
" " means "equals, by definition"•

                the set of integers•

   
 
 
                                         •

  the set of all real numbers•

                                               •

                                              •

               •

Denote a function  from a set  to a set  by      •

Denote the image of  by                             •

Notations

Let      be a function, then•

 is injective if                         •

 is surjective if                     (i.e.        )•

 is bijective if  is both injective and surjective•

Injective, Surjective and Bijective

If              •

We say  divides  and write    , if     s.t.     •

Divides

If  and  are sets, then the Cartesian product of  and  is •

                   •

Cartesian Product

A relation on a set  is a subset  of    •

We write     if         •

Relations

A relation  on  is an equivalence relation if  is•

If    , then    ○

i.e.        ○

Reflexive•

If     , then     ○

i.e.              

Symmetric•

Equivalence Relations

Definitions
Tuesday, May 8, 2018 12:23 AM
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i.e.                  ○

If                       ○

i.e. If         and                          ○

Transitive•

Let      , where either    or    •

   and    ○

If    s.t.    and    then    ○

A greatest common divisor of  and  is a positive integer  s.t.•

We write the greatest common divisor of  and  , if it exists, as      •

As a convention        •

Greatest Common Divisor

Let  be a set, and let ~ be an equivalence relation on  •

If    , then the equivalence class represented by  is the set•

                 •

Equivalence Class

Let      •

The relation on  given by            is an equivalence relation•

The set of equivalence classes under  is denoted as     •

We call this set integers modulo  (or integers mod n)•

We can check that there are  elements in     •

We use   to denote the equivalence class in     •

Then                             •

Integers Modulo  

     ○

         ○

If  is a set equipped with a binary operation•

Associativity:                         ○

Identity:     s.t.               ○

Inverses:            s.t.            ○

that satisfies •

Then we say  is a group under this operation•

Group

We say a group  is abelian, if             •

Abelian Group

If  is a group, and    •

Order of Group Element
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If  is a group, and    •

The order of  is the smallest positive integer  s.t.     •

If  is the order of  , write      •

If no such integer exists, write      •

i.e.                
    •

Let      be fixed•

Let                                         •

(i.e.   is the set of all permutations of        )•

Then   is a group with operation given by function composition•

We call this group symmetric group of degree  •

Symmetric Group

Let      be fixed•

Let                •

         for        ○

     ○

     if           ○

The element of   given by •

is denoted by             and is called a cycle of length  •

Cycle

Two cycles         and          are disjoint if •

                    •

Disjoint Cycles

Let    be groups•

                           ○

A function      is a homomorphism if •

One says   "respects", or "preserves" the group operation•

Homomorphism

Let    be groups•

A homomorphism      is a isomorphism if•

      , and○

      ○

there is a homomorphism      s.t. •

In this case, we say  and  are isomorphic•

Isomorphism

Let  be a group, and let    •

Subgroup
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Let  be a group, and let    •

   (nonempty)○

If       , then      (closed under the operation)○

If    , then      (closed under inverse)○

 is a subgroup if•

If  is a subgroup of  , we write    •

A regular      is a polygon with all sides and angles equal•

Regular      

picking up a copy of it

moving it around in 3d

setting it back down 

A symmetry of a regular  -gon is a way of •

so that it exactly covers the original•

Symmetry

                             is called  -th dihedral groups•

Dihedral Groups

A group  is cyclic if     s.t.      •

Cyclic Group

Let      where one of    is nonzero.•

   and    ○

If     and     , then     ○

A least common multiple of  and  is a positive integer  s.t.•

We denote the least common multiple of  and  by      •

Define        •

Least Common Multiple

Let  be a group and    •

The subgroup generated by  is •

the intersection of every subgroup of  containing  •

      

 

   
   

•

Subgroups Generated by Subsets of a Group

A group  is finitely generated if •

There is a finite subset  of  s.t.      •

Finitely Generated Group

Coset
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If  is a group,    , and    •

           is called a left coset•

           is called a right coset•

An element of a coset is called a representative of the coset•

Coset

Let  be a group,    •

 is a normal subgroup if        ,          •

In other words,  is closed under conjugation•

If    is normal, we write    •

Normal Subgroup

Let  be a group,    •

                

The set of left costs of  is a group under the operation•

This group is denoted as    (say " mod  ")•

We call this group quotient group or factor group•

Quotient Group

If  is a group, and    , then•

The index of  is the number of distinct left cosets of  in  •

Denote the index by      •

Index of a Subgroup

Let  be a group and      •

Define                •

Product of Subgroups

Fix  to be a positive integer•

A   cycle      in   is a transposition•

Transposition

     
                                                

                                               

Let          •

Sign of Permutation  (Transposition Definition)

      
        

         

Let           •

   is the sign of  , often denoted as     •

Sign of Permutation   (Auxiliary Polynomial Definition)
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     is the sign of  , often denoted as     •

 is even if         •

 is odd if         •

The alternative group, denoted as   is the kernel of  •

That is,   contains of all even permutations in   •

Alternating Group

          ○

                      ○

An action of  on  is a function      ,         s.t.•

Group Action

Suppose a group  acts on a set  •

Let    •

The orbit of  , denoted       , is            •

The stabilizer of  , denoted stab( ), is              •

Orbit and Stabilizer

Let  be a group, and let  act on itself by conjugation•

If    , then                                  •

This set is called the centralizer of  , denoted as      •

     is the set of elements in  that commute with the element  •

Centralizer

       

 

   

                               •

    is the set of elements that commute with every element of  •

Center

Let  be the set of subgroups of a group  •

Let  acts on  by          •

                                 ○

If    , then•

This set is called the normalizer of  in  , denoted      •

     is the set of elements in  that commute with the set  •

Note:            •

Normalizer

If  is a group,  acts on itself by conjugation:          •

The orbits under this action are called conjugacy classes•

Conjugacy Class
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Denote a conjugate class represented by some element    by        •

A partition of      is a way of writing  as a sum of positive integers•

Example: 3 has 3 partitions:            •

Partition 

A ring is a set  equipped with two operations  and  s.t.•

     is an abelian group•

 is associative•

    s.t.          •

        ○

               ○

               ○

Distributive property:•

Ring

Let  be a ring•

        s.t.     or     ○

A nonzero element    is called a zero-divisor if•

    s.t.        ○

Assume    ,    is called a unit if•

Zero-Divisor and Unit

                    •

Group of Unites

A communitive ring  is called a field if •

Every nonzero element of  is a unit•

i.e. Every nonzero element of  have a multiplicative inverse•

Field

Let      be rings•

The product ring      has the following ring structure•

For addition, it's just the product as groups•

For multiplication,           
    

        
      

  with identity     
    

 •

Product Ring

A communicative ring  is an integral domain (or just domain) if•

 contains no zero-divisors•

Integral Domain

A subring of a ring  is a additive subgroup  of  s.t.•

Subring
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A subring of a ring  is a additive subgroup  of  s.t.•

 is closed under multiplication•

 contains  •

Let  be a commutative ring•

          
            , where○

 is a variable, and     ○

A polynomial over  is the sum•

Polynomials over a ring

If             
            is a polynomial over  •

The degree of  , denoted       , is              •

Note:          •

Degree

If           •

The leading term of  is     •

The leading coefficient of  is   •

Leading Term and Leading Coefficient

Let                                             •

Then     is a commutative ring with•

ordinary addition and multiplication of polynomials•

Polynomial ring

Let  be a subset of ring  , and let    •

Define            •

 is an additive subgroup of  ○

         ○

 is a left ideal of  if•

Right ideal is defined similarly•

 is an ideal if  is both a left and right ideal•

Ideal

Let  is a commutative ring, and let    , then•

            is called the principal ideal generated by  •

Principal Ideal

Let  be a ring•

                 

If    is an ideal, then the quotient group    is a ring with multiplication•

Quotient Ring
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   is an additive subgroup

   is a ring with multiplication defined above

Conversely, if•

Then  is an ideal•

Let  be a commutative ring•

If  is a subset of  , then the ideal generated by  is•

                                   •

If  is finite, then we write    as          •

Ideal Generated by Subset

An ideal  in a ring  is maximal if •

   , and the only ideals containing  are  and  •

Maximal Ideal

Let  be a commutative ring•

An ideal    is prime if •

                  or    •

Prime Ideal

Let  be a domain•

A norm on  is a function        s.t.       •

 is called a Euclidean domain if  is equipped with a norm  s.t.•

      , and ○

either    or          ○

      with    ,       s.t.•

Euclidean Domain

A domain in which every ideal is principal is called a principal ideal domain•

Principal Ideal Domain
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Every nonempty set  of    has a unique minimum element•

     s.t.         •

Proposition 1: Well-ordering of  

Let      , where    •

Then        s.t.       , and      •

Proposition 2: The Division Algorithm

Let      , where either    or    •

 and   both divide  and  (1)

If    s.t.    and    , then    and     (2)

Suppose          s.t.•

Then     •

Proposition 3: Uniqueness of Greatest Common Divisor

Suppose      , where    •

Choose      s.t.       , and         •

If      exists, then      exists and            •

Proposition 4: Lemma for Euclidean Algorithm

              •

Proposition 5:          

If      , then      exists•

Proposition 6: Existence of GCD

If      , then       s.t.            •

Proposition 7: Bézout's Identity

Let  be a set with equivalence relationship ~•

If       , then    and     are either equal or disjoint•

Proposition 8: Equivalence Classes Partition the Set

Let      , and let              •

If         
   , and         

   in     •

Then                      
          , and                

      •

Proposition 9: Addition and Multiplication in     

For      ,     is a group under the operation•

Corollary 10: Integers Modulo  

Propositions
Wednesday, April 4, 2018 2:18 PM
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              ○

                  ○

For      ,     is a group under the operation•

We will denote this operation by  •

So                 •

       is a group with operation given by multiplication•

Proposition 11:        

Let  be a group, then  has the following properties•

The identity of  is unique•

Each    has a unique inverse•

The Generalized Associative Law•

                    •

Proposition 12: Properties of Group

Let  be a group, and let          •

If      , then    •

If               •

Proposition 13: Cancellation Law

Let  be a group, and let      •

If              •

If                •

Corollary 14: Cancellation Law and Identity

       •

Proposition 15: Order of Symmetric Group

Let      be an isomorphism•

 is abelian if and only if  is abelian•

Proposition 16: Isomorphism Preserves Commutativity

Let      be an injective homomorphism•

Then                •

Proposition 16: Injective Homomorphism Preserves Order

A subset  of a group  is a subgroup iff•

   and              •

Proposition 17: The Subgroup Criterion

Let  be a cyclic group•

If      , then       •

Proposition 18: Isomorphism of Cyclic Group
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If        , then       •

If      , then    •

                                         
 

     
     •

Proposition 19: Order of   

Let      be a cyclic group•

Then every subgroup of  is cyclic•

 is the smallest positive integer s.t.     

More precisely, if    , then either      or       , where•

Theorem 20: Subgroup of Cyclic Group is Cyclic

Let      be a finite cyclic group of order  •

For all positive integers  dividing  ,   subgroup    of order  •

                                       
 

 
  •

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order

If    , then        
    

     
                     •

Proposition 21: Construction of    

Let  be a group and    •

If        , then           
      •

The relation  on  given by      iff       is an equivalence relation•

In particular, left/right cosets are either equal or disjoint•

Proposition 22: Properties of Coset

Let  be a subgroup of a group  •

   iff           •

Proposition 23

If  is a group, and    , then•

the set of left costs of  , denoted as    (say " mod  ") •

is a group under the operation                 •

We call this group quotient group or factor group•

Proposition 24: Quotient Group

If  is finite group, and    , then              •

In particular,        •

Theorem 25: Lagrange's Theorem

If  is a group, and    is prime, then  is cyclic, hence,        •

Corollary 26: Group of Prime Order is Cyclic
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If  is a finite group, and    , then       •

Corollary 27:       

If  is a finite cyclic group, then there is a bijection•

                                           •

Corollary 28: The Fundamental Theorem of Cyclic Groups

                                                   
       

     
       •

Proposition 29: Order of Product of Subgroups

If      , then     iff      •

Proposition 30: Permutable Subgroups

If      , and either  or  is normal in  , then     •

Corollary 31: Product of Subgroup and Normal Subgroup

          
 

     ○

              ○

If      is a homomorphism, then  induces an isomorphism•

Theorem 32: The First Isomorphism Theorem

               •

Corollary 33: Order of Kernel and Image

Let      , and assume    •

                 
    

    •

Theorem 34: The Second Isomorphism Theorem

Let  be a group, and      , where    •

                 
   

        •

Theorem 35: The Third Isomorphism Theorem

Let    be groups, and    •

        given by        ○

A homomorphism      induces a homomorphism•

If and only if       •

Proposition 36: Criterion for Defining Homomorphism on Quotient

Let  be a group, and let    , then there is a bijection•

                  
 
 
  

                             •

Theorem 37: The Correspondence Theorem

Proposition 38: Transposition Decomposition of Permutation
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Every     can be written as a product of transposition•

Proposition 38: Transposition Decomposition of Permutation

  is a group homomorphism•

Proposition 39:   is a Group Homomorphism

Let      •

If     is transposition, then         •

Proposition 40: Sign of Transposition

 is well-defined, and     •

Corollary 41: Equivalence of Two Definitions of Sign

If    , then  is surjective•

Corollary 42: Surjectivity of  

If  is a group,    , and        , then    •

Proposition 43: Subgroup of Index 2 is Normal

If                  are  -cycles in   •

Then      s.t.          
            •

Proposition 44: Conjugate Cycle

  have no subgroup of order 6•

Theorem 45:   Have No Subgroup of Order 6

If  acts on  , and    , then stab     •

Proposition 46: Stabilizer is a Subgroup

Let  act on a set  •

The relation     iff     s.t.      is an equivalence relation on  •

Proposition 47: Orbits Equivalence

If  acts on  , and    , then                     •

Proposition 48: Orbit-Stabilizer Theorem

Let  be a group acting on a finite set            •

               ○

Then each    determines a                 by•

Proposition 49: Permutation Representation of Group Action

The map                     is a homomorphism•

Proposition 49: Induced Homomorphism of Group Action

Every finite group is isomorphic to a subgroup of the symmetric group•

Theorem 50: Cayley's Theorem
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Every finite group is isomorphic to a subgroup of the symmetric group•

Let  be a finite group•

Let              be representatives of the conjugacy classes of  •

                           

 

   

•

Theorem 51: The Class Equation

If  is a prime, and  is a group of order         , then         •

Corollary 52: Center of  -Group is Non-Trivial

If  is a prime, and  is a group of order   , then  is abelian.•

In fact, either        or            •

Corollary 53: Group of Order Prime Squared is Abelian

If  is a finite group, and  is a prime divisor of    , then     of order  •

Theorem 54: Cauchy's Theorem

Let  be a group with normal subgroups      •

The map       
 

 given by             is an isomorphism •

if and only if       and          •

Lemma 55: Recognizing Direct Products

Let  be a finite abelian group of order   , where        •

If                          , then•

     and the map        given by         is an isomorphism•

Moreover, if      , then  and  are nontrivial•

Lemma 56: Coprime Decomposition of Finite Abelian Group

Let  be a finite abelian group, and  be a prime divisor of    •

Choose      s.t.        and    •

Then      , where      ,       , and      •

Corollary 57:  -Group Decomposition of Finite Abelian Group

If  is an abelian group of order   , where  is a prime •

Let    has maximal order among all the elements of  •

Then      , where          •

Lemma 58: Prime Decomposition of Abelian  -Group

Every finite abelian group  is a product of cyclic groups•

Theorem 59: Fundamental Theorem of Finite Abelian Groups

If     
     

  , where   are distinct primes

Corollary 60: Number of Finite Abelian Groups of Order  
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If     
     

  , where   are distinct primes•

Then the number of finite abelian groups of order n is•

                           

 

   

•

Let  be a ring, then•

            •

                        •

                  •

The multiplicative identity 1 is unique•

             •

Proposition 61: Properties of Ring

A ring  is trivial (i.e. have only one element) iff    •

Proposition 62: Criterion for Trivial Ring

Let  be a ring, then•

           , and              s.t.     •

   , and     s.t.          s.t.     •

Proposition 63: One-Sided Zero Divisor and Unit

Let    •

Every nonzero element in     is either a unit or a zero-divisor•

Proposition 64: Units and Zero-Divisors of     

If   and   are rings, then      is a domain iff•

one of the   or   is a domain, and the other is trivial•

Proposition 65: Criterion for Product Ring to be Domain

A finite domain  is a field•

Proposition 66: Finite Domain is a Field

Let  be a domain•

Let             , then•

                     •

          •

    is a domain•

Proposition 67: Polynomial Rings over a Domain

If     is an ideal, then        •

Proposition 68: Ideal Containing 1 is the Whole Ring

Let  be a ring•

Proposition 69: Quotient Ring
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Let  be a ring•

                 ○

If    is an ideal, then the quotient group    is a ring with multiplication•

   is an additive subgroup○

   is a ring with multiplication defined above○

Conversely, if•

Then  is an ideal•

If      is a ring homomorphism, then there is an induced isomorphism•

               , given by            •

Theorem 70: The First Isomorphism Theorem for Rings

If  is a commutative ring, and    is an ideal•

Then  is maximal     is a field•

Proposition 71: Criterion for Maximal Ideal

The prime ideals of  are ideals of the form    , where  is prime or    •

Proposition 72: Prime Ideas of  

Let  be a commutative ring,    an ideal, then•

 is prime     is a domain•

In particular,  is a domain  0 ideal is prime•

Proposition 73: Criterion for Prime Ideal

If  is a commutative ring, and    is maximal, then  is prime•

Corollary 74: Maximal Ideal is Prime

Every ideal in a Euclidean domain  is principal•

More precisely, if    is an ideal, then      , where•

 is an element of  with minimum norm•

Proposition 75: Euclidean Domain is a Principal Ideal Domain

Let  be a field•

Then     is a Euclidean domain•

More specifically, if         where    , then •

          s.t.       and          •

Theorem 76: Polynomial Division
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" " means "equals, by definition"•

                the set of integers•

   
 
 
                                         •

  the set of all real numbers•

                                               •

                                              •

               •

Denote a function  from a set  to a set  by      •

Denote the image of  by                             •

Notations

Let      be a function, then○

 is injective if                         ○

 is surjective if                     (i.e.        )○

 is bijective if  is both injective and surjective○

Definition•

For              ○

Let       

Suppose           

       


         

          

       

     


Therefore  is injective

 is injective○

Because the image of  does not contain any odd integers

                      

 is not surjective○

Example 1•

Let      be given by        ○

 is injective

Example 2•

Injective, Surjective and Bijective

Notations, Divides, Equivalence Relations
Wednesday, January 24, 2018 9:46 AM
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Let       , then

                     

 is injective○

             
 

 
    

  
 

 
      

 

 
       

Therefore  is surjective

 is surjective○

Because  is both injective and surjective

 is bijective○

If              ○

We say  divides  and write    , if     s.t.     ○

Definition•

            , since      ○

        , since      ○

         , since            ○

Examples•

Divides

If  and  are sets, then the Cartesian product of  and  is ○

                   ○

Cartesian Product•

A relation on a set  is a subset  of    ○

We write     if         ○

Relations•

A relation  on  is an equivalence relation if  is○

If    , then    

i.e.        

Reflexive○

If     , then     

i.e.                  

Symmetric○

If                       

i.e. If         and                          

Transitive○

Equivalence Relations•

Equivalence Relations
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Let R be a relation on set A such that              ○

Then R is an equivalence relation            ○

If                by definition

Reflexive○

If               


Thus                

Symmetric○

If            then     and      

Thus                  


Transitive○

Example 1•

Let  be a positive integer○

                     is an equivalence relation○

            , since    

It follows that         

Reflexive○

Let      

Suppose                 

Choose    s.t.       

Then                 

Thus,        , and so    

Symmetric○

Suppose        , and we have        

Then        and        

Choose       s.t.               

Then                        

Thus,        , and so    

Transitive○

Example 2•
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             •

           

 

   

   
   

 
     ○

Base case•

        ○

                      

 

   

 
      

 
        ○

      

 

   

    

   

   

    
      

 
           

      

 
        ○

Induction step•

Induction

Every nonempty subset  of    has a unique minimum element○

That is,      s.t.         ○

Statement•

We argue by induction on    

When      , this is clear□

Base case

Assume      □

Choose    , then              □

By induction      has a minimum value: call it  □

Case 1:    , then  is a minimum value of  □

Case 2:    , then  is a minimum value of  □

Inductive step

Assume  is finite○

Choose    

Let             

Then           i.e.   is finite

So we can choose a minimum element of   : call it  

When  is infinite○

Proof (Existence)•

Proposition 1: Well-Ordering of  

Induction, Well-Ordering of  
Friday, January 26, 2018 10:05 AM
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So we can choose a minimum element of   : call it  

If     , then    □

If     , then      □

Let    

In either case,    , so  is a minimum element of  

This proves existence○

Suppose  and   are both minimum elements of  ○

    , and     ○

Thus,     ○

This proves uniqueness○

Proof (Uniqueness)•
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Let      , where    ○

Then        s.t.       , and      ○

Statement•

Let                        ○

              
 

 
  

Then     

       

i.e.       

 is not empty○

Thus,  contains a unique minimum element: call it  ○

      

       

Choose    s.t.○

Since    , we know    

So we just need to show that    

If    , then                      

Then           , and it is less than  

This is impossible, since  is the minimum element of  

Thus,    

We still need to show that      ○

Therefore we've proven the existence of  and  ○

Proof (Existence)•

      , where      

        , where       

Suppose             s.t.○

We must show that     and     ○

Without loss of generality, assume     

Then                              

Thus,         , but            .

This is impossible, thus     


Suppose     ○

We have                

Proof (Uniqueness)•

Proposition 2: The Division Algorithm

Division Algorithm, Greatest Common Divisor
Monday, January 29, 2018 9:47 AM
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We have                ○

Therefore we've proven the uniqueness of  and  ○

If               then              ○

      and        ○

Note we can prove the following stronger statement•

Assume    ○

Choose      s.t.          , and       ○

Then          , and        ○

This proves existence○

Proof (Existence)•

Assume    ○

      , where      

        , where       

Suppose             s.t. ○

            , where           

              , where            

Then○

Since     , our previous result implies       ○

Therefore     and     ○

Proof (Uniqueness)•

Let      , where either    or    •

   and    ○

If    s.t.    and    then    ○

A greatest common divisor of  and  is a positive integer  s.t.•

We write the greatest common divisor of  and  , if it exists, as      •

As a convention        •

Greatest Common Divisor

Let      , where either    or    ○

 and   both divide  and  (1)

If    s.t.    and    , then    and     (2)

Suppose          s.t.○

Then     ○

Statement •

Combining properties (1) and (2), we have     and     ○

Choose       s.t.      and       

Proof •

Proposition 3: Uniqueness of Greatest Common Divisor
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Choose       s.t.      and       ○

By substitution, we get       ○

                  ○

If        , then        .○

This is impossible since  and   are both positive○

Therefore       and     ○

Suppose      , where    ○

Choose      s.t.       , and         ○

If      exists, then      exists and            ○

Statement•

Set        ○

Choose        s.t.                

Then                                 

And we already know    , since        

   and    ○

Let    s.t.    and    

Choose        s.t.      and      

      

       

           

            

Thus    

Since    and        

We can conclude that    

If    s.t.    and    , then    ○

By Proposition 3,            ○

Proof•

Proposition 4: Lemma for Euclidean Algorithm 

              ○

Statement•

This is true by our convention

If    ○

Certainly      , and      

If    s.t.    and    then   

If    ○

Proof•

Proposition 5:          
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If    s.t.    and     then      

Therefore          
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If      , then      exists○

Statement•

By Proposition 5, we may assume that    ○

Choose      s.t.       , where         ○

We argue by induction on  ○

Suppose    , then     

We have      and      

If    s.t.    and    , then      

Therefore      exists, and equals    

Base case○

If        s.t.     , and                        

Then        exists

Inductive hypothesis○

Suppose    

Choose        s.t.         , where       

By inductive hypothesis,      exists

By Proposition 4,      exists, and equals      

Inductive step○

Proof•

Proposition 6: Existence of GCD

     with        ○

Input•

     ○

Output•

If    , output    (0)

Else, proceed to step (1)

Since    , we can find      s.t.       , where        (1)

If    , output    (2)

Otherwise, repeat step (1) with  and  playing the roles of  and  

Algorithm•

The algorithm terminates○

Note•

The Euclidean Algorithm

Euclidean Algorithm, Bézout's Identity
Wednesday, January 31, 2018 9:56 AM
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The algorithm terminates○

Since the remainder decreases at each application of step (1)○

By Proposition 4, the output will be      ○

Take              ○

       
 

        
 

   
 

    
 

○

       
 

    
 

    
 

    
 

○

   
 

    
 

   
 

   
 

○

Here    , so the algorithm terminates○

Thus,               ○

Example: use the Euclidean Algorithm to compute            •

If      , then       s.t.            ○

Statement•

   need not to be unique○

Note•

We can take      

In fact, any pair of      works

If      ○

Without loss of generality, assume    

Then               

We can take         

If    or    ○

Without loss of generality, assume        

Choose      s.t.                     

We argue by induction on  

When    □

                    □

So we can take         □

Base case

Suppose    □

Choose        s.t.                      □

By induction,         s.t.              □

Thus, by Proposition 4□

Inductive step

If    and    ○

Proof•

Proposition 7: Bézout's Identity
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                                              □

So we can take     and         □

              

             

         

Recall when we computed            , we had○

Let's now find      s.t.                           ○

             

                      

                    

Start with the second to last equation, and "back-fill"○

Therefore            ○

Example: Express            as            where      •

   Page 29    



Let  and  be two nonempty sets•

Let      be a injective function•

Prove that  has a left inverse•

Since  is injective,                          •

Choose     ○

Choose    s.t.       

Define       

If        ○

Define        

If        ○

Define      in the following way•

If                       ○

Thus,        ○

Check that  is a left inverse•

Homework 1 (a): Injective Function Has a Left Inverse

Let          •

          ○

         ○

        ○

       ○

Therefore        ○

Use the Euclidean Algorithm to find      •

             ○

             ○

         ○

               ○

          ○

                 ○

              ○

So we can take          ○

Find      s.t.            •

Example of The Euclidean Algorithm

Equivalence Class

Equivalence Class,     , Group
Friday, February 2, 2018 10:06 AM
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Let  be a set, and let ~ be an equivalence relation on  •

If    , then the equivalence class represented by  is the set•

                 •

Equivalence Class

Let  be a set with equivalence relationship ~○

If       , then    and     are either equal or disjoint○

Statement•

Suppose            ○

It suffices to show that if    , then         ○

Suppose    

       (Symmetry)

       (Transitivity)

       (Symmetry)

       (Transitivity)

        ○

Suppose     

        (Symmetry)

       (Transitivity)

       (Symmetry)

      (Transitivity)

        ○

Proof•

Proposition 8: Equivalence Classes Partition the Set

Let      •

The relation on  given by            is an equivalence relation•

The set of equivalence classes under  is denoted as     •

We call this set integers modulo  (or integers mod n)•

We can check that there are  elements in     •

We use   to denote the equivalence class in     •

Then                             •

Integers Modulo  

     

         

If  is a set equipped with a binary operation○

Definition•

Group
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Associativity:                         

Identity:     s.t.               

Inverses:            s.t.            

that satisfies ○

Then we say  is a group under this operation○

If      , then      (Similarly for      )○

+ is certainly associative in all 4 sets○

0 is the identity in each case○

If               , then the inverse of  is   ○

       are groups with operation  •
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No, because there is no inverses for 2○

Let         , then                                                  ○

Is  a group under multiplication?•

No, because 0 still has no multiplicative inverse○

Are      groups under multiplication?•

Let         and      similarly○

Then         are groups with operation given by multiplication○

We argue this for   ; the same proof works for   and   ○

If       , then      


Multiplication is an operation on   ○

This is clear

Associativity○

    is the identity

Identity○

      
 

 
                         

Inverses○

                             •

No, because subtraction is not associative○

          ○

         ○

Is  a group with operation given by subtraction?•

Let      ○

                                                  ○

      is a group under matrix multiplication○

If           

Then,       (R), since              


Matrix multiplication is an operation on       ○

This is clear

Associativity○

The    identity matrix   is the identity

Identity○

General Linear Group•

Examples of Groups

Examples of Groups, Well-definedness,     
Monday, February 5, 2018 9:55 AM
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The    identity matrix   is the identity

If         , its inverse is    


Inverses○

When    , the operation in       is not commutative

Note○

We say a group  is abelian, if             •

Abelian Group

Let      , and let              ○

If         
   , and         

   in     ○

Then                      
          , and                

      ○

Statement•

Choose        s.t.          and          ○

Then                                     ○

Thus,                    ○

So,                      
          ○

Proof:                      
          •

Choose        s.t.          and          ○

         

                      

                    

            

             

Then○

Thus,              ○

So,                
      ○

Proof:                
      •

Proposition 9: Addition and Multiplication in     

        

       

Say we want to "define" a map○

     in     

But                

Note that  is not a function○

So we say that  is not well defined

Example•

Well-definedness

   Page 34    



So we say that  is not well defined○

To check that a purported function      is well-defined,○

One needs to check that                ○

How to check well-definedness•

Let      be fixed○

              

                  

    is a group under the operation○

We will denote this operation by  ○

So                 ○

Statement•

By proposition 9, the operation                 is well-defined

Well-definedness○

Associativity is inherited from the associativity of addition for  

Associative○

The identity is   

        ,                                     

Identity○

        , the inverse of   is       

                                               

Inverses○

Proof•

Corollary 10: Addition Group of     
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Let      be fixed•

              ○

             ○

Proposition 9 implies that there is a well-defined function •

Identity:                   ○

This operation is associative○

  is a reasonable candidate for an identity, but there is no inverse○

        

        

        

        

Example in     ○

Check group property•

    is Not a Group Under Multiplication

Define                          ○

                   s.t.         

By HW 2 #2,○

Definition•

       is a group with operation given by multiplication○

Statement•

Closure: If              , then              as well○

Associativity: Clear, from associativity of multiplication of integers○

Identity:   ○

Inverses: Built in HW 2 #2○

Proof•

Proposition 11:        

Set Operation

        

         

          Matrix multiplication

    ,     

     ,     

List of Groups

       , Properties of Group
Wednesday, February 7, 2018 9:56 AM
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     ,     

Let  be a group, then  has the following properties•

If        s.t.

            and          

Then 1    


In other word○

         


Proof○

The identity of  is unique•

If    and        s.t. 

       and          

Then     

In other word○

Let    , and suppose       are both inverses of  

Then                            


Proof○

Each    has a unique inverse •

Let    , then            ○

Since the inverse is unique,          ○

     
  

       •

i.e. If          , then      is independent of how it is bracketed○

First show the result is true for        ○

Assume for any    any bracketing of a product of  elements○

       can be reduced to an expression of the form              ○

Then any bracketing of the product        must break into○

2 sub-products, say                       ○

where each sub-product is bracketed in some fashion○

Apply the induction assumption to each of these two sub-products ○

Reduce the result to the form              to complete the induction○

The Generalized Associative Law•

By the generalized associative law○

                              ○

                              ○

                    •

We will apply the Generalized Associative Law without mentioning it

Notation•

Proposition 12: Properties of Group
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We will apply the Generalized Associative Law without mentioning it○

         
        



                  
        



    

In particular, if  is a group and      , we will write○

Let  be a group, and let          ○

If      , then    ○

If               ○

Statement•

                     ○

                     ○

Proof•

         ○

This holds in abelian groups, but not in general○

Warning•

Proposition 13: Cancellation Law

Let  be a group, and let      •

    ○

      ○

    ○

If              •

    ○

        ○

      ○

If                •

Corollary 14: Cancellation Law and Identity

   Page 38    



If  is a group, and    ○

The order of  is the smallest positive integer  s.t.     ○

If  is the order of  , write      ○

If no such integer exists, write      ○

i.e.                    ○

Definition•

The order of the identity is  ○

Note•

       
   
   

        ○

    
   
   

 
 

  
   
   

  
   
   

   
  
  

   ○

Therefore,      ○

Example 1•

In        , every nonzero element has infinite order○

The identity 0 has order of 1○

Example 2•

     

      

In   and   , the elements of finite order are○

Elements of order  in  are called    roots of unity

 is the fourth root of unity

i.e.     ,      ,      ,     

In   , there are lots more○

Example 3•

Elements Order Note

  1   is the identity

  6           

  3           

  2           

  3               

What are the orders of the elements in     ?○

Example 4•

Order

Order, Definition of   
Friday, February 9, 2018 10:07 AM
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  6               

In general, if        , then the "   power" of   is       ○

Note that all the orders are divisors of 6 (Lagrange Theorem)○

What are the orders of the elements in        ?○

Elements Order Note

  1   is the identity

  4              

  4           

  2              

                     ○

Note:          , so         ○

Example 5•

Let      be fixed○

Let                                         ○

(i.e.   is the set of all permutations of        )○

Then   is a group with operation given by function composition○

We call this group symmetric group of degree  ○

Definition•

The composition of bijective functions is still bijective

Therefore, function composition is an operation on   

Function composition is an operation on   ○

Suppose                  

                                   

                                   

Thus                

Associativity○

The identity map is the identity

Identity○

Bijective functions all have inverse functions

Inverses○

Proof•

Symmetric Group (Section 1.3)

   Page 40    



       ○

Statement•

If  and  are sets of order  

Then there are   injective functions from  to  

First, we prove that○

When    , this is clear

For    

Suppose      is injective

Let    , then there are  possibilities for     

 restricts to an injective function               

There are       such functions, by induction

Thus, there are           injective functions    

We argue by induction on  ○

Since injection between finite sets of the same order is bijective

We can conclude that        

Now, take            ○

The sets must be finite

Counterexample:           is not bijective

Note○

Proof•

Proposition 15: Order of Symmetric Group

Let      be fixed○

Let                ○

         for        

     

     if           

The element of   given by ○

is denoted by             and is called a cycle of length  ○

Definition•

Let             , then○

     
     

      

Example•

Cycle

Properties of   , Properties of Cycles
Monday, February 12, 2018 9:53 AM
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 ○

Notice:                        ○

Two cycles         and          are disjoint if ○

                    ○

Definition•

              are disjoint○

Example •

Every element of   can be written as a product of disjoint cycles○

        ○

              ○

                                          ○

  = {(1), (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (1 2 3), (1 2 4), (1 3 2), (1 4 2), (1 
3 4), (1 4 3), (2 3 4), (2 4 3), (1 2 3 4), (1 2 4 3), (1 3 2 4),   (1 3 4 2), (1 4 2 3), 
(1 4 3 2), (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}

○

Note: We write the identity of   as    ○

Fact•

Disjoint Cycles

Algorithm•

Step Example

                                                

Begin the new cycle:   

(1

Let       

close the cycle with a right parenthesis•

return to step 1•

If    

write  next to a in this cycle:     •

If    

         

    

So write      

          

close the cycle with a right parenthesis•

return to step 1•

If    

write  next to in this cycle:       •

If    

   and repeat this step until the cycle closes

       

   

So continue the cycle as:

(1 12 8

Naturally this process stops when all the numbers from 
       have appeared in some cycle.

σ = (1 1 2 8 10 4)(2 1 3)
(3)(5 1 1 7)(6 9)

Cycle Decomposition for Permutations
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         have appeared in some cycle. (3)(5 1 1 7)(6 9)

Remove all cycles of length 1 σ = (1 1 2 8 10 4)(2 1 3)
(5 1 1 7)(6 9)

Take      to be the following ○

 
                  
              

                     
 ○

Start with 1,        , so write 12 after 1. ○

Keep going until you cycle back to 1○

Start with the smallest number which hasn't yet appeared, and repeat.○

Repeat this step until       have all appeared.○

Example•

Read from right to left○

Reminder•

Write                    as a product of disjoint cycles○

     maps 1 to 1

     maps 1 to 2

       maps 2 to 3

Thus       

What is     ?○

Similarly              ○

Thus we close the cycle        ○

We won't write down    , since it is the identity○

Thus                     ○

Note:     , but it make sense to think of     for    ○

Example•

                  ○

                  ○

In particular   is not abelian○

Therefore   is not abelian for    ○

Commutativity of   •

Product of Cycles
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Let    be groups○

                           

A function      is a homomorphism if ○

One says   "respects", or "preserves" the group operation○

Definition•

Let  be a group○

                        

The identity map      given by    is a homomorphism○

This only works if we send every element of  to 1

If        , and      is given by       

                      


Thus    

This is impossible since        

The map      given by    is a homomorphism○

Trivial Examples•

Let       be given by        ○

Then  is a homomorphism○

                                 ○

Example 1•

Let  be a group, and let    ○

The map              is a homomorphism○

              
        

      
             ○

This homomorphism is called conjugation by  ○

Example 2•

Let    be fixed○

Is            a homomorphism?○

Only when    ○

                        ○

Example 3•

Let      be fixed○

Is           a homomorphism?○

Example 4•

Homomorphism

Homomorphism, Isomorphism
Wednesday, February 14, 2018 9:39 AM
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Only when    ○

                

Only constant mapping to identity is a homomorphism

But 1 is not the identity (0 is)

             ’      

When    ○

                            
    

    
 



But this is not always true

For instance, when        ,     for    

For    ○

Let    be fixed○

          is a homomorphism○

                                     ○

Example 5•

The previous examples is a special case of the following:○

Let  be a group, and    ○

Define           , then○

 is a homomorphism       is abelian○

Say     

Let        

Since  is a homomorphism

                   

      
     

    
  



  
    

     
    

  


   
    

         
    

     


   
        

         
        

     


         

Thus  is abelian

Proof: homomorphism   abelian○

Let      

We argue by induction on  □

If    , this is obvious□

Suppose    , then□

                                □

First, suppose    

Proof: abelian   homomorphism○

Example 6•
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                         □

Then      is a homomorphism, by the above argument□

So                     □

Now, take      and      to obtain the result□

Now suppose    

Let    be groups○

A homomorphism      is a isomorphism if○

      , and

      

there is a homomorphism      s.t. ○

In this case, we say  and  are isomorphic○

Definition•

     is an isomorphism   is a bijective homomorphism○

This is clear

Proof: isomorphism   bijective homomorphism○

We need to show that    is a homomorphism

Let        

Choose        s.t.         and         

         □

                □

             □

     □

         
      □

Then

Proof: bijective homomorphism   isomorphism ○

Fact•

             is a group under multiplication○

Define        where        ○

Then  is a homomorphism○

Moreover,  is an isomorphism○

The inverse of  is   ○

Example•

If    are isomorphic groups, then        ○

Observation•

Isomorphism
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Let      be an isomorphism○

 is abelian if and only if  is abelian○

Statement•

   Suppose  is abelian○

Let       ○

Choose       s.t.                ○

Then                                          ○

   Apply the same argument with        ○

Proof•

Proposition 16: Isomorphism Preserves Commutativity

Let      be an injective homomorphism○

Then                ○

Statement•

Let    , then

                       

By Cancellation Law,         

        ○

Let      , then

                    


(This last equality follows from an induction argument)

Therefore,         

Now, apply this same argument with  replaced by    


So we can conclude that         

When      ○

If         

The above argument shows      

This is impossible

Thus,         

When      ○

Proof•

Proposition 16: Injective Homomorphism Preserves Order

   are groups, and    , is it the case that    ? No•

Groups with Same Order is Not Necessarily Isomorphic 

Homomorphism, Isomorphism, Subgroup
Friday, February 16, 2018 10:05 AM
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   are groups, and        , is it the case that    ? No•

In fact, any homomorphism      is not surjective○

Let      be a homomorphism○

Obviously  is not surjective

If            ○

By induction,                           
        

       

By assumption,       , since otherwise    

             
    

 
      

              
    

 
          

     
    

 
          

Thus  is not surjective

Assume otherwise○

Example 1:    •

           , but        ○

Because     is abelian, but   is not○

Also       in     , but   have no element of order 6○

Example 2:        •

Let     •

If        , where      are disjoint cycles, then                     •

If  is a  -cycle, then      •

Orders of Elements in   

Let  be a group, and let    ○

   (nonempty)

If       , then      (closed under the operation)

If    , then      (closed under inverse)

 is a subgroup if○

If  is a subgroup of  , we write    ○

Definition•

Subgroups of a group are also groups○

Note•

If  is a group, then    and      ○

Example 1•

Example 2•

Subgroup
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If                , then      ○

Let  be a group, and let    ○

Then               ○

   is called the cyclic subgroup generated by  ○

     , since      ○

Let          , then             ○

If       , then     
  

        ○

Example 3•
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A regular      is a polygon with all sides and angles equal•

Regular      

picking up a copy of it

moving it around in 3d

setting it back down 

A symmetry of a regular  -gon is a way of ○

so that it exactly covers the original○

Definition•

Rotations○

Reflection○

Examples•

Symmetry

                             is called  -th dihedral groups○

Definition•

        (proof on page 24)○

There are  rotations and  reflections○

Symmetries of  -gons are determined by ○

the permutations of the vertices they induce○

Note•

          

Rotations○

Example:    •

Dihedral Groups (Section 1.2)

   , Subgroup Criterion, Special Subgroups
Monday, February 19, 2018 9:58 AM
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            

            

        

     

     

     

Reflections○

                                             ○

             

               

              

        

Rotations○

     

     

          

          

Reflections○

                                                                            ○

Example:    •
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In general    is isomorphic to a subgroup of   ○

Every finite group is isomorphic to a subgroup of a symmetric group○

Fact•

A subset  of a group  is a subgroup iff○

   and              ○

Statement•

A subset  of a group  is a subgroup iff○

   ○

             ○

          ○

Recall the original definition•

This is Clear○

Proof    •

Let    

       

Thus,      

Closed under multiplication○

Let       then      

So           

Thus,     

Closed under inversion○

Proof    •

Proposition 17: The Subgroup Criterion

Examples of Subgroups
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       ○

Example 1•

Fix      

                        is called the special linear group

Definition○

             

Claim○

        , since          

Let           

                      
    

    
      

 

 
    

Proof○

Example 2•

If  is a group

                     is called the center or  

Definition○

      

Claim○

      , since       

Let         

If    ,            

so     is closed under multiplication 

Also                            


so     is closed under inversion

Proof○

Example 3•

Examples of Subgroups
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A group  is cyclic if     s.t.      ○

Definition•

A finite group  of order  is cyclic iff     s.t.      ○

Note•

     ○

      ○

Example 1:  is cyclic•

If        , then          ○

Example 2:     is cyclic•

Note: If             is a  -cycle, then              ○

                                          ○

Every element in   have order 1,2, or 3○

So   cannot be cyclic○

             is not cyclic•

Cyclic Group

Let  be a cyclic group•

Choose    s.t.      ○

Define a map         given by      ○

We need to check that  is well-defined.

That is we must show that if      in     , then            

Let      , suppose      in     

Choose    s,t,       

                             

Thus,  is well-defined

Well-definedness○

                             

Thus,  is a homomorphism

Homomorphism○

Surjectivity is clear by definition

Surjectivity○

Injectivity

If        , then       •

Proposition 18: Isomorphism of Cyclic Group

Properties of Cyclic Group, Order of   

Wednesday, February 21, 2018 9:56 AM
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If            

     


      

         

       

     

Thus  is injective

Injectivity○

Choose    s.t.      ○

Define a map      given by     ○

If        

then                                  

Thus,  is a homomorphism 

Homomorphism○

Surjectivity is clear

Surjectivity○

Suppose            

Then        

Without loss of generality, assume      

Then         

Since      

       

i.e.      

Thus  is injective

Injectivity○

If      , then    •

Let      where one of    is nonzero.○

   and    

If     and     , then     


A least common multiple of  and  is a positive integer  s.t.○

We denote the least common multiple of  and  by      ○

Define        ○

Definition•

Similar to the proof of uniqueness of greatest common divisor○

Uniqueness•

                                                       
  

   

Least Common Multiple
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     ○

                   
  

     
                              

   and    ○

Choose       s.t.      and       

       □

          □

          □

           □

           □

Choose      s.t.            , then

Thus             

          
  

     
             

Suppose     and     ○

                                                         
  

     
     •

                                         
 

     
     ○

Statement•

Let    ○

                                  
 

     
      

 

 
    ○

So assume    ○

    
 

     
    

  
  

     
    

                              

         
 

     
    

                    

     
 

     
     ○

Let       , then        

By HW3 #1,           

Thus,   is a common multiple of  and  

         
  

     
         

 

     
        

 

     
          

 

     
          ○

          
 

   
   

Proof•

Proposition 19: Order of   
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          ○
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Let      be a cyclic group○

Then every subgroup of  is cyclic○

 is the smallest positive integer s.t.     

More precisely, if    , then either      or       , where○

Statement•

Assume      ○

Let           
    ○

Choose        s.t.     , then             

Thus,  contains some positive power of  , and so    

By the Well-Ordering Principle,  contains a minimum element  

Therefore,       

      ○

Let    , then     for some    

Choose      s.t.             

                 

If    , then    , which is impossible since    

The minimality of  forces    

                     

Therefore       

      ○

Therefore       ○

Proof•

Theorem 20: Subgroup of Cyclic Group is Cyclic

Let      be a finite cyclic group of order  ○

For all positive integers  dividing  ,   subgroup    of order  ○

                                       
 

 
  ○

Statement•

                                           
 

 
  ○

   
 

   
 

 

 
                    

Existence○

Proof•

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order

Subgroups of Cyclic Groups,    
Friday, February 23, 2018 10:07 AM
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                      

Suppose    and      

Then,       , where  is the smallest positive integer s.t.     

        
 

 
                

 

     
                       

Thus        i.e.    

So                    

Since             , we have       

Uniqueness○

                                                   

 

   

○

Statement•

         

 

   

○

Since          

   ○

Then              

     
          

     
    

Let        ○

Proof•

Lemma: Intersection of Subgroups is Again a Subgroup

Let  be a group and    ○

The subgroup generated by  is ○

the intersection of every subgroup of  containing  ○

      

 

   
   

○

Definition•

If    , then        ○

If      , then        ○

Example•

Subgroups Generated by Subsets of a Group (Section 2.4)
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If    , then        
    

     
                     ○

Note: When    , we get  ○

Statement•

Denote the right hand side by   ○

    , since     (take    )

If     
    

     
       

    
     

     

Then        
    

     
    

       
      

      

Therefore     

    ○

Because     , and    is the smallest subgroup of  containing  

      ○

Because every subgroup of  containing  (i.e.    ) must contain

every finite product of elements of  and their inverses.

      ○

Therefore           
    

     
                     ○

Proof•

If  is a group, and    , then          ○

Example•

When  is abelian and    , then we have○

       
     

                   ○

Note•

Proposition 21: Construction of    

A group  is finitely generated if ○

There is a finite subset  of  s.t.      ○

Definition•

Cyclic groups are finitely generated○

Example 1•

Finite groups are finitely generated○

Example 2•

If    are finitely generated, then    is also finitely generated○

Example 3•

Finitely Generated Group

   , Finitely Generated Group
Monday, February 26, 2018 10:01 AM
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For instance,    is finitely generated by                ○

In particular, products of cyclic groups are finitely generated○

Every finitely generated abelian group is a product of cyclic groups○

(This is called the Fundamental Theorem of Finite Abelian Groups)○

Every finitely generated subgroup of  is cyclic.○

It follows that  is not finitely generated, since  is not cyclic      ○

                   
  

  
   

  

  
     

  

  
                           ○

Without loss of generality, assume     ○

          
       

       
           

Applying the Well-Ordering Principle

We can choose a minimum element    

             
 

       
           ○

                 
  
  
     

  
  
       

  
  
         

                              
  

  
    

 

       
            

Let  be fixed

Set                   

   
  

  
   

 

       
        

Choose      s.t       ,      

 

       
           

 

       
          

    

       
           

 

       
          

The minimality of  forces    

This shows    

   
  

  
   

 

       
          

 

       
         

             
 

       
         

          
 

       
         ○

              ○

Example 4•
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If  is a group,    , and    •

           is called a left coset•

           is called a right coset•

An element of a coset is called a representative of the coset•

Coset

Let  be a group and    , then•

( ) Choose    s.t.       (since                )○

Therefore   
        ○

   Choose    s.t.       ○

         
        

  

            ○

         
            

  

            ○

Therefore        ○

For                   
      •

If    , then         

So    

Reflexive○

If        , and      i.e.       , then

      for some    

Thus    
     

So       , which means      

Symmetric○

Suppose      and      

This means       and       

Choose        s.t.       , and       

Then              

So      

Transitive○

The relation  on  given by      iff       is an equivalence relation•

Suppose        , and          ○

Suppose      , then          ○

In particular, left/right cosets are either equal or disjoint•

Proposition 22: Properties of Coset

Coset, Normal Subgroup
Wednesday, February 28, 2018 9:59 AM
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So      ○

This implies that        ○

To get        , exchange the roles of   and   ○

Therefore        ○

Let  be a group,    ○

If    , then     ○

Let     , then               ○

Thus     ○

By closure under the operation,     ○

Therefore     ○

Example 1•

Let       , and   unique subgroup of     of order 2○

              ○

                  

                  

                  

                  

                  

                  

Left cosets of  in G○

     ,      , and  has 3 distinct cosets        

If  is a finite group, and    , then        , and 

      
   

   
                                        

This is called the Lagrange's Theorem

Note○

Example 2•

Let  be a group,    ○

 is a normal subgroup if        ,          ○

In other words,  is closed under conjugation○

If    is normal, we write    ○

Definition•

If  is abelian, every subgroup of  is normal○

Suppose    ○

Let    and    

Example 1•

Normal Subgroup
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Let    and    ○

Then                ○

Let     ,          ○

Suppose                          ○

Then                                                        ○

Therefore    ○

Example 2•

         in   is normal○

Example 3 •

In       , conjugation amounts to changing basis○

Let         ○

Let      , then      is change of basis matrix○

Note•

Let      be a homomorphism, then       ○

      , since         

If           

      
              

     

Thus     
       

Therefore       

      ○

Let           

                                     

           

    is normal○

Example 4•

Let  be a subgroup of a group  ○

              ○

Statement•

Suppose    ○

Let        ○

                    
  

          ○

                     
  

         ○

Therefore      ○

Proof    •

Proof  •

Proposition 23: Criteria for a Subgroup to be Normal

   Page 64    



Suppose           ○

Let        ○

We must show that        ○

Choose     s.t.       ○

Then           ○

Therefore    ○

Proof    •
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Let  be a group,    ○

                

The set of left costs of  is a group under the operation○

This group is denoted as    (say " mod  ")○

We call this group quotient group or factor group○

Statement•

      
        

      □

      
        

      □

Suppose       
  , and       

  

   
   

        □

    
       

        □

    
       

         
    

       □

    
       

             
  

  
    

             
  

□

    
       

        
              

  

   
             
  

  □

   
   

          

Therefore         
   

  

So the operation is well-defined

Check            , given by                is well-defined○

     

Identity○

           

Since                   

Inverse○

             

             

        

           

            

Associativity○

Proof•

Note•

Proposition 24: Quotient Group

Quotient Group, Index, Lagrange's Theorem
Monday, March 5, 2018 9:41 AM

   Page 66    



       given by     with       

Since                   

If    , then there is a surjective homomorphism○

     is the kernel of a homomorphism from  to some other group

This shows that, if    , then ○

Let  be a subgroup of  ○

Then    since  is abelian○

Since  is cyclic,  is also cyclic○

So we can write      ○

          

        

There is isomorphism○

Example 1•

        

       , where  is the trivial group of order 1

If  is a group, then       and    ○

Intuition: The bigger the subgroup, the smaller the quotient○

Example 2•

If  is a group, and    , then○

The index of  is the number of distinct left cosets of  in  ○

Denote the index by      ○

Definition•

If    , then            ○

Note•

                ○

Example•

Index of a Subgroup

If  is finite group, and    , then              ○

In particular,        ○

Statement•

If in the setting of Lagrange's Theorem,    , then ○

                    
   

   
   ○

Notice•

Let    , and      

Proof•

Theorem 25: Lagrange's Theorem
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Let      , and        ○

Let        be the representatives of the distinct cosets of  in  

(In other words: if    , then                   )

By proposition 22, left costs are either equal or disjoint

So,                

Cosets partition  ○

Let    , then there is a function       given by     

 is certainly surjective

 is also injective since if        , then      

Thus,         

Cosets have the same size○

Therefore                                   
        

             ○
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If  is a group, and    is prime, then  is cyclic○

Hence,       ○

Statement•

If    , then          ○

By Lagrange's Theorem,          ○

Thus,            ○

It follows that if        , then        ○

Therefore      ○

i.e.  is cyclic○

Proof•

Corollary 26: Group of Prime Order is Cyclic

Order Property

2 Cyclic

3 Cyclic

4 Cyclic or          

5 Cyclic

6 Cyclic or   

Groups of Small Order

If  is a finite group, and    , then       ○

Statement •

By Lagrange's Theorem,          ○

Since          , we have        ○

Thus,           for some integer  ○

                     
 

  ○

Proof•

Corollary 27:       

If  is a finite cyclic group, then there is a bijection○

                                           ○

Statement•

  Divisor  of   the unique subgroup  with order  

Proof•

Corollary 28: The Fundamental Theorem of Cyclic Groups

Lagrange's Theorem, Product of Subgroups
Wednesday, March 7, 2018 9:56 AM
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    Divisor  of     the unique subgroup  with order  ○

   Subgroup  of      ○

Let  be a group and      •

Define                •

Product of Subgroups

                                                   
       

     
       ○

Statement•

      

 

   



Notice that   is the union of left cosets of  ○

In the proof of Lagrange's Theorem, we know that         ○

                               
   

     
                                       ○

       

   
      

   
        

                

           ○

        
   

     
        

B                    , the number of distinct cosets of the form       is ○

                    
   

     
                            ○

               
       

     
       ○

Proof•

Let     ,                    ○

     
       

     
        

   

 
       ○

But     is not a divisor of   ○

By Lagrange's Theorem,   is not a subgroup of   ○

Note:   is not always a subgroup•

Proposition 29: Order of Product of Subgroups

If      , then           ○

Statement•

Note•

Proposition 30: Permutable Subgroups
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     is not equivalent to               ○

It implies that every product   is of the form     and conversely○

This is true because          

     ○

Let      

Set         , then     

So,       for some          

Then                                

     ○

Proof    •

    , since         ○

Let           ○

We must show that              ○

                                  
   

○

Choose                                       
   

          
   

○

Then                      
   

      
  

    
  

   ○

Therefore     ○

Proof    •

Let     ,                    ○

                            ○

                            ○

Thus      ○

Therefore   is not a subgroup of   ○

Example•

If      , and either  or  is normal in  , then     ○

Statement•

Without loss of generality, assume    ○

Let        ○

                    
  

          ○

                     
  

         ○

Therefore      ○

Proof•

Corollary 31: Product of Subgroup and Normal Subgroup
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     

          

If      is a homomorphism, then  induces an isomorphism○

Statement•

This is an analogue of the Rank-Nullity Theorem in Linear Algebra○

Given vector space    and a linear transformation      ○

 
           ○

                       ○

                      ○

Intuition•

Let        

             

   
         

     
       

      
         

            

                      

Thus  is well-defined and injective

  is well-defined and injective○

          

Choose    s.t.       

Then            

  is surjective○

                  
     

                 

             

        

           

               

  is a homomorphism○

Proof•

Theorem 32: The First Isomorphism Theorem

The First & Second Isomorphism Theorems
Friday, March 9, 2018 10:06 AM
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                     

               ○

Statement•

Let      be coprimes○

Then any homomorphism            is trivial○

i.e.                  ○

Example•

Let  be such a homomorphism○

                                  
    

             ○

 

      
                             

                                              

   
 

      
                   ○

Thus,         , so          ○

Proof•

The same proof tells us that ○

If    are finite groups such that            , then○

All homomorphism between them are trivial○

Note•

Corollary 33: Order of Kernel and Image

If    , and    ○

                 
    

    ○

Statement•

Intuition•

Note•

Theorem 34: The Second Isomorphism Theorem
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      by Corollary 31○

     
             ○

Note•

      given by    

       
                

We have homomorphisms○

      
             

Let      , then○

 is certainly surjective○

Let    

        
  

         

Thus,           

Compute     ○

         
   

  

The First Isomorphism Theorem gives an isomorphism○

Proof•
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Let  be a group, and      , where    ○

                 
   

        ○

Statement •

                ○

                                   ○

Note•

Intuition•

Theorem 35: The Third Isomorphism Theorem

                         

Let            

Then                 
        

       

       ○

Let       and       

Then                     
  

    

       ○

Define a homomorphism          given by      ○

Suppose        

Then   
      

 is well-defined○

Proof•

The Third & Fourth Isomorphism Theorem
Monday, March 12, 2018 9:57 AM
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Then   
      

Since    , we have   
      

          

i.e.              

If       , then         

 is surjective○

                                   

Compute     ○

   
     

   
    

          

By First Isomorphism Theorem○

Let                  ○

Then the Third Isomorphism Theorem tells us that○

The map            given by      is well-defined and surjective○

                       ○

          
    

           ○

Example•

Let    be groups, and    ○

        given by        

A homomorphism      induces a homomorphism○

If and only if       ○

Statement•

          since homomorphisms preserve identities

           , by definition of   

Let    , then○

Thus,        ○

i.e.       ○

And  certainly meets the Subgroup Criteria○

Therefore       ○

Proof    •

Suppose        , we must check that            

       

   
      

     
        (since       )

                 is well-defined ○

Proof    •

Proposition 36: Criterion for Defining Homomorphism on Quotient
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          

            

                                                      

  is a homomorphism ○

Let  be a group, and let    , then there is a bijection○

                  
 
 
  

                             ○

Statement•

               

                      

Define○

If    , then           

Thus,       

This also shows that       

         □

                
     □

     
       □

If                

    is a subgroup of  containing  ○

                               

                       
        

 
   

    and     are the identity maps○

Proof•

Theorem 37: The Correspondence Theorem
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Fix  to be a positive integer•

A   cycle      in   is a transposition•

Transposition

Every     can be written as a product of transposition○

Statement•

                                ○

                     ○

Example•

Fix     ○

We may assume that  is a cycle              ○

                                    

By induction on  , we claim○

               

Base case:    ○

                        

                     

                 

Inductive step:    ○

Proof•

  is generated by                      ○

Note•

Proposition 38: Transposition Decomposition of Permutation

The numbers of transposition used to write some     ○

is not well-defined, but it is always either even or odd○

Intuition•

     
                                                

                                               

Let          ○

Then  is a group homomorphism○

       is the alternating group of degree  ○

Definition•

Sign of Permutation  (Transposition Definition)

Sign of Permutation   (Auxiliary Polynomial Definition)

Transposition, Sign of Permutation
Wednesday, March 14, 2018 9:56 AM
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○

                                   

 

       

○

Then     is always either  or   ○

Auxiliary Polynomial  •

Let    and            ○

                                            ○

                                                  ○

Example•

      
        

         

Let           ○

     is the sign of  , often denoted as     ○

 is even if         ○

 is odd if         ○

Definition•

Sign of Permutation   (Auxiliary Polynomial Definition)

  is a group homomorphism○

Statement•

Let                           ○

                             

                                   

                                       

Let                        ○

         

                   

                 , since○

Example•

Fix       ○

                   

 

       



          

 

       

              

 

       

     ○

Proof•

Proposition 39:   is a Group Homomorphism
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

                            

 

       



       

                     

 

       



                    

 

       



          

         

Suppose     has  "reversed factor" (i.e. factors        , where    ), then○

Therefore                  ○
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Suppose           ○

                                   
 

           ○

Statement•

               

              

Define a map○

       

              

                

                   

           

Check  is a homomorphism○

Let       

                       

    and    

      

Therefore         

Compute     ○

                         

       □

       □

Choose                s.t.

                 □

             □

Then

       □

              □

            □

        □

                 

Prove surjectivity○

Proof•

Homework 6 Question 1

Homework 6
Friday, March 16, 2018 9:51 AM
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          □

          □

Therefore  is surjective

              

                     

By the First Isomorphism theorem, there is an isomorphism○

Given two homomorphism                ○

         given by                

Then their direct product○

is also a homomorphism○

Note•

 is abelian        is cyclic○

Statement•

Suppose  is abelian, then       ○

So       is the trivial group○

Therefore       is cyclic○

Proof    •

Suppose       is cyclic○

Choose             s.t.               ○

            for some    , and          

Let    , then○

Let      ○

        and         

Choose        and           s.t○

So,                ○

Then          
           

       ○

Proof    •

Homework 6 Question 2

     is cyclic of order          ○

                                 ○

Statement•

Choose a generator    ○

Then   is a generator of    ○

If        

Proof: If  is a cyclic group and    , then    is also cyclic•

Homework 6 Question 4

   Page 82    



If        ○

Choose    s.t.      ○

Therefore              ○

       
 

     
      

 

 
  ○

By Lagrange's Theorem○

                      
 

 
          ○

           ○

Proof•
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         •

         
                                                

                                               

          •

           
        

         

          

 

       

                    

 

       

•

Recall

Let      ○

If     is transposition, then         ○

Statement•

Suppose            ○

                                            ○

                                               ○

                ○

Example•

Say        is a factor of  

Then                  

Thus        

So         

Suppose        ○

      □

      □

      □

      □

                  □

Let     denote the following permutation

                 □

             

Suppose                ○

Proof•

Proposition 40: Sign of Transposition

Sign of Permutation,   
Monday, March 19, 2018 9:50 AM
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                               □

                               □

Without loss of generality, assume          □

                               □

                               □

For            □

                               □

                   □

                    □

          □

         □

We know   is a homomorphism, so

 is well-defined, and     ○

Statement•

Let     ○

Say        where   is a transposition, then○

                                    
        

   ○

 cannot be written as a product of an even number of transpositions

If  is odd, then○

So              for  with odd  , and vice verse○

This shows  is well-defined, and     ○

Proof•

Corollary 41: Equivalence of Two Definitions of Sign

If    , then  is surjective○

Statement•

                     ○

Since     has only 2 elements,  is surjective○

Proof•

Corollary 42: Surjectivity of  

The alternative group, denoted as   is the kernel of  ○

That is,   contains of all even permutations in   ○

Definition•

By the First Isomorphism Theorem○

We have an isomorphism           

Order of   •

Alternating Group
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We have an isomorphism           ○

By Lagrange's Theorem,                 ○

      
    

       
        

  

 
  ○

We showed earlier that, if            ○

                                                 
         

○

  cycle is even when  is odd, and vise versa○

Thus,             is odd○

Note•

    trivial group○

                                  ○

   {(1), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3), (1 2)
(3 4), (1 3)(2 4), (1 4)(2 3)}

○

Examples•

Order Subgroup

1      

2 {(1), (1 2)(3 4)}
{(1), (1 3)(2 4)}
{(1), (1 4)(2 3)}

3 {(1), (1 2 3), (1 3 2)}
{(1), (1 2 4), (1 4 2)}
{(1), (1 3 4), (1 4 3)}
{(1), (2 3 4), (2 4 3)}

4 {(1), (12)(34), (13)(24), (14)(23)}

6 None

12   

Subgroups of   •

  has no subgroup of order 6•

If      , there is not necessarily a subgroup of  with order  ○

This shows that the converse of Lagrange's Theorem is false•

But the converse does hold for finite cyclic groups•

If  is a prime, and      , then  contains a subgroup of order  ○

Cauchy's Theorem•

If        , where  is prime and        ○

Then  contains a subgroup of order   ○

Sylow's Theorem•

Converse of Lagrange's Theorem
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If  is a group,    , and        , then    ○

Statement•

If    , then        ○

If    , then          ○

Therefore           ○

So    ○

Proof•

Let  be the smallest prime dividing    ○

If        , then    ○

Corollary (See HW8 #2)•

Proposition 43: Subgroup of Index 2 is Normal

If                  are  -cycles in   ○

Then      s.t.          
            ○

Statement•

Choose     s.t.         
            ○

By HW 7 #1,          
                          ○

Proof•

Proposition 44: Conjugate Cycle

  have no subgroup of order 6○

Statement•

By way of contradiction, suppose    , and      ○

Then         and thus     ○

Since   contains eight 3-cycles,  must contain some 3-cycle  ○

                                 

                                 

                                 

Write                ○

So far, we have                                      ○

Also, since  is closed under inverses,                  ○

Thus,      , which makes a contradiction○

Proof•

Theorem 45:   Have No Subgroup of Order 6

Subgroups of   , Group Action, Orbit, Stabilizer 
Wednesday, March 21, 2018 9:57 AM

   Page 87    



Therefore   have no subgroup of order 6○

          

                      

An action of  on  is a function      ,         s.t.○

Definition•

Set Group Action

                

                   

Group  Group          

Group  Group             

Set of cosets of    Group              

Set of all subgroups of group  Group             

Examples•

If    , and    , then                    ○

       , since              ○

If                   , then○

                                              ○

Proof: Conjugation on subgroup is a group action•

Group Action

Suppose a group  acts on a set  •

Let    •

The orbit of  , denoted       , is            •

The stabilizer of  , denoted stab( ), is              •

Orbit and Stabilizer

If  acts on  , and    , then stab     ○

Statement•

stab( )   , because     ○

Let            ○

                           ○

                                      ○

Proof•

Proposition 46: Stabilizer is a Subgroup

Let  be a group, and let  act on itself by conjugation•

If    , then                                  •

This set is called the centralizer of  , denoted as      •

Centralizer
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     is the set of elements in  that commute with the element  •

Intersections of subgroups are subgroup•

                                  

 

   

  •

                           

 

   

                               •

    is the set of elements that commute with every element of  •

Center

Let  be the set of subgroups of a group  •

Let  acts on  by          •

                                 ○

If    , then•

This set is called the normalizer of  in  , denoted      •

     is the set of elements in  that commute with the set  •

Note:            •

Normalizer
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Let  act on a set  ○

The relation          s.t.      is an equivalence relation○

Statement•

     

Reflexive○

Suppose     , then                       


Symmetric○

Suppose                


Choose      s.t.      and        

Then            


Transitive○

Proof•

The equivalence classes are the orbits of the group action○

Thus, the orbits partition  ○

Note•

Proposition 47: Orbits Equivalence

If  acts on  , and    , then                     ○

Statement•

                                

            

Define a function○

                    

                

           

       

 is injective○

This is clear

 is surjective○

So                               ○

Therefore                     ○

Proof•

Proposition 48: Orbit-Stabilizer Theorem

Proposition 49: Permutation Representation of Group Action

Orbit, Stabilizer, Cayley's Theorem
Friday, March 23, 2018 10:07 AM
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Let  be a group acting on a finite set            ○

               

Then each    determines a                 by○

Statement•

Injectivity:                                 


Surjectivity:                    

The map      , given by      is bijection     ○

               

So each    determines a permutation      where○

Proof•

Proposition 49: Permutation Representation of Group Action

The map                     is a homomorphism○

Statement•

Let                ○

Suppose         for some  ○

Then          ○

Write       for some  , then        ○

                                    ○

Therefore                          ○

Proof•

Proposition 49: Induced Homomorphism of Group Action

Every finite group is isomorphic to a subgroup of the symmetric group○

Statement•

Let            act on itself by left multiplication       ○

      

    , where                

Then this action determines a homomorphism○

                              

 is injective○

Thus           ○

Proof•

Klein 4 group            ○

                               ○

1    

Example•

Theorem 50: Cayley's Theorem
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1    

1 1    

     

     

     

Label the group elements with 1, 2, 3, 4○

       

       

       

       

              ○

       

       

       

       

               since○

       

       

       

       

               since○

       

       

       

       

               since○

Therefore                                            ○
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If  is a group,  acts on itself by conjugation:          ○

The orbits under this action are called conjugacy classes○

Denote a conjugate class represented by some element    by        ○

Definition•

If    , and       , then            ○

Since                   ○

The converse is also true: If            , then       ○

Example 1•

Let     ○

If     , then                                                       ○

If  is a  -cycle, then                       

For instance○

Let      
   

    

   
     

   
    

   
 be a product of disjoint cycles

Then                                                            

More generally○

Example 2•

Conjugacy Class

Let  be a finite group○

representatives of the conjugacy classes of  that are

not contained in the center     

Let         be ○

                           

 

   

○

Statement•

Recall:                     •

 is the disjoint union of its disjoint conjugate classes○

                     

 

   

○

                       

 

   

○

Proof•

Theorem 51: The Class Equation

Conjugacy Class, The Class Equation
Monday, April 2, 2018 9:57 AM
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                         ○

                         

 

   

                  ○

                       

 

   

 ○

If  is a prime, and  is a group of order         , then         ○

Statement•

                 for prime  is called a  -group○

Note•

                                            

 

   

                   ○

representatives of the conjugate classes of  not contained in     ○

                             ○

By Lagrange's Theorem,             
 ○

Combing previous two results,             ○

                       

 

   

                    ○

         ○

Proof•

Corollary 52: Center of  -Group is Non-Trivial

If  is a prime, and  is a group of order   , then  is abelian.○

In fact, either        or            ○

Statement•

By Corollary 52 and Lagrange's Theorem,         or   ○

                  
   

      
       

  

 
     

By Corollary 26,       is cyclic

By HW6 #2,  is abelian

In this case                 


Therefore         is impossible

Suppose         ○

We have          

Suppose          ○

Proof•

Corollary 53: Group of Order Prime Squared is Abelian
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We have                  

So  is abelian

If  is cyclic, then clearly        ○

Let        , then      

Let        

Since any non-identity element of  or  is a generator□

For instance, if       for some  , then    □

This is impossible, so        □

Set            , then        

     
       

     
                           

By HW6 #1, there exists an isomorphism   
 

       

            
   

   
    

  

 
              

Similarly for    

Therefore               

If  is not cyclic, we need to show that            ○
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If  is a finite group, and  is a prime divisor of    , then     of order  ○

Statement•

Write       ○

We argue by strong induction on  ○

When    , this is trivial, since any non-identity element of  has order  ○

Suppose    , and                                    of order  ○

Let        

By the Fundamental Theorem of Cyclic Groups,□

     contains a (unique) subgroup of order  □

If      

Set        □

By the Lagrange's Theorem,                       □

Since                   or        □

Since  is cyclic,  contains a (unique) subgroup of order  

It follows that  contains a subgroup of order  

If      □

         , so, by induction,        s.t.       

If   
 

  is a group homomorphism,                ◊

Now, take             the usual surjection     ◊

So we only need to prove         

Therefore      

Since    is cyclic,    contains a (unique) subgroup of order  

It follows that  contains a subgroup of order  

If        □

If      

If  is abelian○

By the Lagrange's Theorem,                                   

Since                        or             

Since  is not abelian,       for all  □

If           for some  

If  is not abelian○

Proof•

Theorem 54: Cauchy's Theorem

Cauchy's Theorem, Recognizing Direct Products
Wednesday, April 4, 2018 9:48 AM
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Since  is not abelian,         for all  □

Apply the induction hypothesis,       contains a subgroup of order  □

It follows that  contains a subgroup of order  □

                                            

 

   

              

  

□

are the representatives of the conjugate classes not contained in     □

                                  

 

   

        □

 is not abelian, so       □

Apply the induction hypothesis,     contains a subgroup of order  □

It follows that  contains a subgroup of order  □

If                

Let  be a group with normal subgroups      ○

The map          given by             is an isomorphism ○

if and only if       and          ○

Statement•

Since  is surjective,       ○

Suppose        ○

Then                ○

Since  is injective,                ○

So          ○

Proof    •

This is true since       

 is surjective○

             
    

           
      

        
     

 


            
    

         
   

 


We want show that              
    

                
    

   
  

  

     
     

         
   

         
     

    
       

      
    

  


     
      

           
   

  
    

       
      

      
             

   

  
     

     
      

      
           

   

  
       

      
      

             
   

  
     

Thus      
     

         
   

              

Therefore          
    

           
    

 

 is a homomorphism○

Proof ( )•

Lemma 55: Recognizing Direct Products
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Therefore              
    

                 
    

   

If          

       

      
  



            

        

              

  is injective

 is injective○
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If  is a group with       , and      , then  has a subgroup of order  ○

Statement•

                 cyclic

For               ○

   is product of two primes, so use the Cauchy's Theorem

For             ○

           

When        , this is obvious

So assume    

If  contains an element of order 4, then we are done

So, we may assume               , then  is abelian

Let          . Let             

The inverse of every element of  is itself□

 is closed under inverse

      

1 1     

  1    

    1  

      1

□

 is closed under multiplication by multiplication table below

For      ○

Proof•

Homework 8 Question 3

Let  be a finite abelian group of order   , where        ○

     , and 

The map        given by         is an isomorphism

Let                          , then○

Moreover, if      , then  and  are nontrivial○

Statement•

It suffices to check    

     ○

Proof•

Lemma 56: Coprime Decomposition of Finite Abelian Group 

Homework 8, Properties of Finite Abelian Group
Saturday, April 7, 2018 10:09 PM
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   , since    

If      , then                   . Thus       

Choose      s.t.        

Let    , then                


                    
 

  by Lagrange's Theorem 

Similarly,         

So,      ,      , so     

Therefore     

    ○

Let      , then        


Then      and      

Since              

Thus        

       ○

By Lemma 55,        and       is an isomorphism○

Suppose    

Let  be a prime divisor of  

Then   contains an element  of order  , by Cauchy's Theorem

   , so      

Similarly, if    ,      

 and  are nontrivial○

Let  be a finite abelian group, and  be a prime divisor of    ○

Choose      s.t.        and    ○

Then      , where      ,       , and      ○

Statement•

If       
    

     
  ○

This corollary says          , where        
  ○

This reduces the Fundamental Theorem of Finite Abelian Groups○

to the case where the group has order given by a prime power○

Intuition•

Let           
                ○

By Lemma 56,      ○

Suppose, by way of contradiction, that      

By Cauchy's Theorem,     s.t.    

     ○

Proof•

Corollary 57:  -Group Decomposition of Finite Abelian Group
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By Cauchy's Theorem,     s.t.      

Since    ,     , so    

This is impossible, thus      

Since                ,       

Suppose       

Then,  prime  s.t.    and      

By Cauchy's Theorem,     s.t.      

This is impossible since        
       



Thus       

      ○
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If  is an abelian group of order   , where  is a prime ○

Let    has maximal order among all the elements of  ○

Then      , where          ○

Statement•

We argue by induction on  ○

If    , then    , so we may take      ○

Now suppose    ○

Let        

   is prime, since     □

Recall: If        , then          □

So every non-identity element of  is a generator□

Thus, if      , and    , then            □

Then    , which contradicts the assumption□

Therefore        □

       

Let       , then         since      

      

       

            

         

        □

            

         

        

              

        

         

        □

So     □

  is an element of maximal order in   

Case 1:     s.t.    and     ○

Proof•

Lemma 58: Prime Decomposition of Abelian  -Group

Fundamental Theorem of Finite Abelian Groups
Monday, April 9, 2018 10:26 PM
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So         □

Therefore   is an element of maximal order in   □

By induction,       s.t.           

Apply the Correspondence Theorem, choose    s.t.       

By Lemma 55, we need only show        and     □

Let      , then     for some  

Thus,               

Since           ,            

Therefore        

           

     

        

       □

Let    

Since           ,

        for some         and      , 

Thus               
  

  

Choose    s.t.          

Then      
  

   
  



Therefore     

    □

Claim:      

In this case, we need to prove    

By way of contradiction, suppose otherwise

Choose      with the smallest order

                             
   

       
       

        , so     

Choose  s.t.      


Say       


Since  has maximal order,    
  

      
         

     
    

       


It follows that    

So      , where    

Set         , then           

But    , since          

Case 2:     s.t.    and      ○
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But    , since          

This contradicts the assumption that     s.t.    and      

So      

Therefore        , and      

Every finite abelian group  is a product of cyclic groups○

Statement•

Say       
     

  , where   are distinct primes○

By Corollary 57, and induction          where○

          
 

  
               

  ○

So, it suffices to show each   is a product of cyclic groups○

By Lemma 58,         , where   is cyclic○

The result immediately follows by induction on   ○

Proof•

How may abelian groups of order 8 are there up to isomorphism○

                                                  
          

     
   ○

Example•

Theorem 59: Fundamental Theorem of Finite Abelian Groups

A partition of      is a way of writing  as a sum of positive integers•

Example: 3 has 3 partitions:            •

Partition 

If     
     

  , where   are distinct primes○

Then the number of finite abelian groups of order n is○

                           

 

   

○

Statement•

If          are partitions of                     
      

   ○

Then this list of partitions corresponds to the abelian group○

 
 

  

  
 

 
     

  

  
  

 
  

   
 
 

  
  

 

 
     

  

  
  

 
  

○

Note•

When           ○

 
     

     
     

     
     

     
     

   ○

 
     

     
     

   ○

Example•

Corollary 60: Number of Finite Abelian Groups of Order  
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   ○

 
     

     
   ○

 
     

     
   ○

 
     

   ○
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A ring is a set  equipped with two operations  and  s.t.○

     is an abelian group○

 is associative○

    s.t.          ○

        

               

               

Distributive property:○

Definition•

1 is called the multiplicative identity○

Dummit-Foote don't require the multiplicative identity○

 is not necessarily commutative○

 is not a group under  , because inverses may not exist○

We will typically denote multiplication of      by   ○

Typically  will denote the multiplicative identity○

And 0 will denote the identity of      ○

Note•

Ring

Definition of Ring
Wednesday, April 11, 2018 9:58 AM
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The trivial group, equipped with the trivial multiplication, is a ring○

It's called the trivial ring○

Example 1•

       are all rings with usual addition and multiplication○

Example 2•

For    ,     is a ring with modular addition and multiplication○

Example 3•

For    ,  define                                           ○

Then          is a ring with matrix addition and multiplication○

Note: when    ,          is not commutative○

Example 4•

      is not a ring under the usual matrix addition and multiplication○

Because       is not a group under addition:         ○

Example 5•

Examples of Ring

Let  be a ring, then•

                    ○

                    ○

            •

                                 ○

                                 ○

                        •

                           ○

                  •

Suppose       satisfy        and          ,     ○

Then          ○

The multiplicative identity 1 is unique•

                                       ○

             •

Proposition 61: Properties of Ring

A ring  is trivial (i.e. have only one element) iff    

Statement•

Proposition 62: Criterion for Trivial Ring

Properties of Ring, Zero-Divisor, Unit
Monday, April 16, 2018 9:57 AM
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A ring  is trivial (i.e. have only one element) iff    ○

   Clear○

   Let    , then            ○

Proof•

Often, instead of saying " is nontrivial", one says "   "○

Note•

Let  be a ring○

        s.t.     or     

A nonzero element    is called a zero-divisor if○

    s.t.        

Assume    , then    is called a unit if○

Definition•

If  is a ring, and    , then 0 and zero-divisors are not units○

Let    be a zero-divisor○

By way of contradiction○

Choose    s.t.        ○

Choose        s.t.     ○

Then               , contradiction○

Note•

     , since         and                

What are the units in      ○

        , since               

What are the zero-divisors in     ?○

Example 1•

If    are elements of a ring, and     , we can't conclude     ○

 
  
  

  
  
  

   
  
  

 ○

 
  
  

  
  
  

   
  
  

 ○

Example 2•

Zero-Divisor and Unit

Let  be a ring, then○

           , and              s.t.     ○

   , and     s.t.          s.t.     ○

Statement•

Let  be a vector space over  with countably infinite dimension

Proof•

Proposition 63: One-Sided Zero Divisor and Unit
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Let  be a vector space over  with countably infinite dimension○

Fix a basis          of  ○

                         

                      

Let                              is a ring given by○

     , so    

Addition is associative□

The zero map is the additive identity□

Let              □

             is the additive inverse of  □

                                     □

     is an abelian group

Associativity of multiplication is clear□

   is the multiplicative identity□

Multiplication 

Let                □

                                         □

                                        □

So             and             □

Distributive property

Check  is a ring○

     by             

     by     , and             

     by      , and          

Define○

Since   

 
     

 
                 

      ○

Suppose       , then      

But                     

      ○

Since   

 
     

 
       

Notice: neither  nor  is 0

    ○

If         s.t.     , then

         , which is impossible

             ○

Note
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If       , the set of all polynomials over  , then

 is analogous to integration

 is analogous to differentiation

 is analogous to evaluation at 0

Note○

                    ○

Definition•

  is a group under multiplication○

Note•

                                         ○

Example•

Group of Unites

   Page 110    



Let    ○

Every nonzero element in     is either a unit or a zero-divisor○

Statement•

      ’                         ○

In  , the units are   , there are no zero-divisor○

In particular,    is not 0 or unit or zero-divisor○

Note•

Suppose        is nonzero and not a unit○

Let        , then    ○

Write          , then○

                   ○

Since                 and    ○

 cannot be a multiple of  ○

So        with      ○

Therefore   is a zero-divisor○

Proof•

Proposition 64: Units and Zero-Divisors of     

A communitive ring  is called a field if ○

Every nonzero element of  is a unit○

i.e. Every nonzero element of  have a multiplicative inverse○

Definition•

     ○

Example 1•

    , where  is a prime○

                       ○

Note:     is a field   is prime○

Example 2•

  is not a field with multiplication defined as           
    

        
      

  ○

Example 3•

Field

Let      be rings•

The product ring      has the following ring structure•

Product Ring

Field, Product Ring, Integral Domain
Wednesday, April 18, 2018 10:42 AM
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The product ring      has the following ring structure•

For addition, it's just the product as groups•

For multiplication,           
    

        
      

  with identity     
    

 •

A communicative ring  is an integral domain (or just domain) if○

 contains no zero-divisors○

Definition•

Unites are not zero-divisors, so all fields are domains○

 is a domain, but not a field○

    is a domain  it is a field   is prime○

     is a domain  one of them is trivial, and the other is a domain○

Example•

Integral Domain
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If   and   are rings, then      is a domain iff○

One of the   or   is a domain, and the other is trivial○

Statement•

Without loss of generality, assume   is a domain and   is trivial○

Let            
    

                ○

Then            
   ○

Since   is a domain,     
   ○

Thus,           
    

        
      

    ○

Proof    •

    
         

       ○

Since      is a domain, either     
             

 is      ○

This means either    
or    

is 0, and thus   or   is trivial○

Without loss of generality, suppose   is trivial○

We want to show that   is a domain○

Let      
        ○

Then           
                  ○

So          
          

          i.e.     
   ○

Proof    •

Proposition 65: Criterion for Product Ring to be a Domain

A finite domain  is a field○

Statement•

Let        ○

We want to show that  has a multiplicative inverse○

Define a function      given by     ○

Suppose            

Then        

So           

Since  is a domain,        

Thus,      

 is injective○

 is surjective since  is finite

Proof•

Proposition 66: Finite Domain is a Field

Product Ring, Finite Domain and Field, Subring
Friday, April 20, 2018 10:08 AM
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 is surjective since  is finite○

Choose    s.t.       , then     ○

So  is the inverse of  ○

A subring of a ring  is a additive subgroup  of  s.t.○

 is closed under multiplication○

 contains  ○

Definition•

A subring of a ring is also a ring○

Note•

A ring is always a subring of itself○

Example 1•

                                                   ○

Example 2•

       ○

Example 3•

Let                                                  ○

                  

                

   is the multiplicative identity

Define addition and multiplication as ○

Then                                        is a subring of  ○

Example 4•

 is a homomorphism of abelian groups under addition

                           

        

If      is a ring homomorphism i.e.○

Then      is a subring of  ○

By group theory,      is an additive subgroup of  

       by assumption

If                  , then                         

Proof○

Example 5•

By HW9 #1,   Ring homomorphism      for any ring  ○

     is the smallest subring of  ○

Also,         , where        

Example 6•

Subring
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Also,           , where          ○

Note: A ring isomorphism is a ring homomorphism that is bijective○

                    is not a subring○

Since it doesn't contain the identity      ○

Example 7•
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Let  be a commutative ring○

                      , where

 is a variable, and     

A polynomial over  is the sum○

Polynomials over a ring•

Let                
            is a polynomial over  ○

The degree of  , denoted as       , is              ○

Note:          ○

Degree•

If           ○

The leading term of  is     ○

The leading coefficient of  is   ○

Leading term and leading coefficient•

Let                                             ○

Then     is a commutative ring with ○

ordinary addition and multiplication of polynomials○

Polynomial ring•

 is identified with the constant polynomials○

There is a ring homomorphism         defined as○

mapping the ring element    to the constant polynomial  ○

The constant polynomials in     form a subring○

And  gives an isomorphism between  and the subring○

 is a subring of     •

We define polynomial rings in several variables inductively○

                    ○

 ○

                             ○

Polynomial ring with multiple variables•

Polynomial Ring

Let  be a domain○

Let         , then

Statement•

Proposition 67: Polynomial Rings over a Domain

Polynomial Ring, Ideal, Principal Ideal
Monday, April 23, 2018 9:57 AM
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Let             , then○

                     1.

          2.

    is a domain3.

               , where         

               , where         

Write○

Then     and     ○

Since  is a domain,       ○

So, the leading term of   is         , which verifies (1)○

Also,           . This proves    ○

                       by    

Thus,                i.e.      

Since            


Thus           


Also,           


Therefore           


For (2), suppose     , then○

Proof•

Let  be a subset of ring  , and let    ○

Define            ○

 is an additive subgroup of  

         

 is a left ideal of  if○

Right ideal is defined similarly○

 is an ideal if  is both a left and right ideal○

Definition•

Normal subgroups are to groups as ideals are to rings○

Intuition•

If  is a ring, then  and    are both ideals○

Example•

Ideal

If     is an ideal, then        ○

Statement•

Trivial

Proof    •

Proposition 68: Ideal Containing 1 is the Whole Ring
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Trivial○

By definition of ideal,          ○

So        ○

Thus    ○

Proof    •

Recall that subrings always contain 1○

   is an ideal     

If  is a subring of ring  , then○

 is a subring of      

If    is an ideal, then○

Corollary•

Let  is a commutative ring, and let    , then○

            is called the principal ideal generated by  ○

Definition•

         , so    is not empty○

                

Therefore,    is an additive subgroup of  

Let          , then○

             

                 

So               

Let    ,       , then○

Proof: Principal ideals are ideals•

If    , then    is just the cyclic subgroup generated by  ○

Example•

Principal Ideal

   Page 118    



Let    be a nonzero ideal○

Let  be the smallest positive integer in  ○

This is clear

     ○

Suppose    

Write       where      , and      

Then we have       , where         

So    , and the minimality of  forces    

Therefore      

     ○

         is all of the ideals in  •

    is an additive subgroup of  by group theory○

Let    , and       ○

Then                                ○

Thus           ○

If      is a ring homomorphism, then     is an ideal•

Let          , where  is any ring○

Let      ○

Let                                                        ○

Let                   

The      entry of   is the dot product of  -th row and  -th column

It's clear that the      entry of   is 0 unless    

  is a left ideal ○

 
  
  

            

 
  
  

  
  
  

   
  
  

    

  is not a right ideal○

Similarly,                                                     ○

Then   is a right ideal, but not left ideal○

There are left ideals that are not right ideals, and vice versa•

Examples of Ideals

Statement•

Proposition 69: Quotient Ring

Examples of Ideals, Quotient Ring
Wednesday, April 25, 2018 9:56 AM
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Let  be a ring○

                 

If    is an ideal, then the quotient group    is a ring with multiplication○

   is an additive subgroup

   is a ring with multiplication defined above

Conversely, if○

Then  is an ideal○

Statement•

Let          , and   
      

   

We must show that     
        

   

    
      

      
      

      
      

       
    

            
 



 
         

  
      

   
  

       

  
    

   
     

      
   

Thus     
        

   

Multiplication is well-defined○

        ○

Associativity and distributivity of    follow from analogous properties of  ○

Proof    •

Suppose    is an additive subgroup, and    is a ring with above operation○

Then        given by      is a ring homomorphism with       ○

Thus,  is an ideal○

Proof    •
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If      is a ring homomorphism, then there is an induced isomorphism○

               , given by            ○

Statement•

We need only check               , and   preserves multiplication○

                               ○

                                                               ○

Proof•

Let         given by       ○

In fact, if  is a subring of some ring  , and    , then

The function       given by       is a ring homomorphism

 is a ring homomorphism○

If       , then             

 is surjective○

If               , then

                                    

           ○

Let       

Using polynomial division, we can find         s.t.

           where                 

Write       for some      

Since       ,       

                                 

So      

Therefore          , and         

           ○

Therefore,            ○

                                                       ○

Example:              •

Let                         ○

         

 is surjective○

Example:             , where    •

Theorem 70: The First Isomorphism Theorem for Rings

Isomorphism Theorems for Rings
Friday, April 27, 2018 10:08 AM
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           

 is a ring homomorphism○

If             , then

                                 

          ○

Let       

Divide    into  to obtain         s.t.

           where       

Since       ,                     

Thus    , so               

          ○

Therefore,           ○

By the First Isomorphism Theorem of Rings,             ○

If    are ideals in a commutative ring  s.t.      

Then             , where

                 

                                

Recall: Chinese Remainder Theorem○

This is obvious, since                

                 ○

Let                       , where                  

                      
    for some        □

Each term     is of form

Thus                               

                 ○

Thus                  ○

 

 
        

 

 
              

                 

              

Chinese Remainder Theorem implies                    

                   ○

Therefore,                ○

Example:                •

If  is an ideal of a ring  , and  is a subring of  ○

Then    is also a subring of  , where

The Second Isomorphism Theorem for Rings•

Other Isomorphism Theorems for Rings
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Then    is also a subring of  , where○

 is an ideal of    , and                ○

                                   
   

        ○

The Third Isomorphism Theorem for Rings•

If  is a ring, and  is an ideal of  ○

Then there is a bijection                                           ○

Correspondence Theorem•
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Let  be a commutative ring○

If  is a subset of  , then the ideal generated by  is○

                                   ○

If  is finite, then we write    as          ○

Definition•

When      ,    is a principal ideal○

Note•

Suppose, by way of contradiction, that                          ○

    for some       

                

           

Since      ○

Choose       s.t.     , then       

Write                   

Then             

So     , by comparing coefficients

Since       and    ,       

Since      ○

Therefore               ○

So,          , where           ○

Evaluating both side at  , we get           ○

This is a contradiction, so           ○

Example:           •

Define            given by    
                ○

 factors as            , where                

Composition of homomorphisms is still a homomorphism

 is a ring homomorphism○

 is certainly surjective○

Let        

Then        for some         

          ○

Example:                 •

Ideal Generated by Subset

Ideal Generated by Subset, Maximal Ideal
Monday, April 30, 2018 10:00 AM
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Since   has no constant term, and   has even constant term

                       

Let                     

Write                

Then                          

          ○

Therefore,           ○

By the First Isomorphism Theorem of ,                      ○

Note:                 ○

An ideal  in a ring  is maximal if •

   , and the only ideals containing  are  and  •

Maximal Ideal

If  is a commutative ring, and    is an ideal○

Then  is maximal     is a field○

Statement•

The only ideals containing  are  and  ○

Thus,    has exactly 2 idals, by the Correspondence Theorem○

Namely, the zero ideal, and the entire ring○

Let        s.t.    ○

Suppose    i.e.         ○

Then          ○

So          ○

Choose        s.t.               ○

This shows    is a unit○

Therefore    is a field○

Proof    •

Suppose    is a field○

Then    has exactly two ideals,  and    ○

By the Correspondence Theorem,○

There are exactly two ideals containing  , that is   and  ○

By definition of maximal ideal,  is maximal○

Proof    •

Proposition 71: Criterion for Maximal Ideal

     is maximal       is a field   is prime○

What are the maximal ideals in   •

Examples of Maximal Ideals
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No,               ○

Define a ring map       given by       

 is surjective, and         

Also, by First Isomorphism Theorem,           , but  is not a field○

Is         maximal?•

             is a field○

Is            maximal?•

               is not a field, since      is not a unit○

                 

                 

Another way to see       is not maximal○

Is            maximal•
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Let  be a commutative ring•

An ideal    is prime if •

                  or    •

Prime Ideal

The prime ideals of  are ideals of the form    , where  is prime or    ○

Statement•

Let      be a prime ideal, and    ○

We want to show that  is prime○

Choose      s.t.     ○

Then       , so either      or      , by definiton of prime ideal○

Without loss of generality, suppose      , then    ○

Choose    s.t.     ○

                      ○

So  is a prime○

Proof    •

Let      , and       

Then     

    or    

      or      

Therefore    is prime

   is prime○

Let      , and say       

Then     

Since  is prime, this means    or    

      or      

   is prime for    prime○

Proof    •

Proposition 72: Prime Ideas of  

Let  be a commutative ring,    an ideal, then○

 is prime     is a domain○

In particular,  is a domain  zero ideal is prime

Statement•

Proposition 73: Criterion for Prime Ideal

Prime Ideal, Euclidean Domain
May 2, 2018 10:00 AM
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In particular,  is a domain  zero ideal is prime○

Let                  ○

Then                  ○

So,     ○

Since  is prime,    or    ○

Therefore      or      ○

So    is a domain○

Proof    •

Let      , and suppose     , then○

                 ○

Since    is a domain,      or      ○

So    or    ○

Therefore  is prime○

Proof    •

           is not prime, since                is not a domain○

Also,            , but               ○

Example•

If  is a commutative ring, and    is maximal, then  is prime○

Statement•

 is maximal     is a field     is a domain   is prime○

Proof•

Corollary 74: Maximal Ideal is Prime

Let  be a domain○

A norm on  is a function        s.t.       ○

 is called a Euclidean domain if  is equipped with a norm  s.t.○

      , and 

either    or          

      with    ,       s.t.○

Definition•

 is a Euclidean domain,         ○

Example 1•

If  is a field, then  is trivially a Euclidean domain○

Take        to be any function s.t.       ○

                               
 

 
    

Example 2•

Euclidean Domain
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      ○

If  is a field, then     is a Euclidean domain, with          ○

The division algorithm is just polynomial division○

           , so this definition isn't quite right

To handle this problem, define a norm that sends values not in    , but 

any total ordered set in order-preserving bijection with    

(For instance,         )

Note○

Example 3•

A domain in which every ideal is principal is called a principal ideal domain•

Principal Ideal Domain

Every ideal in a Euclidean domain  is principal○

More precisely, if    is an ideal, then      , where○

 is an element of  with minimum norm○

Statement•

Let    be an ideal○

If      , then  is principal, so assume      ○

              has a minimal element, by well-ordering principal○

Choose        s.t.     is minimal○

Certainly,      ○

     , and

either    or          

Let    , write       , where○

Since         ,     can't be smaller than     ○

So               ○

Therefore      ○

Proof•

We haven't yet proven that     is a Euclidean domain, where  is a field○

Once we show this, then     has the property that all of its ideals are principal○

Example 1•

    cannot be a Euclidean domain, since           is not principal○

Example 2•

Proposition 75: Euclidean Domain is a Principal Ideal Domain

Let  be a field, then   is a Euclidean domain

Statement•

Theorem 76: Polynomial Division
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Let  be a field, then     is a Euclidean domain○

More specifically, if         where    , then ○

          s.t.       and          ○

We argue by induction on     ○

If    , take      , so assume    ○

Set              ○

If    , then take        ○

Assume    ○

               

               

Write○

Then           

            
  

  
                                          

         
  

  
        ○

          with         and          

By inductive hypothesis○

     
  

  
        

       
  

  
        

     
  

  
           

     

         
  

  
             ○

Proof (Existence)•

Suppose              where          , and           ○

Then               and                ○

                                                    ○

                 ○

It follows immediately that     ○

Proof (Uniqueness)•
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