{1} \in N_{2}, n_{2} \in N_{1}$
- $\Rightarrow n_{1}=n_{2}=1$
- $\Rightarrow\left(n_{1}, n_{2}\right)=(1,1)$
- $\Rightarrow \alpha$ is injective

Homework 8, Properties of Finite Abelian Group

Homework 8 Question 3

- Statement
- If G is a group with $|G| \leq 11$, and $d||G|$, then G has a subgroup of order d
- Proof
- For $|G|=2,3,5,7,11$
- $|G|$ is prime, thus cyclic
- For $|G|=4,6,9,10$
- $|G|$ is product of two primes, so use the Cauchy's Theorem
- For $|G|=8$
- $d \in\{1,2,4,8\}$
- When $d=1,2,8$, this is obvious
- So assume $d=4$
- If G contains an element of order 4 , then we are done
- So, we may assume $|g|=2, \forall g \in G \backslash\{1\}$, then G is abelian
- Let $a, b \in G \backslash\{1\}$. Let $H:=\{1, a, b, a b\}$
- H is closed under inverse
- The inverse of every element of G is itself
- H is closed under multiplication by multiplication table below

\cdot	1	a	b	$a b$
1	1	a	b	$a b$
a	a	1	$a b$	b
b	b	$a b$	1	a
$a b$	$a b$	b	a	1

Lemma 56: Coprime Decomposition of Finite Abelian Group

- Statement
- Let G be a finite abelian group of order $\boldsymbol{m n}$, where $(\boldsymbol{m}, \boldsymbol{n})=\mathbf{1}$
- Let $M=\left\{x \in G \mid x^{m}=1\right\}, N=\left\{x \in G \mid x^{n}=1\right\}$, then
- $M, N \leq G$, and
- The map $\alpha: \boldsymbol{M} \times \boldsymbol{N} \rightarrow \boldsymbol{G}$ given by $(g, h) \mapsto g h$ is an isomorphism
- Moreover, if $m, n \neq 1$, then M and N are nontrivial
- Proof
- $M, N \leq G$
- It suffices to check $M \leq G$
- $M \neq \emptyset$, since $1 \in M$
- If $x, y \in M$, then $\left(x y^{-1}\right)^{m}=x^{m}\left(y^{m}\right)^{-1}=1$. Thus $x y^{-1} \in M$
- $M N=G$
- Choose $r, s \in \mathbb{Z}$ s.t. $m r+n s=1$
- Let $g \in G$, then $g=g^{m r+n s}=g^{m r} g^{n s}$
- $\left(g^{m r}\right)^{n}=\left(g^{m n}\right)^{r}=\left(g^{|G|}\right)^{r}=1$ by Lagrange's Theorem
- Similarly, $\left(g^{n s}\right)^{m}=1$
- So, $g^{n s} \in M, g^{m r} \in N$, so $g \in M N$
- Therefore $M N=G$
- $M \cap N=\{1\}$
- Let $g \in M \cap N$, then $g^{m}=1=g^{n}$
- Then $\mid g \| m$ and $\mid g \| n$
- Since $(m, n)=1,|g|=1$
- Thus $M \cap N=\{1\}$
- By Lemma $55, M \cap N=\{1\}$ and $M N=G \Rightarrow \alpha$ is an isomorphism
- M and N are nontrivial
- Suppose $m \neq 1$
- Let p be a prime divisor of m
- Then G contains an element z of order p, by Cauchy's Theorem
- $z \in M$, so $M \neq\{1\}$
- Similarly, if $n \neq 1, N \neq\{1\}$

Corollary 57: p-Group Decomposition of Finite Abelian Group

- Statement
- Let G be a finite abelian group, and p be a prime divisor of $|G|$
- Choose $m \in \mathbb{Z}_{>0}$ s.t. $|G|=p^{m} n$ and $p \nmid n$
- Then $\boldsymbol{G} \cong \boldsymbol{P} \times \boldsymbol{T}$, where $P, T \leq G,|P|=p^{m}$, and $p \nmid|T|$
- Intuition
- If $|G|=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{n}^{m_{n}}$
- This corollary says $G \cong P_{1} \times \cdots \times P_{n}$, where $\left|P_{i}\right|=p_{i}^{m_{i}}$
- This reduces the Fundamental Theorem of Finite Abelian Groups
- to the case where the group has order given by a prime power
- Proof
- Let $P:=\left\{x \in G \mid x^{p^{m}}=1\right\}, T:=\left\{x \in G \mid x^{n}=1\right\}$
- By Lemma $56, G \cong P \times T$
- $p \nmid|T|$
- Suppose, by way of contradiction, that $p||T|$
- By Cauchy's Theorem, $\exists z \in T$ s.t. $|z|=p$
- Since $z \in T, z^{n}=1$, so $p \mid n$
- This is impossible, thus $p \nmid|T|$
- $|P|=p^{m}$
- Since $|G|=|P| \cdot|T|=p^{m} n, p^{m}| | T \mid$
- Suppose $p^{m}<|P|$
- Then, \exists prime q s.t. $p \neq q$ and $q||P|$
- By Cauchy's Theorem, $\exists y \in P$ s.t. $|y|=q$
- This is impossible since $y \in P \Rightarrow y^{p^{m}}=1 \Rightarrow q \mid p^{m}$
- Thus $p^{m}=|P|$

Fundamental Theorem of Finite Abelian Groups

Lemma 58: Prime Decomposition of Abelian p-Group

- Statement
- If G is an abelian group of order p^{n}, where p is a prime
- Let $a \in G$ has maximal order among all the elements of G
- Then $\boldsymbol{G} \cong \boldsymbol{A} \times \boldsymbol{Q}$, where $\boldsymbol{A}=\langle\boldsymbol{a}\rangle, \boldsymbol{Q} \leq \boldsymbol{G}$
- Proof
- We argue by induction on n
- If $n=1$, then $G=A$, so we may take $Q=\{1\}$
- Now suppose $n>1$
- Case $1: \exists b \in G$ s.t. $b \notin A$ and $b^{p}=1$
- Let $B:=\langle b\rangle \unlhd G$
- $A \cap B=\{1\}$
$\square|b|$ is prime, since $b^{p}=1$
- Recall: If $(x, n)=1$, then $\mathbb{Z} / n \mathbb{Z}=\langle\bar{x}\rangle$
\square So every non-identity element of B is a generator
- Thus, if $x \in A \cap B$, and $x \neq 1$, then $B=\langle x\rangle \subset A \cap B \subset A$
\square Then $b \in A$, which contradicts the assumption
- Therefore $A \cap B=\{1\}$
- Let $\bar{G}:=G / B$, then $|\bar{G}|<|G|$ since $B \neq\{1\}$
- $a B$ is an element of maximal order in \bar{G}
- $|a B|||a|$
- $a^{|a|}=1$
- $\Rightarrow a^{|a|} \in B$
- $\Rightarrow(a B)^{|a|}=1_{\bar{G}}$
- $\Rightarrow|a B|||a|$
$|a|||a B|$
- $(a B)^{|a B|}=1_{\bar{G}}$
- $\Rightarrow a^{|a B|} B=B$
- $\Rightarrow a^{|a B|} \in B$
- $\Rightarrow a^{|a B|} \in A \cap B=\{1\}$
- $\Rightarrow a^{|a B|}=1$
- $\Rightarrow|a|||a B|$
- So $|a B|=|a|$
- Therefore $a B$ is an element of maximal order in \bar{G}
- By induction, $\exists \bar{Q} \leq \bar{G}$ s.t. $\bar{G} \cong\langle a B\rangle \times \bar{Q}$
- Apply the Correspondence Theorem, choose $Q \leq G$ s.t. $\bar{Q}=Q / B$
- Claim: $G \cong A \times Q$
\square By Lemma 55, we need only show $A \cap Q=\{1\}$ and $A Q=G$
- $A \cap Q=\{1\}$
- Let $g \in A \cap Q$, then $g=a^{i}$ for some i
- Thus, $a^{i} B \in\langle a B\rangle \cap \bar{Q} \leq \bar{G}$
- Since $\bar{G} \cong\langle a B\rangle \times \bar{Q},\langle a B\rangle \cap \bar{Q}=\{1\}$
- Therefore $a^{i} B=1_{\bar{G}}$
- $\Rightarrow|a|=|a B| \mid i$
- $\Rightarrow a^{i}=1$
- $\Rightarrow A \cap Q=\{1\}$
- $A Q=G$
- Let $g \in G$
- Since $\bar{G}=\langle a B\rangle \times \bar{Q}$,
- $g B=a^{i} B y B$ for some $a^{i} B \in\langle a B\rangle$ and $y B \in \bar{Q}$,
- Thus $g B=a^{i} y B \Leftrightarrow g\left(a^{i} y\right)^{-1} \in B$
- Choose $b \in B$ s.t. $g a^{-i} y^{-1}=b$
- Then $g=\underbrace{a_{\in}^{i}}_{\in A} \underbrace{y b}_{Q}$
- Therefore $A Q=G$
- Case 2: $\nexists b \in G$ s.t. $b \notin A$ and $|b|=p$
- In this case, we need to prove $G=A$
- By way of contradiction, suppose otherwise
- Choose $x \in G \backslash A$ with the smallest order
- Recall: If $H=\langle z\rangle$, then $\left|\left\langle z^{m}\right\rangle\right|=\frac{|z|}{(|z|, m)}$
- $\left|x^{p}\right|<|x|$, so $x^{p} \in A$
- Choose i s.t. $x^{p}=a^{i}$
- Say $|a|=p^{s}$
- Since a has maximal order, $x^{p^{s}}=1$
- $\Rightarrow 1=x^{p^{s}}=\left(x^{p}\right)^{p^{s-1}}=\left(a^{i}\right)^{p^{s-1}}=a^{i p^{s-1}}$
- It follows that $p \mid i$
- So $x^{p}=a^{i}$, where $p \mid i$
- Set $y:=a^{-i / p} x$, then $y^{p}=a^{-i} x^{p}=1$
- But $y \notin A$, since $y a^{i / p}=x \notin A$
- This contradicts the assumption that $\nexists b \in G$ s.t. $b \notin A$ and $|b|=p$
- So $G \backslash A=\varnothing$
- Therefore $G=A=\langle a\rangle$, and $Q=\{1\}$

Theorem 59: Fundamental Theorem of Finite Abelian Groups

- Statement
- Every finite abelian group G is a product of cyclic groups
- Proof
- Say $|G|=p_{1}^{m_{1}} \cdots p_{n}^{m_{n}}$, where p_{i} are distinct primes
- By Corollary 57, and induction $G \cong P_{1} \times \cdots \times P_{n}$ where
- $P_{i}=\left\{x \in G \mid x^{p_{i}^{m_{i}}}=1\right\}$ and $\left|P_{i}\right|=p_{i}^{m_{i}}$
- So, it suffices to show each P_{i} is a product of cyclic groups
- By Lemma $58, P_{i} \cong A_{i} \times Q_{i}$, where A_{i} is cyclic
- The result immediately follows by induction on m_{i}
- Example
- How may abelian groups of order 8 are there up to isomorphism
- There are 3 abelian groups of order 8 : $\mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

Partition

- A partition of $n \in \mathbb{Z}_{>0}$ is a way of writing n as a sum of positive integers
- Example: 3 has 3 partitions: $3,2+1,1+1+1$

Corollary 60: Number of Finite Abelian Groups of Order n

- Statement
- If $n=p_{1}^{e_{1}} \cdots p_{n}^{e_{m}}$, where p_{i} are distinct primes
- Then the number of finite abelian groups of order n is
- $\prod_{i=1}^{m}$ number of partitions of $\boldsymbol{e}_{\boldsymbol{i}}$
- Note
- If $\left(\lambda^{1}, \ldots, \lambda^{m}\right)$ are partitions of e_{1}, \ldots, e_{m}, where $\lambda_{i}=\left\{\lambda_{i}^{1}, \ldots, \lambda_{i}^{S_{i}}\right\}$
- Then this list of partitions corresponds to the abelian group
$\circ\left(\mathbb{Z} / p_{1}^{\lambda_{1}^{1}} \mathbb{Z}{ }^{\times \cdots \times \mathbb{Z}} / p_{1}^{\lambda_{1}^{s_{1}}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p_{1}^{\lambda_{m}^{1}} \mathbb{Z} . \cdots \times \mathbb{Z} / p_{1}^{\lambda_{m}^{s_{m}}} \mathbb{Z}\right)$
- Example
- When $n=72=2^{3} \cdot 3^{2}$
$\circ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$
$\circ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}$
- $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$
- $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}$
- $\mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$
- $\mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}$

Definition of Ring

Wednesday, April 11, 2018 9:58 AM

Ring

- Definition
- A ring is a set R equipped with two operations + and \cdot s.t.
- $(R,+)$ is an abelian group
- . is associative
- $\exists 1 \in R$ s.t. $1 \cdot r=r=r \cdot 1$
- Distributive property:
- $\forall a, b, c \in R$
- $a \cdot(b+c)=a \cdot b+a \cdot c$
- $(a+b) \cdot c=a \cdot c+b \cdot c$
- Note
- 1 is called the multiplicative identity
- Dummit-Foote don't require the multiplicative identity
- • is not necessarily commutative
- R is not a group under \cdot, because inverses may not exist
- We will typically denote multiplication of $r, s \in R$ by $r s$
- Typically 1 will denote the multiplicative identity
- And 0 will denote the identity of $(R,+)$

Properties of Ring, Zero-Divisor, Unit

Examples of Ring

- Example 1
- The trivial group, equipped with the trivial multiplication, is a ring
- It's called the trivial ring
- Example 2
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings with usual addition and multiplication
- Example 3
- For $n>0, \mathbb{Z} / n \mathbb{Z}$ is a ring with modular addition and multiplication
- Example 4
- For $n>0$, define $\operatorname{Mat}_{n \times n}(\mathbb{R}):=\{n \times n$ matrices with entries in $\mathbb{R}\}$
- Then $\operatorname{Mat}_{n \times n}(\mathbb{R})$ is a ring with matrix addition and multiplication
- Note: when $n>1$, $\operatorname{Mat}_{n \times n}(\mathbb{R})$ is not commutative
- Example 5
- $\mathrm{GL}_{n}(\mathbb{R})$ is not a ring under the usual matrix addition and multiplication
- Because $\mathrm{GL}_{n}(\mathbb{R})$ is not a group under addition: $0 \notin \mathrm{GL}_{n}(\mathbb{R})$

Proposition 61: Properties of Ring

- Let R be a ring, then
- $0 a=0=a 0, \forall a \in R$
- $0 a=(0+0) a=0 a+0 a \Rightarrow 0 a=0$
- $a 0=a(0+0)=a 0+a 0 \Rightarrow a 0=0$
- $(-a) b=a(-b)=-(a b), \forall a, b \in R$
- $(-a) b+a b=(-a+a) b=0 b=0 \Rightarrow(-a) b=-(a b)$
- $a(-b)+a b=a(-b+b)=a 0=0 \Rightarrow a(-b)=-(a b)$
- $(-a)(-b)=a b, \forall a, b \in R$
- $(-a)(-b)=-(a(-b))=-(-a b)=a b$
- The multiplicative identity 1 is unique
- Suppose $1,1^{\prime} \in R$ satisfy $1 r=r=r 1$ and $1^{\prime} r=r=r 1^{\prime}, \forall r \in R$
- Then $1=1 \cdot 1^{\prime}=1^{\prime}$
- $-a=(-1) a, \forall a \in R$
- $(-1) a+a=(-1) a+1 \cdot a=(-1+1) a=0 a=a \Rightarrow-a=(-1) a$

Proposition 62: Criterion for Trivial Ring

- Statement
- A ring R is trivial (i.e. have only one element) iff $\mathbf{1}=\mathbf{0}$
- Proof
- (\Rightarrow) Clear
- (\Longleftarrow) Let $r \in R$, then $r=1 \cdot r=0 \cdot r=0$
- Note
- Often, instead of saying " R is nontrivial", one says " $1 \neq 0$ "

Zero-Divisor and Unit

- Definition
- Let R be a ring
- A nonzero element $r \in R$ is called a zero-divisor if
- $\exists s \in R \backslash\{0\}$ s.t. $\boldsymbol{r} \boldsymbol{s}=\mathbf{0}$ or $\boldsymbol{s r}=\mathbf{0}$
- Assume $1 \neq 0$, then $u \in R$ is called a unit if
- $\exists v \in R$ s.t. $\boldsymbol{u} \boldsymbol{v}=\mathbf{1}=\boldsymbol{v} \boldsymbol{u}$
- Note
- If R is a ring, and $1 \neq 0$, then 0 and zero-divisors are not units
- Let $z \in R$ be a zero-divisor
- By way of contradiction
- Choose $v \in R$ s.t. $z v=1=v z$
- Choose $s \in R \backslash\{0\}$ s.t. $z s=0$
- Then $s=(v z) s=v(0)=0$, contradiction
- Example 1
- What are the units in $\mathbb{Z} / 6 \mathbb{Z}$?
- $\overline{1}, \overline{5}$, since $\overline{1} \cdot \overline{1}=\overline{1}$ and $\overline{5} \cdot \overline{5}=\overline{25}=\overline{1}$
- What are the zero-divisors in $\mathbb{Z} / 6 \mathbb{Z}$?
- $\overline{2}, \overline{3}, \overline{4}$, since $\overline{2} \cdot \overline{3}=\overline{3} \cdot \overline{4}=\overline{0}$
- Example 2
- If r, s are elements of a ring, and $r s=0$, we can't conclude $s r=0$
- $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
- $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

Proposition 63: One-Sided Zero Divisor and Unit

- Statement
- Let R be a ring, then
- $\boldsymbol{r} \in \boldsymbol{R}, s \in R \backslash\{0\}$, and $\boldsymbol{s r}=\mathbf{0} \nRightarrow \exists t \in R \backslash\{0\}$ s.t. $\boldsymbol{r t}=\mathbf{0}$
$\circ \boldsymbol{u} \in \boldsymbol{R}$, and $\exists v \in R$ s.t. $\boldsymbol{u v}=\mathbf{1} \nRightarrow \exists w \in R$ s.t. $\boldsymbol{w} \boldsymbol{u}=\mathbf{1}$
- Proof
- Let V be a vector space over \mathbb{R} with countably infinite dimension
- Fix a basis $\left\{e_{1}, e_{2}, \ldots\right\}$ of V
- Let $R:=\{$ linear transformation $V \rightarrow V\}$ is a ring given by
- $(f+g)(v)=f(v)+g(v), \forall f, g \in R$
- $(f g)(v)=f(g(v)), \forall f, g \in R$
- Check R is a ring
- $i d_{V} \in R$, so $R \neq \emptyset$
- $(R,+)$ is an abelian group
- Addition is associative
- The zero map is the additive identity
- Let $f, g \in R$ and $v \in V$
- $(-f)(v)=-f(v)$ is the additive inverse of f
$\square(f+g)(v)=f(v)+g(v)=g(v)+f(v)=(g+f)(v)$
- Multiplication
- Associativity of multiplication is clear
$\square i d_{V}$ is the multiplicative identity
- Distributive property
- Let $f, g, h \in R$ and $v \in V$
$\square(h \circ(f+g))(v)=h(f(v)+g(v))=(h f)(v)+(h g)(v)$
$\square((f+g) \circ h)(v)=(f+g)(h(v))=(f h)(v)+(g h)(v)$
- So $h(f+g)=h f+h g$ and $(f+g) h=f h+g h$
- Define
- $\alpha: V \rightarrow V$ by $e_{i} \mapsto e_{i+1}, \forall i \geq 1$
- $\beta: V \rightarrow V$ by $e_{1} \mapsto 0$, and $e_{i} \mapsto e_{i-1}, \forall i \geq 2$
- $\gamma: V \rightarrow V$ by $e_{1} \mapsto e_{1}$, and $e_{i} \mapsto 0, \forall i \geq 2$
- $\beta \alpha=i d_{V}$
- Since $e_{i} \stackrel{\alpha}{\stackrel{\alpha}{n}} e_{i+1} \stackrel{\beta}{\mapsto} e_{(i+1)-1}=e_{i}, \forall i \geq 1$
- $\alpha \beta \neq i d_{V}$
- Suppose $\alpha \beta=i d_{V}$, then $\gamma \alpha \beta=\gamma$
- $\operatorname{But}(\gamma \alpha \beta)\left(e_{1}\right)=0 \neq \gamma\left(e_{1}\right)=e_{1}$
- $\gamma \alpha=0$
- Since $e_{i} \stackrel{\alpha}{\mapsto} e_{i+1} \stackrel{\gamma}{\mapsto} 0, \forall i \geq 1$
- Notice: neither α nor γ is 0
- $\alpha \delta \neq 0, \forall \delta \in R \backslash\{0\}$
- If $\exists \delta \in R \backslash\{0\}$ s.t. $\alpha \delta=0$, then
- $0=\beta \alpha \delta=\delta \neq 0$, which is impossible
- Note
- If $V=\mathbb{P}(\mathbb{R})$, the set of all polynomials over \mathbb{R}, then
- α is analogous to integration
- β is analogous to differentiation
- γ is analogous to evaluation at 0

Group of Unites

- Definition
- $R^{\times}:=\{u \in R \mid u$ is a unit $\}$
- Note
- R^{\times}is a group under multiplication
- Example
- $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid(a, n)=1\}=\{$ units in $\mathbb{Z} / n \mathbb{Z}\}$

Field, Product Ring, Integral Domain

Proposition 64: Units and Zero-Divisors of $\mathbb{Z} / n \mathbb{Z}$

- Statement
- Let $n>0$
- Every nonzero element in $\mathbb{Z} / \boldsymbol{n} \mathbb{Z}$ is either a unit or a zero-divisor
- Note
- We don't have this property in \mathbb{Z}
- In \mathbb{Z}, the units are ± 1, there are no zero-divisor
- In particular, $2 \in \mathbb{Z}$ is not 0 or unit or zero-divisor
- Proof
- Suppose $\bar{a} \in \mathbb{Z} / n \mathbb{Z}$ is nonzero and not a unit
- Let $d:=(a, n)$, then $d>1$
- Write $c d=a, m d=n$, then
- $\bar{a} \bar{m}=\bar{c} \bar{d} \bar{m}=\bar{c} \bar{n}=\overline{0}$
- Since $m d=n$, where $1 \leq m \leq n$ and $d>1$
- m cannot be a multiple of n
- So $\bar{a} \bar{m}=\overline{0}$ with $\bar{m} \neq \overline{0}$
- Therefore \bar{a} is a zero-divisor

Field

- Definition
- A communitive ring R is called a field if
- Every nonzero element of R is a unit
- i.e. Every nonzero element of R have a multiplicative inverse
- Example 1
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- Example 2
- $\mathbb{Z} / p \mathbb{Z}$, where p is a prime
- $1 \leq a \leq p-1,(a, p)=1 \Rightarrow \bar{a} \in \mathbb{Z} / p \mathbb{Z}$
- Note: $\mathbb{Z} / n \mathbb{Z}$ is a field $\Leftrightarrow n$ is prime
- Example 3
- \mathbb{R}^{2} is not a field with multiplication defined as $\left(r_{1}, r_{2}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\left(r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}\right)$

Product Ring

- Let R_{1}, R_{2} be rings
- The product ring $\boldsymbol{R}_{\mathbf{1}} \times \boldsymbol{R}_{\mathbf{2}}$ has the following ring structure
- For addition, it's just the product as groups
- For multiplication, $\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)\left(\boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}\right)=\left(\boldsymbol{r}_{1} \boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2} \boldsymbol{r}_{2}^{\prime}\right)$ with identity $\left(1_{R_{1}}, 1_{R_{2}}\right)$

Integral Domain

- Definition
- A communicative ring R is an integral domain (or just domain) if
- R contains no zero-divisors
- Example
- Unites are not zero-divisors, so all fields are domains
- \mathbb{Z} is a domain, but not a field
- $\mathbb{Z} / n \mathbb{Z}$ is a domain \Leftrightarrow it is a field $\Leftrightarrow n$ is prime
- $R_{1} \times R_{2}$ is a domain \Leftrightarrow one of them is trivial, and the other is a domain

Product Ring, Finite Domain and Field, Subring

Proposition 65: Criterion for Product Ring to be a Domain

- Statement
- If R_{1} and R_{2} are rings, then $\boldsymbol{R}_{\mathbf{1}} \times \boldsymbol{R}_{\mathbf{2}}$ is a domain iff
- One of the R_{1} or R_{2} is a domain, and the other is trivial
- Proof (\Leftarrow)
- Without loss of generality, assume R_{1} is a domain and R_{2} is trivial
- Let $\left(r_{1}, r_{2}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \in R_{1} \times R_{2} \backslash\{(0,0)\}$
- Then $r_{1} \neq 0$ and $r_{1}^{\prime} \neq 0$
- Since R_{1} is a domain, $r_{1} r_{1}^{\prime} \neq 0$
- Thus, $\left(r_{1}, r_{2}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\left(r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}\right) \neq 0$
- Proof (\Rightarrow)
- $\left(1_{R_{1}}, 0\right)\left(0,1_{R_{2}}\right)=(0,0)$
- Since $R_{1} \times R_{2}$ is a domain, either $\left(1_{R_{1}}, 0\right)$ or $\left(0,1_{R_{2}}\right)$ is $(0,0)$
- This means either $1_{R_{1}}$ or $1_{R_{2}}$ is 0 , and thus R_{1} or R_{2} is trivial
- Without loss of generality, suppose R_{2} is trivial
- We want to show that R_{1} is a domain
- Let $r_{1}, r_{1}^{\prime} \in R_{1} \backslash\{0\}$
- Then $\left(r_{1}, 0\right),\left(r_{1}^{\prime}, 0\right) \in R_{1} \times R_{2} \backslash\{(0,0)\}$
- So $\left(r_{1}, 0\right)\left(r_{1}^{\prime}, 0\right)=\left(r_{1} r_{1}^{\prime}, 0\right) \neq(0,0)$ i.e. $r_{1} r_{1}^{\prime} \neq 0$

Proposition 66: Finite Domain is a Field

- Statement
- A finite domain \boldsymbol{R} is a field
- Proof
- Let $a \in R \backslash\{0\}$
- We want to show that a has a multiplicative inverse
- Define a function $F: R \rightarrow R$ given by $r \mapsto a r$
- F is injective
- Suppose $F\left(r_{1}\right)=F\left(r_{2}\right)$
- Then $a r_{1}=a r_{2}$
- So $a\left(r_{1}-r_{2}\right)=0$
- Since R is a domain, $r_{1}-r_{2}=0$
- Thus, $r_{1}=r_{2}$
- F is surjective since R is finite
- Choose $b \in R$ s.t. $F(b)=1$, then $a b=1$
- So b is the inverse of a

Subring

- Definition
- A subring of a ring R is a additive subgroup S of R s.t.
- S is closed under multiplication
- S contains 1
- Note
- A subring of a ring is also a ring
- Example 1
- A ring is always a subring of itself
- Example 2
- $\{n \times n$ scalar matrix $\} \subseteq\{n \times n$ diagonal matrix $\} \subseteq \operatorname{Mat}_{n \times n}(\mathbb{R})$
- Example 3
- $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- Example 4
- Let $R:=\left\{\right.$ continuous function from \mathbb{R}^{n} to \mathbb{R} for some $\left.n \geq 1\right\}$
- Define addition and multiplication as
- $(f+g)(v)=f(v)+g(v)$
- $(f g)(v)=f(v) g(v)$
- $f=1$ is the multiplicative identity
- Then \{polynomial functions with n variables\} is a subring of R
- Example 5
- If $f: R \rightarrow S$ is a ring homomorphism i.e.
- f is a homomorphism of abelian groups under addition
- $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right), \forall r_{1}, r_{2} \in R$
- $f\left(\mathbf{1}_{\boldsymbol{R}}\right)=\mathbf{1}_{\boldsymbol{S}}$
- Then im (f) is a subring of S
- Proof
- By group theory, $\operatorname{im}(f)$ is an additive subgroup of S
- $1 \in \operatorname{im}(f)$ by assumption
- If $f\left(r_{1}\right), f\left(r_{2}\right) \in \operatorname{im}(f)$, then $f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right) \in \operatorname{im}(f)$
- Example 6
- By HW9 \#1, \exists ! Ring homomorphism $f: \mathbb{Z} \rightarrow R$ for any ring R
- $\operatorname{im}(f)$ is the smallest subring of R
- Also, $\operatorname{im}(f) \cong \mathbb{Z} / n \mathbb{Z}$, where $n=\operatorname{char}(R)$
- Note: A ring isomorphism is a ring homomorphism that is bijective
- Example 7
- $\left\{\left(r_{1}, 0\right) \mid r_{1} \in R_{1}\right\} \subseteq R_{1} \times R_{2}$ is not a subring
- Since it doesn't contain the identity $(1,1)$

Polynomial Ring, Ideal, Principal Ideal

Polynomial Ring

- Polynomials over a ring
- Let R be a commutative ring
- A polynomial over \boldsymbol{R} is the sum
- $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where
- x is a variable, and $a_{i} \in R$
- Degree
- Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial over R
- The degree of f, denoted as $\boldsymbol{\operatorname { d e g }}(\boldsymbol{g})$, is $\boldsymbol{\operatorname { s u p }}\left\{\boldsymbol{n} \geq \mathbf{0} \mid \boldsymbol{a}_{\boldsymbol{n}} \neq \mathbf{0}\right\}$
- Note: $\operatorname{deg}(0)=-\infty$
- Leading term and leading coefficient
- If $\operatorname{deg}(f)=n \geq 0$
- The leading term of f is $\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{x}^{\boldsymbol{n}}$
- The leading coefficient of f is $\boldsymbol{a}_{\boldsymbol{n}}$
- Polynomial ring
- Let $\boldsymbol{R}[\boldsymbol{x}]:=$ \{Polynomials over a commutative ring \boldsymbol{R} \}
- Then $R[x]$ is a commutative ring with
- ordinary addition and multiplication of polynomials
- \boldsymbol{R} is a subring of $\boldsymbol{R}[\boldsymbol{x}]$
- R is identified with the constant polynomials
- There is a ring homomorphism $i: R \rightarrow R[x]$ defined as
- mapping the ring element $r \in R$ to the constant polynomial r
- The constant polynomials in $R[x]$ form a subring
- And i gives an isomorphism between R and the subring
- Polynomial ring with multiple variables
- We define polynomial rings in several variables inductively
- $R\left[x_{1}, x_{2}\right]=\left(R\left[x_{1}\right]\right)\left[x_{2}\right]$
- :

○ $R\left[x_{1}, \ldots, x_{n}\right]=\left(R\left[x_{1}, \ldots, x_{n-1}\right]\right)\left[x_{n}\right]$

Proposition 67: Polynomial Rings over a Domain

- Statement
- Let R be a domain
- Let $p, q \in R[x] \backslash\{0\}$, then

1. $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$
2. $(\boldsymbol{R}[\boldsymbol{x}])^{\times}=\boldsymbol{R}^{\times}$
3. $R[x]$ is a domain

- Proof
- Write
- $p=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, where $\operatorname{deg}(p)=n$
- $q=b_{m} x^{m}+\cdots+b_{1} x+b_{0}$, where $\operatorname{deg}(q)=m$
- Then $a_{n} \neq 0$ and $b_{m} \neq 0$
- Since R is a domain, $a_{n} m_{m} \neq 0$
- So, the leading term of $p q$ is $a_{n} b_{m} x^{m+n}$, which verifies (1)
- Also, $a_{n} b_{m} x^{m+n} \neq 0$. This proves (3)
- For (2), suppose $p q=1$, then
- $\operatorname{deg}(p)+\operatorname{deg}(q)=\operatorname{deg}(p q)=0$ by (1)
- Thus, $\operatorname{deg}(p)=0=\operatorname{deg}(q)$ i.e. $p, q \in R$
- Since $p q=1, p, q \in R^{\times}$
- Thus $(R[x])^{\times} \subseteq R^{\times}$
- Also, $R^{\times} \subseteq(R[x])^{\times}$
- Therefore $(R[x])^{\times}=R^{\times}$

Ideal

- Definition
- Let I be a subset of ring R, and let $r \in R$
- Define $r I:=\{r x \mid x \in I\}$
- I is a left ideal of R if
- I is an additive subgroup of R
- $r I=I, \forall r \in R$
- Right ideal is defined similarly
- I is an ideal if I is both a left and right ideal
- Intuition
- Normal subgroups are to groups as ideals are to rings
- Example
- If R is a ring, then R and $\{0\}$ are both ideals

Proposition 68: Ideal Containing 1 is the Whole Ring

- Statement
- If $I \subseteq R$ is an ideal, then $\boldsymbol{I}=\boldsymbol{R} \Leftrightarrow \mathbf{1} \in \boldsymbol{I}$
- Proof (\Rightarrow)
- Trivial
- Proof (\Longleftarrow)
- By definition of ideal, $r I=I, \forall r \in R$
- So $r=r \cdot 1 \in I$
- Thus $R=I$
- Corollary
- Recall that subrings always contain 1
- If S is a subring of ring R, then
- $S \subseteq R$ is an ideal $\Leftrightarrow S=R$
- If $I \subseteq R$ is an ideal, then
- I is a subring of $R \Leftrightarrow I=R$

Principal Ideal

- Definition
- Let R is a commutative ring, and let $r \in R$, then
- $(r):=\{a r \mid a \in R\}$ is called the principal ideal generated by r
- Proof: Principal ideals are ideals
- $0=0 \cdot r \in(r)$, so (r) is not empty
- Let $a r, b r \in(r)$, then
- $a r-b r=(a-b) r \in(r)$
- Therefore, (r) is an additive subgroup of R
- Let $a \in R, b r \in(r)$, then
- $a(b r)=a b r \in(r)$
- $(b r) a=b r a=a b r \in(r)$
- So $a(r)=(r) a, \forall a \in R$
- Example
- If $n \in \mathbb{Z}$, then (n) is just the cyclic subgroup generated by n

Examples of Ideals, Quotient Ring

Examples of Ideals

- $\{(n) \mid n \in \mathbb{Z}\}$ is all of the ideals in \mathbb{Z}
- Let $I \subseteq \mathbb{Z}$ be a nonzero ideal
- Let d be the smallest positive integer in I
- $I \supseteq(d)$
- This is clear
- (d) $\supseteq I$
- Suppose $x \in I$
- Write $x=q d+r$ where $q, r \in \mathbb{Z}$, and $0 \leq r<d$
- Then we have $r=x-q d$, where $x \in I, q d \in I$
- So $r \in I$, and the minimality of d forces $r=0$
- Therefore $x \in(d)$
- If $f: R \rightarrow S$ is a ring homomorphism, then $\operatorname{ker} \boldsymbol{f}$ is an ideal
- $\operatorname{ker} f$ is an additive subgroup of R by group theory
- Let $r \in R$, and $x \in \operatorname{ker} f$
- Then $f(r x)=f(r) f(x)=0=f(x) f(r)=f(x r)$
- Thus $x r, r x \in \operatorname{ker} f$
- There are left ideals that are not right ideals, and vice versa
- Let $R=\operatorname{Mat}_{n}(S)$, where S is any ring
- Let $1 \leq k \leq n$
- Let $C_{k}:=\left\{\right.$ matrices with 0 entries except in the $k^{\text {th }}$ column $\} \subseteq R$
- C_{k} is a left ideal
- Let $A \in \operatorname{Mat}_{n}(S)$, and $B \in C_{k}$
- The (i, j) entry of $A B$ is the dot product of i-th row and j-th column
- It's clear that the (i, j) entry of $A B$ is 0 unless $j=k$
- C_{k} is not a right ideal
- $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right) \in C_{2} \subseteq \operatorname{Mat}_{2}(\mathbb{R})$
- $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \notin C_{2}$
- Similarly, $R_{k}:=\left\{\right.$ matrices with 0 entries except in the $k^{\text {th }}$ row $\} \subseteq R$
- Then R_{k} is a right ideal, but not left ideal
- Statement
- Let R be a ring
- If $I \subseteq R$ is an ideal, then the quotient group R / I is a ring with multiplication
- $(r+I)\left(r^{\prime}+I\right)=r r^{\prime}+I$
- Conversely, if
- $J \subseteq R$ is an additive subgroup
- R / J is a ring with multiplication defined above
- Then J is an ideal
- Proof (\Rightarrow)
- Multiplication is well-defined
- Let $r_{1}+I=r_{2}+I$, and $r_{1}^{\prime}+I=r_{2}^{\prime}+I$
- We must show that $r_{1} r_{1}^{\prime}+I=r_{2} r_{2}^{\prime}+I$
- $r_{1} r_{1}^{\prime}-r_{2} r_{2}^{\prime}=r_{1} r_{1}^{\prime}+r_{1} r_{2}^{\prime}-r_{1} r_{2}^{\prime}-r_{2} r_{2}^{\prime}=r_{1}\left(r_{1}^{\prime}-r_{2}^{\prime}\right)+\left(r_{1}-r_{2}\right) r_{2}^{\prime}$
- $\left\{\begin{array}{l}r_{1}+I=r_{2}+I \\ r_{1}^{\prime}+I=r_{2}^{\prime}+I\end{array} \Rightarrow\left\{\begin{array}{l}r_{1}-r_{2} \in I \\ r_{1}^{\prime}-r_{2}^{\prime} \in I\end{array} \Rightarrow r_{1} r_{1}^{\prime}-r_{2} r_{2}^{\prime} \in I\right.\right.$
- Thus $r_{1} r_{1}^{\prime}+I=r_{2} r_{2}^{\prime}+I$
- $1_{R / I}=1+I$
- Associativity and distributivity of R / I follow from analogous properties of R
- Proof ($\Leftarrow)$
- Suppose $J \subseteq R$ is an additive subgroup, and R / J is a ring with above operation
- Then $f: R \rightarrow R / J$ given by $r \mapsto r+J$ is a ring homomorphism with $\operatorname{ker} f=J$
- Thus, J is an ideal

Isomorphism Theorems for Rings

Theorem 70: The First Isomorphism Theorem for Rings

- Statement
- If $f: R \rightarrow S$ is a ring homomorphism, then there is an induced isomorphism
- $\bar{f}: R / \operatorname{ker} \boldsymbol{f} \rightarrow \mathbf{i m}(\boldsymbol{f})$, given by $r+\operatorname{ker} \boldsymbol{f} \mapsto \boldsymbol{f}(\boldsymbol{r})$
- Proof
- We need only check $\overline{\boldsymbol{f}}\left(\mathbf{1}_{\boldsymbol{R} / \operatorname{ker} \boldsymbol{f}}\right)=\mathbf{1}_{\boldsymbol{S}}$, and $\overline{\boldsymbol{f}}$ preserves multiplication
- $\bar{f}\left(1_{R / \operatorname{ker} f}\right)=\bar{f}(1+\operatorname{ker} f)=f\left(1_{R}\right)=1_{S}$
- $\bar{f}\left(\left(r_{1}+I\right)\left(r_{2}+I\right)\right)=\bar{f}\left(r_{1} r_{2}+I\right)=f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)=\bar{f}\left(r_{1}+I\right) \bar{f}\left(r_{2}+I\right)$
- Example: $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$
- Let $F: \mathbb{R}[x] \rightarrow \mathbb{C}$ given by $p \mapsto p(i)$
- F is a ring homomorphism
- In fact, if R is a subring of some ring S, and $s \in S$, then
- The function $\boldsymbol{R}[\boldsymbol{x}] \rightarrow \boldsymbol{S}$ given by $\boldsymbol{p} \mapsto \boldsymbol{p}(\boldsymbol{s})$ is a ring homomorphism
- F is surjective
- If $a+b i \in \mathbb{C}$, then $F(a+b x)=a+b i$
- $\left(x^{2}+1\right) \subseteq \operatorname{ker} f$
- If $p\left(x^{2}+1\right) \in\left(x^{2}+1\right)$, then
- $F\left(p\left(x^{2}+1\right)\right)=F(p) F\left(x^{2}+1\right)=p(i) p\left(i^{2}+1\right)=0$
- $\operatorname{ker} f \subseteq\left(x^{2}+1\right)$
- Let $p \in \operatorname{ker} f$
- Using polynomial division, we can find $q, r \in \mathbb{R}[x]$ s.t.
- $p=q\left(x^{2}+1\right)+r$ where $\operatorname{deg} r<\operatorname{deg}\left(x^{2}+1\right)=2$
- Write $r=a x+b$ for some $a, b \in \mathbb{R}$
- Since $p \in \operatorname{ker} f, p(i)=0$
- $0=p(i)=q(i) \times\left(i^{2}+1\right)+r(i)=r(i)=a i+b$
- So $a=b=0$
- Therefore $p=q\left(x^{2}+1\right)$, and $p \in\left(x^{2}+1\right)$
- Therefore, $\operatorname{ker} f=\left(x^{2}+1\right)$
- By the First Isomorphism Theorem of Rings, $\mathbb{R}[\boldsymbol{x}] /\left(\boldsymbol{x}^{2}+\mathbf{1}\right) \cong \mathbb{C}$
- Example: $\mathbb{R}[x] /(x-a) \cong \mathbb{R}$, where $a \in \mathbb{R}$
- Let $F: \mathbb{R}[x] \rightarrow \mathbb{R}$ given by $p \mapsto p(a)$
- F is surjective
- $F(b)=b, \forall b \in \mathbb{R}$
- F is a ring homomorphism
- $(x-a) \subseteq \operatorname{ker} f$
- If $p(x-a) \in(x-a)$, then
- $F(p(x-a))=F(p) F(x-a)=p(a) p(a-a)=0$
- $\operatorname{ker} f \subseteq(x-a)$
- Let $p \in \operatorname{ker} f$
- Divide $x-a$ into p to obtain $q, r \in \mathbb{R}[x]$ s.t.
- $p=q(x-a)+r$, where $\operatorname{deg} r<1$
- Since $p \in \operatorname{ker} f, 0=p(a)=q(a)(a-a)+r=r$
- Thus $r=0$, so $p=q(x-a) \in(x-a)$
- Therefore, $\operatorname{ker} f=(x-a)$
- By the First Isomorphism Theorem of Rings, $\mathbb{R}[x] /(x-a) \cong \mathbb{R}$
- Example: $\mathbb{R}[x] /\left(x^{2}-1\right) \cong \mathbb{R} \times \mathbb{R}$
- Recall: Chinese Remainder Theorem
- If I, J are ideals in a commutative ring R s.t. $\boldsymbol{I}+\boldsymbol{J}=\boldsymbol{R}$
- Then $\boldsymbol{R} / \mathbf{I J} \cong \boldsymbol{R} / \mathbf{I} \times \boldsymbol{R} / \boldsymbol{J}$, where
- $I+J=\{x+y \mid x \in I, y \in J\}$
- $I J=\left\{x_{1} y_{1}+\cdots+x_{n} y_{n} \mid n \in \mathbb{Z}_{\geq 1}, x_{i} \in I, y_{i} \in J\right\}$
- $\left(x^{2}-1\right) \subseteq(x+1)(x-1)$
- This is obvious, since $x^{2}-1 \in(x+1)(x-1)$
- $(x+1)(x-1) \subseteq\left(x^{2}-1\right)$
- Let $p_{1} q_{1}+\cdots+p_{n} q_{n} \in(x-1)(x+1)$, where $p_{i} \in(x-1), q_{i} \in(x+1)$
- Each term $p_{i} q_{i}$ is of form

व $f_{i}(x-1) \cdot g_{i}(x+1)=f_{i} g_{i}\left(x^{2}-1\right)$ for some $f_{i}, g_{i} \in \mathbb{R}$

- Thus $p_{i} q_{i} \in\left(x^{2}-1\right) \Rightarrow p_{1} q_{1}+\cdots+p_{n} q_{n} \in\left(x^{2}-1\right)$
- Thus $\left(x^{2}-1\right)=(x+1)(x-1)$
- $\mathbb{R}[x] /(x+1)(x-1) \cong \mathbb{R} \times \mathbb{R}$
- $\frac{1}{2}(x+1)-\frac{1}{2}(x-1)=1 \in \mathbb{R}[x]$
- $\Rightarrow(x+1)+(x-1)=\mathbb{R}[x]$
- $\Rightarrow 1 \in(x+1)+(x-1)$
- Chinese Remainder Theorem implies $\mathbb{R}[x] /(x+1)(x-1) \cong \mathbb{R} \times \mathbb{R}$
- Therefore, $\mathbb{R}[x] /\left(x^{2}-1\right) \cong \mathbb{R} \times \mathbb{R}$

Other Isomorphism Theorems for Rings

- The Second Isomorphism Theorem for Rings
- If I is an ideal of a ring R, and S is a subring of R
- Then $S+I$ is also a subring of R, where
- I is an ideal of $S+I$, and $(S+I) / \boldsymbol{I} \cong S /(\boldsymbol{I} \cap \boldsymbol{S})$
- The Third Isomorphism Theorem for Rings
- If $I \subseteq J$ are ideals of a ring R, then $\boldsymbol{R} / \boldsymbol{I} / \boldsymbol{J} / \boldsymbol{I} \cong \boldsymbol{R} / \boldsymbol{J}$
- Correspondence Theorem
- If R is a ring, and I is an ideal of R
\circ Then there is a bijection \{ideals of $\boldsymbol{R} / \boldsymbol{I}\} \leftrightarrow\{$ ideals of \boldsymbol{R} containing $\boldsymbol{I}\}$

Ideal Generated by Subset, Maximal Ideal

Ideal Generated by Subset

- Definition
- Let R be a commutative ring
- If A is a subset of R, then the ideal generated by \boldsymbol{A} is
$\circ(A):=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n} \mid n \in \mathbb{Z}_{\geq 1}, r_{i} \in R, a_{i} \in A\right\} \subseteq R$
- If A is finite, then we write (A) as $\left(a_{1}, \ldots, a_{n}\right)$
- Note
- When $|A|=1,(A)$ is a principal ideal
- Example: $(2, x) \subseteq \mathbb{Z}[x]$
- Suppose, by way of contradiction, that $(2, x)=(p)$ for some $p \in \mathbb{Z}[x]$
- Since $2 \in(p)$
- $2=p q$ for some $q \in \mathbb{Z}[x]$
- $0=\operatorname{deg} 2=\operatorname{deg} p+\operatorname{deg} q$
- $\operatorname{deg} p=\operatorname{deg} q=0$
- Since $x \in(p)$
- Choose $r \in \mathbb{R}[x]$ s.t. $p r=x$, then $\operatorname{deg} r=1$
- Write $r=a x+b$, where $a, b \in \mathbb{Z}$
- Then $p r=p(a x+b)=x$
- So $p a=1$, by comparing coefficients
- Since $p \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}, p \in\{ \pm 1\}$
- Therefore $(2, x)=(p)=\mathbb{Z}[x]$
- So, $1=2 p^{\prime}+x q^{\prime}$, where $p^{\prime}, q^{\prime} \in \mathbb{Z}[x]$
- Evaluating both side at 0 , we get $1=2 p^{\prime}(0)=0$
- This is a contradiction, so $(2, x) \subseteq \mathbb{Z}[x]$
- Example: $\mathbb{Z}[x] /(2, x) \cong \mathbb{Z} /(2)$
- Define $F: \mathbb{Z}[x] \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ given by $a_{0} x^{n}+\cdots+a_{1} x+a_{0} \mapsto \overline{a_{0}}$
- F is a ring homomorphism
- F factors as $\mathbb{Z}[x] \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, where $p \mapsto p(0) \mapsto p \overline{(0)}$
- Composition of homomorphisms is still a homomorphism
- F is certainly surjective
- $(2, x) \subseteq \operatorname{ker} F$
- Let $p \in(2, x)$
- Then $p=2 g+x h$ for some $g, h \in \mathbb{Z}[x]$
- Since $x h$ has no constant term, and $2 g$ has even constant term
- $F(p)=F(2 g)=F(g)=\overline{0} \in \mathbb{Z} / 2 \mathbb{Z}$
- $\operatorname{ker} F \subseteq(2, x)$
- Let $p=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \operatorname{ker} F$
- Write $a_{0}=2 b$, where $b \in \mathbb{Z}$
- Then $p=x\left(a_{n} x^{n-1}+\cdots+a_{1}\right)+2 b \in(2, x)$
- Therefore, $\operatorname{ker} F=(2, x)$
- By the First Isomorphism Theorem of, $\mathbb{Z}[x] /(2, x) \cong \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} /(2)$
- Note: $\mathbb{Z}[x] /(x, n) \cong \mathbb{Z} /(n)$

Maximal Ideal

- An ideal M in a ring R is maximal if
- $M \neq R$, and the only ideals containing M are M and R

Proposition 71: Criterion for Maximal Ideal

- Statement
- If R is a commutative ring, and $M \subseteq R$ is an ideal
- Then \boldsymbol{M} is maximal $\Leftrightarrow R / \boldsymbol{M}$ is a field
- Proof (\Rightarrow)
- The only ideals containing M are R and M
- Thus, R / M has exactly 2 idals, by the Correspondence Theorem
- Namely, the zero ideal, and the entire ring
- Let $x+M \in R / M$ s.t. $x \notin M$
- Suppose $x \notin M$ i.e. $x+M \neq 0_{R / M}$
- Then $(x+M)=R / M$
- So $1+M \in(x+M)$
- Choose $y+M \in R / M$ s.t. $(x+M)(y+M)=1+M$
- This shows $x+M$ is a unit
- Therefore R / M is a field
- Proof (\Longleftarrow)
- Suppose R / M is a field
- Then R / M has exactly two ideals, 0 and R / M
- By the Correspondence Theorem,
- There are exactly two ideals containing M, that is R and M
- By definition of maximal ideal, M is maximal

Examples of Maximal Ideals

- What are the maximal ideals in \mathbb{Z} ?
$\circ(n) \in \mathbb{Z}$ is maximal $\Leftrightarrow \mathbb{Z} /(n)$ is a field $\Leftrightarrow n$ is prime
- Is $(x) \subseteq \mathbb{Z}[x]$ maximal?
- No, $(x) \subsetneq(2, x) \neq \mathbb{Z}[x]$
- Also, by First Isomorphism Theorem, $\mathbb{Z}[x] /(x) \cong \mathbb{Z}$, but \mathbb{Z} is not a field
- Define a ring map $\mathbb{Z}[x] \rightarrow \mathbb{Z}$ given by $p \rightarrow p(0)$
- F is surjective, and $\operatorname{ker} F=(x)$
- Is $\left(x^{2}+1\right) \subseteq \mathbb{R}[x]$ maximal?
- $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$ is a field
- Is $\left(x^{2}-1\right) \subseteq \mathbb{R}[x]$ maximal
- $\mathbb{R}[x] /\left(x^{2}-1\right) \cong \mathbb{R} \times \mathbb{R}$ is not a field, since $(1,0)$ is not a unit
- Another way to see $\left(x^{2}-1\right)$ is not maximal
- $\left(x^{2}-1\right) \subsetneq(x-1) \subsetneq \mathbb{R}[x]$
- $\left(x^{2}-1\right) \subsetneq(x+1) \subsetneq \mathbb{R}[x]$

Prime Ideal, Euclidean Domain

Prime Ideal

- Let R be a commutative ring
- An ideal $P \subsetneq R$ is prime if
- $a, b \in R$, and $a b \in P \Rightarrow a \in P$ or $b \in P$

Proposition 72: Prime Ideas of \mathbb{Z}

- Statement
- The prime ideals of \mathbb{Z} are ideals of the form (n), where \boldsymbol{n} is prime or $\boldsymbol{n}=\mathbf{0}$
- Proof (\Rightarrow)
- Let $(n) \subseteq \mathbb{Z}$ be a prime ideal, and $n \neq 0$
- We want to show that n is prime
- Choose $a, b \in \mathbb{Z}$ s.t. $n=a b$
- Then $a b \in(n)$, so either $a \in(n)$ or $b \in(n)$, by definiton of prime ideal
- Without loss of generality, suppose $a \in(n)$, then $n \mid a$
- Choose $q \in \mathbb{Z}$ s.t. $n q=a$
- $n=a b \Rightarrow n=n q b \Rightarrow 1=q b \Rightarrow b \in\{ \pm 1\}$
- So n is a prime
- $\operatorname{Proof}(\Leftarrow)$
- (0) is prime
- Let $a, b \in \mathbb{Z}$, and $a b \in(0)$
- Then $a b=0$
- $\Rightarrow a=0$ or $b=0$
- $\Rightarrow a \in(0)$ or $b \in(0)$
- Therefore (0) is prime
- (p) is prime for $p \in \mathbb{Z}$ prime
- Let $a, b \in \mathbb{Z}$, and say $a b \in(p)$
- Then $p \mid a b$
- Since p is prime, this means $p \mid a$ or $p \mid b$
- $\Rightarrow a \in(p)$ or $b \in(p)$

Proposition 73: Criterion for Prime Ideal

- Statement
- Let R be a commutative ring, $P \subseteq R$ an ideal, then
$\circ P$ is prime $\Leftrightarrow R / P$ is a domain
- In particular, R is a domain \Leftrightarrow zero ideal is prime
- $\operatorname{Proof}(\Rightarrow)$
- Let $a+P, b+P \in(R / P) \backslash\{P\}$
- Then $(a+P)(b+P)=a b+P=0$
- So, $a b \in P$
- Since P is prime, $a \in P$ or $b \in P$
- Therefore $a+P=0$ or $b+P=0$
- So R / P is a domain
- Proof (\Longleftarrow)
- Let $a, b \in R$, and suppose $a b \in P$, then
- $0=a b+P=(a+P)(b+P)$
- Since R / P is a domain, $a+P=0$ or $b+P=0$
- So $a \in P$ or $b \in P$
- Therefore P is prime
- Example
- $\left(x^{2}-1\right) \subseteq \mathbb{R}[x]$ is not prime, since $\mathbb{R}[x] /\left(x^{2}-1\right) \cong \mathbb{R} \times \mathbb{R}$ is not a domain
- Also, $x^{2}-1 \in\left(x^{2}-1\right)$, but $x-1, x+1 \notin\left(x^{2}-1\right)$

Corollary 74: Maximal Ideal is Prime

- Statement
- If R is a commutative ring, and $\boldsymbol{M} \subseteq \boldsymbol{R}$ is maximal, then \boldsymbol{M} is prime
- Proof
- M is maximal $\Rightarrow R / M$ is a field $\Rightarrow R / M$ is a domain $\Rightarrow M$ is prime

Euclidean Domain

- Definition
- Let R be a domain
- A norm on R is a function $N: R \rightarrow \mathbb{Z}_{\geq 0}$ s.t. $N(0)=0$
- R is called a Euclidean domain if R is equipped with a norm N s.t.
- $\forall a, b \in R$ with $b \neq 0, \exists q, r \in R$ s.t.
- $a=q b+r$, and
- either $r=0$ or $N(r)<N(b)$
- Example 1
- \mathbb{Z} is a Euclidean domain, $N(a)=|a|$
- Example 2
- If F is a field, then F is trivially a Euclidean domain
- Take $N: F \rightarrow \mathbb{Z}_{\geq 0}$ to be any function s.t. $N(0)=0$
- Then, if $a, b \in F$, where $b \neq 0$, take $q=\frac{a}{b}, r=0$
- Example 3
- If F is a field, then $F[x]$ is a Euclidean domain, with $N(p)=\operatorname{deg} p$
- The division algorithm is just polynomial division
- Note
- $\operatorname{deg} 0=-\infty \notin \mathbb{Z}_{\geq 0}$, so this definition isn't quite right
- To handle this problem, define a norm that sends values not in $\mathbb{Z}_{\geq 0}$, but
- any total ordered set in order-preserving bijection with $\mathbb{Z}_{\geq 0}$
- (For instance, $\mathbb{Z}_{\geq 0} \cup\{-\infty\}$)

Principal Ideal Domain

- A domain in which every ideal is principal is called a principal ideal domain

Proposition 75: Euclidean Domain is a Principal Ideal Domain

- Statement
- Every ideal in a Euclidean domain R is principal
- More precisely, if $I \subseteq R$ is an ideal, then $I=(d)$, where
- d is an element of I with minimum norm
- Proof
- Let $I \subseteq R$ be an ideal
- If $I=(0)$, then I is principal, so assume $I \neq(0)$
- $\{N(a) \mid a \in I \backslash\{0\}\}$ has a minimal element, by well-ordering principal
- Choose $d \in I \backslash\{0\}$ s.t. $N(d)$ is minimal
- Certainly, $(d) \subseteq I$
- Let $a \in I$, write $a=q d+r$, where
- $q, r \in R$, and
- either $r=0$ or $N(r)<N(d)$
- Since $r=a-q d \in I, N(r)$ can't be smaller than $N(d)$
- So $r=0 \Rightarrow a=q d \Rightarrow a \in(d)$
- Therefore $I \subseteq(d)$
- Example 1
- We haven't yet proven that $F[x]$ is a Euclidean domain, where F is a field
- Once we show this, then $F[x]$ has the property that all of its ideals are principal
- Example 2
- $\mathbb{Z}[x]$ cannot be a Euclidean domain, since $(2, x) \subseteq \mathbb{Z}[x]$ is not principal

Theorem 76: Polynomial Division

- Statement
- Let F be a field, then $\boldsymbol{F}[\boldsymbol{x}]$ is a Euclidean domain
- More specifically, if $a, b \in F[x]$ where $b \neq 0$, then
- $\exists!q, r \in F[x]$ s.t. $a=b q+r$ and $\operatorname{deg} r<\operatorname{deg} b$
- Proof (Existence)
- We argue by induction on $\operatorname{deg} a$
- If $a=0$, take $q, r=0$, so assume $a \neq 0$
- Set $n:=\operatorname{deg} a, m:=\operatorname{deg} b$
- If $n<m$, then take $q=0, r=a$
- Assume $n \geq m$
- Write
- $a=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$
- $b=b_{m} x^{m}+\cdots+b_{1} x+b_{0}$
- Set $a^{\prime}=a-\frac{a_{n}}{b_{m}} x^{n-m} b$
- Then $\operatorname{deg} a^{\prime}<\operatorname{deg} a$
- Since a and $\frac{a_{n}}{b_{m}} x^{n-m} b$ have the same leading coefficient
- By inductive hypothesis
- $\exists q^{\prime}, r \in F[x]$ with $a^{\prime}=q^{\prime} b+r$ and $\operatorname{deg} r<\operatorname{deg} b$
- Set $q=q^{\prime}+\frac{a_{n}}{b_{m}} x^{n-m} b$, then
- $a=a^{\prime}+\frac{a_{n}}{b_{m}} x^{n-m} b$
- $=q^{\prime} b+r+\frac{a_{n}}{b_{m}} x^{n-m} b$
- $=\left(q^{\prime}+\frac{a_{n}}{a_{m}} x^{n-m}\right) b+r$
- $=q b+r$
- Proof (Uniqueness)
- Suppose $b q^{\prime}+r^{\prime}=a=b q+r$ where $\operatorname{deg} r<\operatorname{deg} b$, and $\operatorname{deg} r^{\prime}<\operatorname{deg} b$
- Then $\operatorname{deg}(a-b q)<\operatorname{deg} b$ and $\operatorname{deg}\left(a-b q^{\prime}\right)<\operatorname{deg} b$
$\circ \Rightarrow \operatorname{deg}\left((a-b q)-\left(a-b q^{\prime}\right)\right)=\operatorname{deg}\left(b q^{\prime}-b q\right)=\operatorname{deg} b+\operatorname{deg}\left(q^{\prime}-q\right)<\operatorname{deg} b$
- $\Rightarrow \operatorname{deg}\left(q^{\prime}-q\right)<0 \Rightarrow q^{\prime}=q$
- It follows immediately that $r^{\prime}=r$

