Definitions

Tuesday, May 8, 2018 12:23 AM

Notations

- "≔" means "equals, by definition"
- $\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, ...\}$ the set of integers
- $\mathbb{Q} \coloneqq \left\{\frac{a}{b} \middle| a, b \in \mathbb{Z}, b \neq 0\right\}$ the set of rational numbers
- $\mathbb{R} \coloneqq$ the set of all real numbers
- $\mathbb{C} := \{a + bi | a, b \in \mathbb{R}, i^2 = -1\}$ the set of complex numbers
- $\mathbb{Z}_{\geq 0} \coloneqq \{a \in \mathbb{Z} | a \geq 0\}$ the set of non-negative integers
- $S \setminus \{x\} \coloneqq \{s \in S | s \neq x\}$
- Denote a function *f* from a set A to a set B by $f: A \rightarrow B$
- Denote the image of f by $im(f) \coloneqq \{b \in B | \exists a \in A \text{ s.t. } f(a) = b\}$

Injective, Surjective and Bijective

- Let $f: A \to B$ be a function, then
- f is injective if $\forall a, a' \in A, a \neq a' \Rightarrow f(a) \neq f(a')$
- f is surjective if $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$ (i.e. $\operatorname{im}(f) = B$)
- *f* is bijective if *f* is both injective and surjective

Divides

- If $x, y \in \mathbb{Z}$, and $x \neq 0$
- We say *x* divides *y* and write x|y, if $\exists q \in \mathbb{Z}$ s.t. xq = y

Cartesian Product

- If *A* and *B* are sets, then the Cartesian product of *A* and *B* is
- $A \times B \coloneqq \{(a, b) | a \in A, b \in B\}$

Relations

- A relation on a set A is a subset R of $A \times A$
- We write $a \sim a'$ if $(a, a') \in R$

Equivalence Relations

- A relation *R* on *A* is an equivalence relation if *R* is
- Reflexive
 - If $a \in A$, then $a \sim a$
 - i.e. $(a, a) \in R$
- Symmetric
 - If $a \sim a'$, then $a' \sim a$

- i.e. $(a, a') \in R \Rightarrow (a', a) \in R$
- Transitive
 - If $a \sim a'$, $a' \sim a''$, then $a \sim a''$
 - i.e. If $(a, a') \in R$ and $(a', a'') \in R$, then $(a, a'') \in R$

Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- A greatest common divisor of *a* and *b* is a positive integer *d* s.t.
 - $\circ d|a \text{ and } d|b$
 - If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$ then $e \mid d$
- We write the greatest common divisor of *a* and *b*, if it exists, as (*a*, *b*)
- As a convention $(0,0) \coloneqq 0$

Equivalence Class

- Let *X* be a set, and let ~ be an equivalence relation on *X*
- If $x \in X$, then the equivalence class represented by x is the set
- $[x] = \{x' \in X | x \sim x'\} \subseteq X$

Integers Modulo n

- Let $n \in \mathbb{Z}_{>0}$
- The relation on \mathbb{Z} given by $a \sim b \Leftrightarrow n | (a b)$ is an equivalence relation
- The set of equivalence classes under ~ is denoted as $\mathbb{Z}/n\mathbb{Z}$
- We call this set integers modulo *n* (or integers mod n)
- We can check that there are *n* elements in $\mathbb{Z}/n\mathbb{Z}$
- We use \bar{a} to denote the equivalence class in $\mathbb{Z}/n\mathbb{Z}$
- Then $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$

Group

- If *G* is a set equipped with a binary operation
 - $\circ \ G \times G \to G$
 - $\circ (g,h) \mapsto g \cdot h$
- that satisfies
 - Associativity: $\forall g, h, k \in G, g \cdot (h \cdot k) = (g \cdot h) \cdot k$
 - Identity: $\exists 1 \in G \text{ s.t. } \forall g \in G, 1 \cdot g = g \cdot 1 = g$
 - Inverses: $\forall g \in G, \exists g^{-1} \in G \text{ s.t. } gg^{-1} = g^{-1}g = 1$
- Then we say *G* is a group under this operation

Abelian Group

• We say a group *G* is abelian, if $ab = ba, \forall a, b \in G$

Order of Group Element

- If *G* is a group, and $g \in G$
- The order of g is the smallest positive integer n s.t. $g^n = 1$
- If *n* is the order of *g*, write |g| = n
- If no such integer exists, write $|g| = \infty$
- i.e. $|g| \coloneqq \inf\{n \in \mathbb{Z}_{>0} | g^n = 1\}$

Symmetric Group

- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Let $S_n := \{$ bijective functions $\{1, ..., n\} \rightarrow \{1, ..., n\} \}$
- (i.e. S_n is the set of all permutations of $\{1, ..., n\}$)
- Then S_n is a group with operation given by function composition
- We call this group symmetric group of degree *n*

Cycle

- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Let $a_1, ..., a_t \in \{1, ..., n\}$
- The element of S_n given by
 - $\circ a_i \mapsto a_{i+1}$ for $1 \le i \le t-1$
 - $\circ a_t \mapsto a_1$
 - $j \mapsto j$ if $j \notin \{a_1, \dots a_t\}$
- is denoted by $(a_1, a_2, ..., a_t)$ and is called a cycle of length t

Disjoint Cycles

- Two cycles $(a_1, \dots a_t)$ and (b_1, \dots, b_k) are disjoint if
- $\{a_1, \dots a_t\} \cap \{b_1, \dots, b_k\} = \emptyset$

Homomorphism

- Let *G*, *H* be groups
- A function $f: G \rightarrow H$ is a homomorphism if

 $\circ f(g_1g_2) = f(g_1)f(g_2), \forall g_1, g_2 \in G$

• One says *f* "respects", or "preserves" the group operation

Isomorphism

- Let *G*, *H* be groups
- A homomorphism $\alpha: G \rightarrow H$ is a isomorphism if
- there is a homomorphism $\beta: H \to G$ s.t.
 - $\circ \alpha\beta = id_H$, and
 - $\circ \ \beta \alpha = id_G$
- In this case, we say *G* and *H* are isomorphic

Subgroup

- Let *G* be a group, and let $H \subseteq G$
- *H* is a subgroup if
 - $\circ \quad H \neq \emptyset \text{ (nonempty)}$
 - If $h, h' \in H$, then $hh' \in H$ (closed under the operation)
 - If $h \in H$, then $h^{-1} \in H$ (closed under inverse)
- If *H* is a subgroup of *G*, we write $H \leq G$

Regular *n*-gon

• A regular n - gon is a polygon with all sides and angles equal

Symmetry

- A symmetry of a regular *n*-gon is a way of
 - picking up a copy of it
 - moving it around in 3d
 - setting it back down
- so that it exactly covers the original

Dihedral Groups

• $D_{2n} := \{\text{symmetries of the } n \text{-gon}\} \text{ is called } n \text{-th dihedral groups}$

Cyclic Group

• A group *G* is cyclic if $\exists g \in G$ s.t. $\langle g \rangle = G$

Least Common Multiple

- Let $a, b \in \mathbb{Z}$ where one of a, b is nonzero.
- A least common multiple of *a* and *b* is a positive integer *m* s.t.
 - $\circ a | m \text{ and } b | m$
 - If a|m' and b|m', then m|m'
- We denote the least common multiple of *a* and *b* by [*a*, *b*]
- Define $[0,0] \coloneqq 0$

Subgroups Generated by Subsets of a Group

- Let *G* be a group and $A \subseteq G$
- The subgroup generated by *A* is
- the intersection of every subgroup of *G* containing *A*

•
$$\langle A \rangle \coloneqq \bigcap_{\substack{H \leq G \\ A \subseteq H}} H$$

Finitely Generated Group

- A group *G* is finitely generated if
- There is a finite subset A of G s.t. $\langle A \rangle = G$

Coset

- If *G* is a group, $H \leq G$, and $g \in G$
- $gH \coloneqq \{gh | h \in H\}$ is called a left coset
- $Hg \coloneqq \{hg | h \in H\}$ is called a right coset
- An element of a coset is called a representative of the coset

Normal Subgroup

- Let *G* be a group, $N \leq G$
- *N* is a normal subgroup if $gng^{-1} \in N$, $\forall n \in N$, $\forall g \in G$
- In other words, *N* is closed under conjugation
- If $N \leq G$ is normal, we write $N \leq G$

Quotient Group

- Let G be a group, $N \trianglelefteq G$
- The set of left costs of *N* is a group under the operation
 - $(g_1N)(g_2N) = g_1g_2N$
- This group is denoted as G/N (say " $G \mod N$ ")
- We call this group quotient group or factor group

Index of a Subgroup

- If *G* is a group, and $H \leq G$, then
- The index of *H* is the number of distinct left cosets of *H* in *G*
- Denote the index by [*G*: *H*]

Product of Subgroups

- Let G be a group and $H, K \leq G$
- Define $HK := \{hk | h \in H, k \in K\}$

Transposition

- Fix *n* to be a positive integer
- A 2 cycle (i j) in S_n is a transposition

Sign of Permutation ϵ (Transposition Definition)

• Let
$$\epsilon: S_n \to \mathbb{Z}/2\mathbb{Z}$$

 $\sigma \mapsto \begin{cases} \overline{0} & \sigma \text{ is a product of even number of transposition} \\ \overline{1} & \sigma \text{ is a product of odd number of transposition} \end{cases}$

Sign of Permutation ϵ' (Auxiliary Polynomial Definition)

• Let
$$\epsilon' : S_n \to \mathbb{Z}/2\mathbb{Z}$$

$$\sigma \mapsto \begin{cases} \overline{0} & \sigma(\Delta) = \Delta \\ \overline{1} & \sigma(\Delta) = -\Delta \end{cases}$$

- $\epsilon'(\sigma)$ is the sign of σ , often denoted as sgn σ
- σ is even if $\epsilon'(\sigma) = \overline{0}$
- σ is odd if $\epsilon'(\sigma) = \overline{1}$

Alternating Group

- The alternative group, denoted as A_n is the kernel of ϵ
- That is, A_n contains of all even permutations in S_n

Group Action

- An action of *G* on *X* is a function $G \times X \to X$, $(g, x) \mapsto gx$ s.t.
 - $\circ 1_G x = x, \forall x \in X$
 - $\circ \quad g(hx) = (gh)x, \forall g, h \in G, x \in X$

Orbit and Stabilizer

- Suppose a group *G* acts on a set *X*
- Let $x \in X$
- The orbit of *x*, denoted $\operatorname{orb}(x)$, is $\{g \cdot x | g \in G\} \subseteq X$
- The stabilizer of *x*, denoted stab(*x*), is $\{g \in G | g \cdot x = x\} \subseteq G$

Centralizer

- Let *G* be a group, and let *G* act on itself by conjugation
- If $h \in G$, then stab $(h) = \{g \in G | ghg^{-1} = h\} = \{g \in G | gh = hg\}$
- This set is called the centralizer of h, denoted as $C_G(h)$
- $C_G(h)$ is the set of elements in *G* that commute with the element *h*

Center

- $\bigcup_{h \in G} C_G(h) = Z(G)$ is called the center of *G*
- Z(G) is the set of elements that commute with every element of G

Normalizer

- Let *X* be the set of subgroups of a group *G*
- Let *G* acts on *X* by $g \cdot H = gHg^{-1}$
- If $H \leq G$, then
 - $\circ \ \operatorname{stab}(H) = \{g \in G | gHg^{-1} = H\} = \{g \in G | gH = Hg\}$
- This set is called the normalizer of H in G, denoted $N_G(H)$
- $N_G(H)$ is the set of elements in *G* that commute with the set *H*
- Note: $N_G(H) = G \Leftrightarrow H \trianglelefteq G$

Conjugacy Class

- If *G* is a group, *G* acts on itself by conjugation: $g \cdot h = ghg^{-1}$
- The orbits under this action are called conjugacy classes

• Denote a conjugate class represented by some element $g \in G$ by conj(g)

Partition

- A partition of $n \in \mathbb{Z}_{>0}$ is a way of writing n as a sum of positive integers
- Example: 3 has 3 partitions: 3, 2 + 1, 1 + 1 + 1

Ring

- A ring is a set *R* equipped with two operations + and \cdot s.t.
- (*R*, +) is an abelian group
- · is associative
- $\exists 1 \in R \text{ s.t. } 1 \cdot r = r = r \cdot 1$
- Distributive property:
 - $\circ \forall a, b, c \in R$
 - $\circ \ a \cdot (b+c) = a \cdot b + a \cdot c$
 - $\circ (a+b) \cdot c = a \cdot c + b \cdot c$

Zero-Divisor and Unit

- Let *R* be a ring
- A nonzero element $r \in R$ is called a zero-divisor if
 - $\exists s \in R \setminus \{0\}$ s.t. rs = 0 or sr = 0
- Assume $1 \neq 0, u \in R$ is called a unit if

○ $\exists v \in R \text{ s.t. } uv = 1 = vu$

Group of Unites

• $R^{\times} \coloneqq \{u \in R | u \text{ is a unit}\}$

Field

- A communitive ring *R* is called a field if
- Every nonzero element of *R* is a unit
- i.e. Every nonzero element of *R* have a multiplicative inverse

Product Ring

- Let R_1 , R_2 be rings
- The product ring $R_1 \times R_2$ has the following ring structure
- For addition, it's just the product as groups
- For multiplication, $(r_1, r_2)(r'_1, r'_2) = (r_1r'_1, r_2r'_2)$ with identity $(1_{R_1}, 1_{R_2})$

Integral Domain

- A communicative ring *R* is an integral domain (or just domain) if
- *R* contains no zero-divisors

Subring

- A subring of a ring *R* is a additive subgroup *S* of *R* s.t.
- *S* is closed under multiplication
- *S* contains 1

Polynomials over a ring

- Let *R* be a commutative ring
- A polynomial over *R* is the sum
 - $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where
 - *x* is a variable, and $a_i \in R$

Degree

- If $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial over *R*
- The degree of *f*, denoted deg(*g*), is $\sup\{n \ge 0 | a_n \neq 0\}$
- Note: $deg(0) = -\infty$

Leading Term and Leading Coefficient

- If $\deg(f) = n \ge 0$
- The leading term of f is $a_n x^n$
- The leading coefficient of f is a_n

Polynomial ring

- Let *R*[*x*] ≔ {Polynomials over a commutative ring *R*}
- Then *R*[*x*] is a commutative ring with
- ordinary addition and multiplication of polynomials

Ideal

- Let *I* be a subset of ring *R*, and let $r \in R$
- Define $rI \coloneqq \{rx | x \in I\}$
- *I* is a left ideal of *R* if
 - \circ *I* is an additive subgroup of *R*
 - $\circ \ rI = I, \forall r \in R$
- Right ideal is defined similarly
- *I* is an ideal if *I* is both a left and right ideal

Principal Ideal

- Let *R* is a commutative ring, and let $r \in R$, then
- $(r) \coloneqq \{ar | a \in R\}$ is called the principal ideal generated by r

Quotient Ring

- Let *R* be a ring
- If $I \subseteq R$ is an ideal, then the quotient group R/I is a ring with multiplication
 - (r+I)(r'+I) = rr' + I

- Conversely, if
 - $J \subseteq R$ is an additive subgroup
 - *R*/*J* is a ring with multiplication defined above
- Then *J* is an ideal

Ideal Generated by Subset

- Let *R* be a commutative ring
- If *A* is a subset of *R*, then the ideal generated by *A* is
- (A) := { $r_1a_1 + \dots + r_na_n | n \in \mathbb{Z}_{\geq 1}, r_i \in R, a_i \in A$ } $\subseteq R$
- If *A* is finite, then we write (*A*) as $(a_1, ..., a_n)$

Maximal Ideal

- An ideal *M* in a ring *R* is maximal if
- $M \neq R$, and the only ideals containing M are M and R

Prime Ideal

- Let *R* be a commutative ring
- An ideal $P \subsetneq R$ is prime if
- $a, b \in R$, and $ab \in P \Rightarrow a \in P$ or $b \in P$

Euclidean Domain

- Let *R* be a domain
- A norm on *R* is a function $N: R \to \mathbb{Z}_{\geq 0}$ s.t. N(0) = 0
- *R* is called a Euclidean domain if *R* is equipped with a norm *N* s.t.
- $\forall a, b \in R$ with $b \neq 0, \exists q, r \in R$ s.t.
 - $\circ a = qb + r$, and
 - either r = 0 or N(r) < N(b)

Principal Ideal Domain

• A domain in which every ideal is principal is called a principal ideal domain

Propositions

Wednesday, April 4, 2018 2:18 PM

Proposition 1: Well-ordering of $\ensuremath{\mathbb{Z}}$

- Every nonempty set S of $\mathbb{Z}_{\geq 0}$ has a unique minimum element
- $\exists ! m \in S \text{ s.t. } m \leq s, \forall s \in S$

Proposition 2: The Division Algorithm

- Let $a, b \in \mathbb{Z}$, where b > 0
- Then $\exists ! q, r \in \mathbb{Z}$ s.t. a = qb + r, and $0 \le r < b$

Proposition 3: Uniqueness of Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- Suppose $\exists d, d' \in \mathbb{Z}_{>0}$ s.t.
 - (1) d and d' both divide a and b
 - (2) If $e \in \mathbb{Z}$ s.t. e|a and e|b, then e|d and e|d'
- Then d = d'

Proposition 4: Lemma for Euclidean Algorithm

- Suppose $a, b \in \mathbb{Z}$, where $b \neq 0$
- Choose $q, r \in \mathbb{Z}$ s.t. a = qb + r, and $0 \le r < |b|$
- If (b, r) exists, then (a, b) exists and (a, b) = (b, r)

Proposition 5: (a, 0) = |a|

• $(a, 0) = |a|, \forall a \in \mathbb{Z}$

Proposition 6: Existence of GCD

• If $a, b \in \mathbb{Z}$, then (a, b) exists

Proposition 7: Bézout's Identity

• If $a, b \in \mathbb{Z}$, then $\exists x, y \in \mathbb{Z}$ s.t. (a, b) = ax + by

Proposition 8: Equivalence Classes Partition the Set

- Let *X* be a set with equivalence relationship ~
- If $x, x' \in X$, then [x] and [x'] are either equal or disjoint

Proposition 9: Addition and Multiplication in $\mathbb{Z}/n\mathbb{Z}$

- Let $n \in \mathbb{Z}_{>0}$, and let $a_1, a_2, b_1, b_2 \in \mathbb{Z}$
- If $\overline{a_1} = \overline{b_1}$, and $\overline{a_2} = \overline{b_2}$ in $\mathbb{Z}/n\mathbb{Z}$
- Then $\overline{a_1 + a_2} = \overline{b_1 + b_2}$, and $\overline{a_1 a_2} = \overline{b_1 b_2}$

Corollary 10: Integers Modulo n

- For $n \in \mathbb{Z}_{>0}$, $\mathbb{Z}/n\mathbb{Z}$ is a group under the operation
 - $\circ \quad \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$
 - $\circ (\bar{a}, \bar{b}) \mapsto \overline{a+b}$
- We will denote this operation by +
- So $\overline{a} + \overline{b} = \overline{a+b}$

Proposition 11: $(\mathbb{Z}/n\mathbb{Z})^{\times}$

• $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group with operation given by multiplication

Proposition 12: Properties of Group

- Let *G* be a group, then *G* has the following properties
- The identity of *G* is unique
- Each $g \in G$ has a unique inverse
- The Generalized Associative Law
- $(gh)^{-1} = h^{-1}g^{-1}, \forall g, h \in G$

Proposition 13: Cancellation Law

- Let *G* be a group, and let $a, b, u, v \in G$
- If au = av, then u = v
- If ua = va, then u = v

Corollary 14: Cancellation Law and Identity

- Let G be a group, and let $g, h \in G$
- If gh = g, then h = 1
- If gh = 1, then $h = g^{-1}$

Proposition 15: Order of Symmetric Group

• $|S_n| = n!$

Proposition 16: Isomorphism Preserves Commutativity

- Let $f: G \to H$ be an isomorphism
- *G* is abelian if and only if *H* is abelian

Proposition 16: Injective Homomorphism Preserves Order

- Let $f: G \to H$ be an injective homomorphism
- Then $\forall g \in G, |g| = |f(g)|$

Proposition 17: The Subgroup Criterion

- A subset *H* of a group *G* is a subgroup iff
- $H \neq \emptyset$ and $\forall x, y \in H, xy^{-1} \in H$

Proposition 18: Isomorphism of Cyclic Group

• Let *G* be a cyclic group

- If $|G| = n < \infty$, then $G \cong \mathbb{Z}/n\mathbb{Z}$
- If $|G| = \infty$, then $G \cong \mathbb{Z}$

Proposition 19: Order of g^a

• If $G = \langle g \rangle$ is cyclic, and $|G| = n < \infty$, then $|g^a| = \frac{n}{(a,n)}$

Theorem 20: Subgroup of Cyclic Group is Cyclic

- Let $G = \langle g \rangle$ be a cyclic group
- Then every subgroup of *G* is cyclic
- More precisely, if $H \leq G$, then either $H = \{1\}$ or $H = \langle g^d \rangle$, where
 - *d* is the smallest positive integer s.t. $g^d \in H$

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order

- Let $G = \langle g \rangle$ be a finite cyclic group of order n
- For all positive integers *a* dividing *n*, \exists ! subgroup $H \leq G$ of order *a*
- Moreover, this subgroup is $\langle g^d \rangle$, where $d = \frac{n}{a}$

Proposition 21: Construction of $\langle A \rangle$

• If $A \subseteq G$, then $\langle A \rangle = \left\{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_n^{\varepsilon_n} \middle| n \in \mathbb{Z}_{>0}, a_i \in A, \varepsilon \in \{\pm 1\} \right\}$

Proposition 22: Properties of Coset

- Let G be a group and $H \leq G$
- If $g_1, g_2 \in G$, then $g_1H = g_2H \iff g_2^{-1}g_1 \in H$
- The relation ~ on *G* given by $g_1 \sim g_2$ iff $g_1 \in g_2 H$ is an equivalence relation
- In particular, left/right cosets are either equal or disjoint

Proposition 23

- Let *N* be a subgroup of a group *G*
- $N \trianglelefteq G$ iff $gN = Ng, \forall g \in G$

Proposition 24: Quotient Group

- If G is a group, and $N \trianglelefteq G$, then
- the set of left costs of *N*, denoted as *G*/*N* (say "*G* mod *N*")
- is a group under the operation $(g_1N)(g_2N) = g_1g_2N$
- We call this group quotient group or factor group

Theorem 25: Lagrange's Theorem

- If *G* is finite group, and $H \le G$, then $|G| = |H| \cdot [G:H]$
- In particular, |H|||G|

Corollary 26: Group of Prime Order is Cyclic

• If *G* is a group, and |G| is prime, then *G* is cyclic, hence, $G \cong \mathbb{Z}/p\mathbb{Z}$

Corollary 27: $g^{|G|} = 1$

• If *G* is a finite group, and $g \in G$, then $g^{|G|} = 1$

Corollary 28: The Fundamental Theorem of Cyclic Groups

- If *G* is a finite cyclic group, then there is a bijection
- {positive divisors of |G|} \leftrightarrow {subgroups of G}

Proposition 29: Order of Product of Subgroups

• If *H*, *K* are finite subgroups of a group *G*, then $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$

Proposition 30: Permutable Subgroups

• If $H, K \leq G$, then $HK \leq G$ iff HK = KH

Corollary 31: Product of Subgroup and Normal Subgroup

• If $H, K \leq G$, and either H or K is normal in G, then $HK \leq G$

Theorem 32: The First Isomorphism Theorem

• If $f: G \to H$ is a homomorphism, then f induces an isomorphism

$$\circ \ \overline{f}: {}^{G}/_{\ker f} \xrightarrow{\cong} \operatorname{im}(f)$$

 $\circ \ \bar{f}(g \ker f) = f(g)$

Corollary 33: Order of Kernel and Image

• $[G: \ker f] = |\operatorname{im} f|$

Theorem 34: The Second Isomorphism Theorem

- Let $A, B \leq G$, and assume $B \leq G$
- Then $A \cap B \trianglelefteq A$, and $AB/B \cong A/A \cap B$

Theorem 35: The Third Isomorphism Theorem

- Let *G* be a group, and $H, K \trianglelefteq G$, where $H \le K$
- Then $K/H \leq G/H$, and $\frac{G/H}{K/H} \approx G/K$

Proposition 36: Criterion for Defining Homomorphism on Quotient

- Let G, H be groups, and $N \trianglelefteq G$
- A homomorphism $\alpha: G \rightarrow H$ induces a homomorphism

 $\circ \quad \overline{\alpha}: G/N \to H \text{ given by } gN \mapsto \alpha(g)$

• If and only if $N \leq \ker \alpha$

Theorem 37: The Correspondence Theorem

- Let *G* be a group, and let $N \trianglelefteq G$, then there is a bijection
- {subgroups of G/N} $\stackrel{F}{\underset{K_I}{\longrightarrow}}$ {subgroups of G containing N}

Proposition 38: Transposition Decomposition of Permutation

• Every $\sigma \in S_n$ can be written as a product of transposition

Proposition 39: ϵ' is a Group Homomorphism

• ϵ' is a group homomorphism

Proposition 40: Sign of Transposition

- Let $n \in \mathbb{Z}_{>0}$
- If $\tau \in S_n$ is transposition, then $\epsilon'(\tau) = \overline{1}$

Corollary 41: Equivalence of Two Definitions of Sign

• ϵ is well-defined, and $\epsilon = \epsilon'$

Corollary 42: Surjectivity of ϵ

• If $n \ge 2$, then ϵ is surjective

Proposition 43: Subgroup of Index 2 is Normal

• If *G* is a group, $H \leq G$, and [G:H] = 2, then $H \leq G$

Proposition 44: Conjugate Cycle

- If $(a_1 \dots a_t)$, $(a_1' \dots a_t')$ are *t*-cycles in S_n
- Then $\exists \sigma \in S_n$ s.t. $\sigma(a_1 \dots a_t) \sigma^{-1} = (a_1' \dots a_t')$

Theorem 45: A_4 Have No Subgroup of Order 6

• A_4 have no subgroup of order 6

Proposition 46: Stabilizer is a Subgroup

• If G acts on X, and $x \in X$, then stab $(x) \le G$

Proposition 47: Orbits Equivalence

- Let *G* act on a set *X*
- The relation $x \sim x'$ iff $\exists g \in G$ s.t. gx = x' is an equivalence relation on X

Proposition 48: Orbit-Stabilizer Theorem

• If *G* acts on *X*, and $x \in X$, then |orb(x)| = [G: stab(x)]

Proposition 49: Permutation Representation of Group Action

- Let *G* be a group acting on a finite set $X = \{x_1, ..., x_n\}$
- Then each $g \in G$ determines a permutation $\sigma_g \in S_n$ by

 $\circ \ \ \sigma_g(i) = j \Leftrightarrow g \cdot x_i = x_j$

Proposition 49: Induced Homomorphism of Group Action

• The map $\Phi: G \to S_n$, given by $g \mapsto \sigma_g$ is a homomorphism

Theorem 50: Cayley's Theorem

• Every finite group is isomorphic to a subgroup of the symmetric group

Theorem 51: The Class Equation

- Let *G* be a finite group
- Let $g_1, \dots g_r \in G \setminus Z(G)$ be representatives of the conjugacy classes of G

• Then
$$|G| = |Z(G)| + \sum_{i=1}^{r} [G: C_G(g_i)]$$

Corollary 52: Center of *p*-Group is Non-Trivial

• If *p* is a prime, and *P* is a group of order p^{α} ($\alpha > 1$), then |Z(P)| > 1

Corollary 53: Group of Order Prime Squared is Abelian

- If p is a prime, and P is a group of order p^2 , then P is abelian.
- In fact, either $P \cong \mathbb{Z}/p^2\mathbb{Z}$ or $P \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$

Theorem 54: Cauchy's Theorem

• If *G* is a finite group, and *p* is a prime divisor of |G|, then $\exists H \leq G$ of order *p*

Lemma 55: Recognizing Direct Products

- Let G be a group with normal subgroups N_1 , N_2
- The map $N_1 \times N_2 \xrightarrow{\alpha} G$ given by $(n_1, n_2) \mapsto n_1 n_2$ is an isomorphism
- if and only if $N_1N_2 = G$ and $N_1 \cap N_2 = \{1\}$

Lemma 56: Coprime Decomposition of Finite Abelian Group

- Let *G* be a finite abelian group of order mn, where (m, n) = 1
- If $M = \{x \in G | x^m = 1\}, N = \{x \in G | x^n = 1\}$, then
- $M, N \leq G$ and the map $\alpha: M \times N \rightarrow G$ given by (g, h) = gh is an isomorphism
- Moreover, if $m, n \neq 1$, then M and N are nontrivial

Corollary 57: *p*-Group Decomposition of Finite Abelian Group

- Let *G* be a finite abelian group, and *p* be a prime divisor of |G|
- Choose $m \in \mathbb{Z}_{>0}$ s.t. $|G| = p^m n$ and $p \nmid n$
- Then $G \cong P \times T$, where $P, T \leq G$, $|P| = p^m$, and $p \nmid |T|$

Lemma 58: Prime Decomposition of Abelian *p*-Group

- If *G* is an abelian group of order *p*^{*n*}, where *p* is a prime
- Let $a \in G$ has maximal order among all the elements of G
- Then $G \cong A \times Q$, where $A = \langle a \rangle, Q \leq G$

Theorem 59: Fundamental Theorem of Finite Abelian Groups

• Every finite abelian group *G* is a product of cyclic groups

Corollary 60: Number of Finite Abelian Groups of Order n

- If $n = p_1^{e_1} \cdots p_n^{e_m}$, where p_i are distinct primes
- Then the number of finite abelian groups of order *n* is
- $\prod_{i=1}^{m}$ number of partitions of e_i

Proposition 61: Properties of Ring

- Let *R* be a ring, then
- $0a = 0 = a0, \forall a \in R$
- $(-a)b = a(-b) = -(ab), \forall a, b \in R$
- $(-a)(-b) = ab, \forall a, b \in R$
- The multiplicative identity 1 is unique
- $-a = (-1)a, \forall a \in R$

Proposition 62: Criterion for Trivial Ring

• A ring *R* is trivial (i.e. have only one element) iff 1 = 0

Proposition 63: One-Sided Zero Divisor and Unit

- Let *R* be a ring, then
- $r \in R, s \in R \setminus \{0\}$, and $sr = 0 \Rightarrow \exists t \in R \setminus \{0\}$ s.t. rt = 0
- $u \in R$, and $\exists v \in R$ s.t. $uv = 1 \Rightarrow \exists w \in R$ s.t. wu = 1
- Proposition 64: Units and Zero-Divisors of $\mathbb{Z}/n\mathbb{Z}$
 - Let n > 0
 - Every nonzero element in $\mathbb{Z}/n\mathbb{Z}$ is either a unit or a zero-divisor

Proposition 65: Criterion for Product Ring to be Domain

- If R_1 and R_2 are rings, then $R_1 \times R_2$ is a domain iff
- one of the R_1 or R_2 is a domain, and the other is trivial

Proposition 66: Finite Domain is a Field

• A finite domain *R* is a field

Proposition 67: Polynomial Rings over a Domain

- Let *R* be a domain
- Let $p, q \in R[x] \setminus \{0\}$, then
- $\deg(pq) = \deg(p) + \deg(q)$
- $(R[x])^{\times} = R^{\times}$
- *R*[*x*] is a domain

Proposition 68: Ideal Containing 1 is the Whole Ring

• If $I \subseteq R$ is an ideal, then $I = R \iff 1 \in I$

Proposition 69: Quotient Ring

- Let *R* be a ring
- If $I \subseteq R$ is an ideal, then the quotient group R/I is a ring with multiplication
 - $\circ (r+I)(r'+I) = rr' + I$
- Conversely, if
 - $J \subseteq R$ is an additive subgroup
 - *R*/*J* is a ring with multiplication defined above
- Then *J* is an ideal

Theorem 70: The First Isomorphism Theorem for Rings

- If $f: R \to S$ is a ring homomorphism, then there is an induced isomorphism
- $\overline{f}: R / \ker f \to \operatorname{im}(f)$, given by $r + \ker f \mapsto f(r)$

Proposition 71: Criterion for Maximal Ideal

- If *R* is a commutative ring, and $M \subseteq R$ is an ideal
- Then *M* is maximal $\Leftrightarrow R/M$ is a field

Proposition 72: Prime Ideas of $\mathbb Z$

• The prime ideals of \mathbb{Z} are ideals of the form (*n*), where *n* is prime or n = 0

Proposition 73: Criterion for Prime Ideal

- Let *R* be a commutative ring, $P \subseteq R$ an ideal, then
- *P* is prime $\Leftrightarrow R/P$ is a domain
- In particular, *R* is a domain \Leftrightarrow 0 ideal is prime

Corollary 74: Maximal Ideal is Prime

• If *R* is a commutative ring, and $M \subseteq R$ is maximal, then *M* is prime

Proposition 75: Euclidean Domain is a Principal Ideal Domain

- Every ideal in a Euclidean domain *R* is principal
- More precisely, if $I \subseteq R$ is an ideal, then I = (d), where
- *d* is an element of *I* with minimum norm

Theorem 76: Polynomial Division

- Let *F* be a field
- Then F[x] is a Euclidean domain
- More specifically, if $a, b \in F[x]$ where $b \neq 0$, then
- $\exists ! q, r \in F[x]$ s.t. a = bq + r and $\deg r < \deg b$

Notations, Divides, Equivalence Relations

Wednesday, January 24, 2018 9:46 AM

Notations

- "≔" means "equals, by definition"
- $\mathbb{Z} \coloneqq \{0, \pm 1, \pm 2, \pm 3, ...\}$ the set of integers
- $\mathbb{Q} \coloneqq \left\{\frac{a}{b} \middle| a, b \in \mathbb{Z}, b \neq 0\right\}$ the set of rational numbers
- $\mathbb{R} \coloneqq$ the set of all real numbers
- $\mathbb{C} := \{a + bi | a, b \in \mathbb{R}, i^2 = -1\}$ the set of complex numbers
- $\mathbb{Z}_{\geq 0} \coloneqq \{a \in \mathbb{Z} | a \geq 0\}$ the set of non-negative integers
- $S \setminus \{x\} \coloneqq \{s \in S | s \neq x\}$
- Denote a **function** *f* from a set A to a set B by $f: A \rightarrow B$
- Denote the **image** of f by $im(f) \coloneqq \{b \in B | \exists a \in A \text{ s.t. } f(a) = b\}$

Injective, Surjective and Bijective

- Definition
 - Let $f: A \rightarrow B$ be a function, then
 - *f* is **injective** if $\forall a, a' \in A, a \neq a' \Rightarrow f(a) \neq f(a')$
 - *f* is **surjective** if $\forall b \in B$, $\exists a \in A$ s.t. f(a) = b (i.e. im(f) = B)
 - *f* is **bijective** if *f* is both injective and surjective
- Example 1
 - For $f: \mathbb{Z} \to \mathbb{Z}$, f(a) = 2a
 - *f* is injective
 - Let $a, a' \in \mathbb{Z}$
 - Suppose f(a) = f(a')
 - $\Rightarrow 2a = 2a'$
 - $\Rightarrow 2a 2a' = 0$
 - $\Rightarrow 2(a a') = 0$
 - $\Rightarrow a a' = 0$
 - $\Rightarrow a = a'$
 - Therefore *f* is injective
 - *f* is not surjective
 - Because the image of *f* does not contain any odd integers
 - $\operatorname{im}(f) = \{\operatorname{even integer}\} \neq \mathbb{Z}$
- Example 2
 - Let $f: \mathbb{Q} \to \mathbb{Q}$ be given by f(a) = 2a

- \circ *f* is injective
 - Let $a, a' \in \mathbb{Z}$, then

•
$$f(a) = f(a') \Rightarrow 2a = 2a' \Rightarrow a = a$$

 \circ *f* is surjective

• Let
$$b \in \mathbb{Q}$$
, then $\frac{b}{2} \in \mathbb{Q}$

•
$$f\left(\frac{b}{2}\right) = 2\left(\frac{b}{2}\right) = b \in \mathbb{Q}$$

- Therefore *f* is surjective
- \circ *f* is bijective
 - Because *f* is both injective and surjective

Divides

- Definition
 - If $x, y \in \mathbb{Z}$, and $x \neq 0$
 - We say *x* **divides** *y* and write x|y, if $\exists q \in \mathbb{Z}$ s.t. xq = y
- Examples
 - $\forall x \in \mathbb{Z} \setminus \{0\}, x \mid 0, \text{ since } x \cdot 0 = 0$
 - $\circ \quad \forall x \in \mathbb{Z}, 1 | x, \text{ since } 1 \cdot x = x$
 - $\forall x \in \mathbb{Z}, -1 | x, \text{ since } (-1) \cdot (-x) = x$

Equivalence Relations

- Cartesian Product
 - If *A* and *B* are sets, then the **Cartesian product** of *A* and *B* is
 - $\circ A \times B \coloneqq \{(a, b) | a \in A, b \in B\}$
- Relations
 - A **relation** on a set *A* is a subset *R* of $A \times A$
 - We write $a \sim a'$ if $(a, a') \in R$
- Equivalence Relations
 - A relation *R* on *A* is an **equivalence relation** if *R* is
 - Reflexive
 - If $a \in A$, then $a \sim a$
 - i.e. $(a, a) \in R$
 - Symmetric
 - If $a \sim a'$, then $a' \sim a$
 - i.e. $(a, a') \in R \Rightarrow (a', a) \in R$
 - Transitive
 - If $a \sim a'$, $a' \sim a''$, then $a \sim a''$
 - i.e. If $(a, a') \in R$ and $(a', a'') \in R$, then $(a, a'') \in R$

- Example 1
 - Let *R* be a relation on set *A* such that $R \coloneqq \{(a, a) | a \in A\}$
 - Then *R* is an equivalence relation $(a \sim a' \Leftrightarrow a = a')$
 - Reflexive
 - If $a \in A$, then $(a, a) \in R$ by definition
 - \circ Symmetric
 - If $a \sim a'$, then a = a'
 - Thus a' = a, hence $a' \sim a$
 - \circ Transitive
 - If $a \sim a'$, $a' \sim a''$ then a = a' and a = a''
 - Thus a = a'', hence $a \sim a''$
- Example 2
 - \circ Let *n* be a positive integer
 - $R \coloneqq \{(a, b) \in \mathbb{Z} \times \mathbb{Z} | n | (a b)\}$ is an equivalence relation
 - Reflexive
 - $n|(a-a), \forall a \in \mathbb{Z}$, since n|0
 - It follows that $a \sim a, \forall a \in \mathbb{Z}$
 - \circ Symmetric
 - Let $a, b \in \mathbb{Z}$
 - Suppose $a \sim b$, then n|(a b)
 - Choose $q \in \mathbb{Z}$ s.t. nq = a b
 - Then n(-q) = -(a b) = b a
 - Thus, n|(b-a), and so $b \sim a$
 - \circ Transitive
 - Suppose $a, b, c \in \mathbb{Z}$, and we have $a \sim b, b \sim c$
 - Then n|(a b) and n|(b c)
 - Choose $q, q' \in \mathbb{Z}$ s.t. nq = a b, nq' = b c
 - Then n(q + q') = (a b) + (b c) = a c
 - Thus, n|(a c), and so $a \sim c$

Induction, Well-Ordering of $\mathbb Z$

Friday, January 26, 2018 10:05 AM

Induction

• Prove
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \forall n \ge 1$$

• Base case

• When
$$n = 1$$
, $\sum_{i=1}^{i} i = 1 = \frac{1 \times 2}{2}$

- Induction step
 - For n > 1

• Assume
$$\forall k \text{ s.t. } 1 \le k < n, \sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$

• Then $\sum_{i=1}^{n} i = \left(\sum_{i=1}^{n-1} i\right) + n = \frac{(n-1)n}{2} + n = \frac{n(n+1)}{2}$

Proposition 1: Well-Ordering of $\mathbb Z$

- Statement
 - Every **nonempty** subset *S* of $\mathbb{Z}_{\geq 0}$ has a **unique minimum element**
 - That is, $\exists ! m \in S$ s.t. $m \leq s, \forall s \in S$
- Proof (Existence)
 - Assume *S* is finite
 - We argue by induction on |*S*|
 - Base case
 - □ When |S| = 1, this is clear
 - Inductive step
 - $\Box \quad \text{Assume } |S| > 1$
 - □ Choose $x \in S$, then $|S \setminus \{x\}| = |S| 1$
 - □ By induction $S \setminus \{x\}$ has a minimum value: call it m
 - \Box Case 1: x < m, then x is a minimum value of S
 - □ Case 2: m < x, then m is a minimum value of S
 - When *S* is infinite
 - Choose $x \in S$
 - Let $S' \coloneqq \{s \in S | s \le x\}$
 - Then $|S'| \le x + 1 < \infty$ i.e. S' is finite

- So we can choose a minimum element of *S*': call it *m*
- Let $s \in S$
 - $\Box \quad \text{If } s \in S' \text{, then } m \leq s$
 - $\Box \quad \text{If } s \notin S' \text{, then } m \leq x < s$
- In either case, $m \le s$, so m is a minimum element of S
- \circ This proves existence
- Proof (Uniqueness)
 - Suppose m and m' are both minimum elements of S
 - $\circ m \le m'$, and $m' \le m$
 - Thus, m = m'
 - This proves uniqueness

Division Algorithm, Greatest Common Divisor

Monday, January 29, 2018 9:47 AM

Proposition 2: The Division Algorithm

- Statement
 - Let $a, b \in \mathbb{Z}$, where b > 0
 - Then $\exists ! q, r \in \mathbb{Z}$ s.t. a = qb + r, and $0 \leq r < b$
- Proof (Existence)
 - Let $S \coloneqq \{a bq | q \in \mathbb{Z}, a bq \ge 0\} \subseteq \mathbb{Z}_{\ge 0}$
 - *S* is not empty
 - Let $q \in \mathbb{Z}$ s.t. $q \leq \frac{a}{b}$
 - Then $bq \le a$
 - $\Rightarrow 0 \le a bq$
 - i.e. $a bq \in S$
 - $\circ~$ Thus, S contains a unique minimum element: call it r
 - Choose $q \in \mathbb{Z}$ s.t.
 - *a* − *bq* = *r*
 - $\Rightarrow a = bq + r$
 - We still need to show that $0 \le r < b$
 - Since $r \in S$, we know $0 \le r$
 - So we just need to show that *r* < *b*
 - If $r \ge b$, then $a b(q + 1) = a bq b = r b \ge 0$
 - Then $a b(q + 1) \in S$, and it is less than r
 - This is impossible, since *r* is the minimum element of *S*
 - Thus, *r* < *b*
 - Therefore we've proven the existence of q and r
- Proof (Uniqueness)
 - Suppose $\exists q, q', r, r' \in \mathbb{Z}$ s.t.
 - a = bq + r, where $0 \le r < b$
 - a = bq' + r', where $0 \le r' < b$
 - We must show that q = q' and r = r'
 - Suppose $r \neq r'$
 - Without loss of generality, assume r' > r
 - Then 0 < r' r = (a bq') (a bq) = b(q q')
 - Thus, b|(r' r), but $0 < r' r \le r' < b$.
 - This is impossible, thus r = r'

- We have $bq + r = bq' + r \Rightarrow q = q'$
- $\circ~$ Therefore we've proven the uniqueness of q and r
- Note we can prove the following stronger statement
 - If $a, b \in \mathbb{Z}$, and $b \neq 0$, then $\exists ! q, r \in \mathbb{Z}$ s.t.
 - $\circ \ a = bq + r \text{ and } 0 \leq r < |b|$
- Proof (Existence)
 - Assume b < 0
 - Choose $q, r \in \mathbb{Z}$ s.t. a = (-b)q + r, and $0 \le r < -b$
 - Then a = b(-q) + r, and $0 \le r < |b|$
 - This proves existence
- Proof (Uniqueness)
 - Assume b < 0
 - Suppose $\exists q, q', r, r' \in \mathbb{Z}$ s.t.
 - a = bq + r, where $0 \le r < b$
 - a = bq' + r', where $0 \le r' < b$
 - Then
 - a = (-b)(-q) + r, where $0 \le r < |b| = -b$
 - a = (-b)(-q') + r', where $0 \le r' < |b| = -b$
 - \circ Since -b > 0, our previous result implies -q = -q'
 - Therefore q = q' and r = r'

Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
- A greatest common divisor of *a* and *b* is a positive integer *d* s.t.
 - $\circ d|a \text{ and } d|b$
 - If $e \in \mathbb{Z}$ s.t. e|a and e|b then e|d
- We write the greatest common divisor of *a* and *b*, if it exists, as (*a*, *b*)
- As a convention $(0,0) \coloneqq 0$

Proposition 3: Uniqueness of Greatest Common Divisor

- Statement
 - Let $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$
 - Suppose $\exists d, d' \in \mathbb{Z}_{>0}$ s.t.
 - (1) d and d' both divide a and b
 - (2) If $e \in \mathbb{Z}$ s.t. e|a and e|b, then e|d and e|d'
 - Then d = d'
- Proof
 - $\circ~$ Combining properties (1) and (2), we have d|d' and d'|d

- Choose $q, q' \in \mathbb{Z}$ s.t. dq = d' and d'q' = d
- By substitution, we get dqq' = d
- Then $qq' = 1 \Rightarrow q = q' = \pm 1$
- If q = q' = -1, then d = -d' < 0.
- \circ This is impossible since *d* and *d'* are both positive
- Therefore q = q' = 1 and d = d'

Proposition 4: Lemma for Euclidean Algorithm

- Statement
 - Suppose $a, b \in \mathbb{Z}$, where $b \neq 0$
 - Choose $q, r \in \mathbb{Z}$ s.t. a = qb + r, and $0 \le r < |b|$
 - If (b, r) exists, then (a, b) exists and (a, b) = (b, r)
- Proof
 - Set $d \coloneqq (b, r)$
 - $\circ d|a \text{ and } d|b$
 - Choose $q_1, q_2 \in \mathbb{Z}$ s.t. $dq_1 = b$ and $dq_2 = r$
 - Then $a = qb + r = qq_1d + q_2d = d(qq_1 + q_2)$, so d|a
 - And we already know *d*|*b*, since (*b*,*r*)|*b*
 - If $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$, then $e \mid d$
 - Let $e \in \mathbb{Z}$ s.t. $e \mid a$ and $e \mid b$
 - Choose $q_3, q_4 \in \mathbb{Z}$ s.t. $eq_3 = a$ and $eq_4 = b$
 - a = qb + r
 - $\Rightarrow a qb = r$
 - $\Rightarrow eq_3 qeq_4 = r$
 - $\Rightarrow e(q_3 qq_4) = r$
 - Thus e|r
 - Since e|b and d = (b, r)
 - We can conclude that e|d
 - By Proposition 3, (a, b) = (b, r)

Proposition 5: (a, 0) = |a|

- Statement
 - $\circ (a, 0) = |a|, \forall a \in \mathbb{Z}$
- Proof
 - If a = 0
 - This is true by our convention
 - $\circ \quad \text{If } a \neq 0$
 - Certainly |a||a, and |a||0

- If $e \in \mathbb{Z}$ s.t. e|a and e|0, then e||a|
- Therefore (a, 0) = |a|

Euclidean Algorithm, Bézout's Identity

Wednesday, January 31, 2018 9:56 AM

Proposition 6: Existence of GCD

- Statement
 - If $a, b \in \mathbb{Z}$, then (a, b) exists
- Proof
 - By Proposition 5, we may assume that $b \neq 0$
 - Choose $q, r \in \mathbb{Z}$ s.t. a = bq + r, where $0 \le r < |b|$
 - We argue by induction on r
 - Base case
 - Suppose r = 0, then a = bq
 - We have |b||a and |b||b
 - If $e \in \mathbb{Z}$ s.t. e|a and e|b, then e||b|
 - Therefore (*a*, *b*) exists, and equals |*b*|
 - Inductive hypothesis
 - If $a', b' \in \mathbb{Z}$ s.t. $b' \neq 0$, and a' = b'q' + r', where $0 \leq r' < r$
 - Then (a', b') exists
 - Inductive step
 - Suppose r > 0
 - Choose $q', r' \in \mathbb{Z}$ s.t. b = q'r + r', where $0 \le r' < r$
 - By inductive hypothesis, (*b*, *r*) exists
 - By Proposition 4, (*a*, *b*) exists, and equals (*b*, *r*)

The Euclidean Algorithm

- Input
 - $a, b \in \mathbb{Z}$ with $|b| \leq |a|$
- Output

 $\circ \ (a,b)$

- Algorithm
 - (0) If b = 0, output |a|
 - Else, proceed to step (1)
 - (1) Since $b \neq 0$, we can find $q, r \in \mathbb{Z}$ s.t. a = bq + r, where $0 \leq r < |b|$
 - (2) If r = 0, output |b|

Otherwise, repeat step (1) with b and r playing the roles of a and b

- Note
 - The algorithm terminates

- Since the remainder decreases at each application of step (1)
- By Proposition 4, the output will be (*a*, *b*)
- Example: use the Euclidean Algorithm to compute (4148, 2057)
 - Take a = 4148, b = 2057
 - $\underbrace{4148}_{a} = \underbrace{2057}_{b} \times \underbrace{2}_{q} + \underbrace{34}_{r}$ $\underbrace{2057}_{a} = \underbrace{34 \times 60}_{c} + 17$

$$\begin{array}{c} \underbrace{2037}_{a} = \underbrace{34 \times 00}_{b} + \underbrace{17}_{r} \\ \underbrace{2037}_{a} = \underbrace{54 \times 00}_{b} + \underbrace{17}_{r} \\ \end{array}$$

$$\circ \quad \underbrace{34}_{a} = \underbrace{17}_{b} \times \underbrace{2}_{q} + \underbrace{0}_{r}$$

- Here r = 0, so the algorithm terminates
- Thus, (4148, 2057) = 17

Proposition 7: Bézout's Identity

- Statement
 - If $a, b \in \mathbb{Z}$, then $\exists x, y \in \mathbb{Z}$ s.t. (a, b) = ax + by
- Note
 - $\circ x, y$ need not to be unique
- Proof
 - If a = b = 0
 - We can take x = y = 0
 - In fact, any pair of (x, y) works
 - If a = 0 or b = 0
 - Without loss of generality, assume b = 0
 - Then $(a, b) = |a| = \pm a + b$
 - We can take $x = \pm 1$, y = 1
 - If $a \neq 0$ and $b \neq 0$
 - Without loss of generality, assume $|a| \ge |b|$
 - Choose $q, r \in \mathbb{Z}$ s.t. a = qb + r, where $0 \le r < |b|$
 - We argue by induction on *r*
 - Base case
 - $\Box \quad \text{When } r = 0$
 - $\Box (a,b) = |b| = 0 \cdot a + (\pm 1) \cdot b$
 - □ So we can take $x = 0, y = \pm 1$
 - Inductive step
 - $\Box \quad \text{Suppose } r > 0$
 - □ Choose $q', r' \in \mathbb{Z}$ s.t. b = q'r + r', where $0 \le r' < r$
 - □ By induction, $\exists x', y' \in \mathbb{Z}$ s.t. (b, r) = bx' + ry'
 - □ Thus, by Proposition 4

- $\Box (a,b) = (b,r) = bx' + ry' = bx' + (a bq)y' = ay' + b(x' qy')$
- \Box So we can take x = y' and y = x' qy'
- Example: Express (4148, 2057) as 4148x + 2057y where $x, y \in \mathbb{Z}$
 - Recall when we computed (4148, 2057), we had
 - $4148 = 2057 \times 2 + 34$
 - $2057 = 34 \times 60 + 17$
 - $34 = 17 \times 2 + 0$
 - Let's now find $x, y \in \mathbb{Z}$ s.t. (4148, 2057) = 17 = 4148x + 2057y
 - Start with the second to last equation, and "back-fill"
 - $17 = 2057 34 \times 60$
 - $= 2057 (4148 2 \times 2057) \times 60$
 - = $4148 \times (-60) + 2057 \times 121$
 - Therefore x = -60, y = 121

Equivalence Class, $\mathbb{Z}/n\mathbb{Z}$, Group

Friday, February 2, 2018 10:06 AM

Homework 1 (a): Injective Function Has a Left Inverse

- Let *A* and *B* be two nonempty sets
- Let $f: A \to B$ be a injective function
- Prove that *f* has a left inverse
- Since f is injective, $\forall b \in im(f), \exists ! a \in A \text{ s.t. } f(a) = b$
- Define $g: B \to A$ in the following way
 - Choose $a_0 \in A$
 - If $b \in im(f)$
 - Choose $a \in A$ s.t. f(a) = b
 - Define g(b) = a
 - If $b \notin im(f)$
 - Define $g(b) = a_0$
- Check that *g* is a left inverse
 - If $a \in A$, $(g \circ f)(a) = g(f(a)) = a$
 - Thus, $g \circ f = id_A$

Example of The Euclidean Algorithm

- Let a = 97, b = 20
- Use the Euclidean Algorithm to find (*a*, *b*)
 - $97 = 20 \times 4 + 17$
 - $\circ \quad 20 = 17 \times 1 + 3$
 - $\circ \quad 17 = 3 \times 5 + 2$
 - $\circ \quad 3 = 2 \times 1 + 1$
 - Therefore (a, b) = 1
- Find $x, y \in \mathbb{Z}$ s.t. (a, b) = ax + by
 - $(a, b) = 1 = 3 2 \times 1$
 - $\circ = 3 (17 3 \times 5) \times 1$
 - \circ = 3 × 6 17 × 1
 - $\circ = (20 17 \times 1) \times 6 17$
 - $\circ = 20 \times 6 17 \times 7$
 - $\circ = 20 \times 6 (97 20 \times 4) \times 7$
 - $\circ = 97 \times (-7) + 20 \times 34$
 - So we can take x = -7, y = 34

Equivalence Class

- Let *X* be a set, and let ~ be an equivalence relation on *X*
- If $x \in X$, then the **equivalence class** represented by x is the set
- $[x] = \{x' \in X | x \sim x'\} \subseteq X$

Proposition 8: Equivalence Classes Partition the Set

- Statement
 - Let *X* be a set with equivalence relationship ~
 - If $x, x' \in X$, then [x] and [x'] are **either equal or disjoint**
- Proof
 - Suppose $\exists y \in [x] \cap [x']$
 - It suffices to show that if $z \in X$, then $x \sim z \Leftrightarrow x' \sim z$
 - $\circ \quad x \sim z \Rightarrow x' \sim z$
 - Suppose $x \sim z$
 - $\Rightarrow z \sim x$ (Symmetry)
 - $\Rightarrow z \sim y$ (Transitivity)
 - $\Rightarrow y \sim z$ (Symmetry)
 - $\Rightarrow x' \sim z$ (Transitivity)
 - $\circ \quad x \sim z \Leftarrow x' \sim z$
 - Suppose $x' \sim z$
 - $\Rightarrow z \sim x'$ (Symmetry)
 - $\Rightarrow z \sim y$ (Transitivity)
 - $\Rightarrow y \sim z$ (Symmetry)
 - $\Rightarrow x \sim z$ (Transitivity)

Integers Modulo n

- Let $n \in \mathbb{Z}_{>0}$
- The relation on \mathbb{Z} given by $a \sim b \Leftrightarrow n | (a b)$ is an equivalence relation
- The set of equivalence classes under ~ is denoted as $\mathbb{Z}/n\mathbb{Z}$
- We call this set **integers modulo** *n* (or integers mod n)
- We can check that there are *n* elements in $\mathbb{Z}/n\mathbb{Z}$
- We use \bar{a} to denote the equivalence class in $\mathbb{Z}/n\mathbb{Z}$
- Then $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$

Group

- Definition
 - If *G* is a **set** equipped with a **binary operation**
 - $G \times G \to G$
 - $(g,h) \mapsto g \cdot h$

- \circ that satisfies
 - Associativity: $\forall g, h, k \in G, g \cdot (h \cdot k) = (g \cdot h) \cdot k$
 - **Identity**: $\exists 1 \in G \text{ s.t. } \forall g \in G, 1 \cdot g = g \cdot 1 = g$
 - **Inverses**: $\forall g \in G, \exists g^{-1} \in G$ s.t. $gg^{-1} = g^{-1}g = 1$
- Then we say *G* is a **group** under this operation
- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are groups with operation +
 - If $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$ (Similarly for \mathbb{Q} , \mathbb{R} , \mathbb{C})
 - \circ + is certainly associative in all 4 sets
 - $\circ~~0$ is the identity in each case
 - If $a \in \mathbb{Z}$ (or \mathbb{Q} , \mathbb{R} , \mathbb{C}), then the inverse of a is -a

Examples of Groups, Well-definedness, $\mathbb{Z}/n\mathbb{Z}$

Monday, February 5, 2018 9:55 AM

Examples of Groups

- Is Z a group under multiplication?
 - No, because there is no inverses for 2
 - Let $x \in \mathbb{Z} \setminus \{\pm 1\}$, then the multiplicative inverse of x is not an integer
- Are Q, R, C groups under multiplication?
 - No, because 0 still has no multiplicative inverse
- Multiplicative group of Q, R, C
 - $\circ \quad \text{Let} \ \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\} \text{ and } \mathbb{R}^{\times}, \mathbb{C}^{\times} \text{ similarly}$
 - $\circ~$ Then $\mathbb{Q}^{\times}, \mathbb{R}^{\times}, \mathbb{C}^{\times}$ are groups with operation given by multiplication
 - $\circ~$ We argue this for $\mathbb{Q}^{\times};$ the same proof works for \mathbb{R}^{\times} and \mathbb{C}^{\times}
 - $\circ~$ Multiplication is an operation on \mathbb{Q}^{\times}
 - If $a, b \in \mathbb{Q}^{\times}$, then $ab \in \mathbb{Q}^{\times}$
 - Associativity
 - This is clear
 - \circ Identity
 - $1 \in \mathbb{Q}^{\times}$ is the identity
 - Inverses

•
$$\forall a \in \mathbb{Q}^*, \frac{1}{a} \in \mathbb{Q}^\times$$
 is the inverse of a

- Is \mathbb{Z} a group with operation given by subtraction?
 - $\circ~$ No, because subtraction is not associative
 - (1-2) 3 = -4
 - 1 (2 3) = 2
- General Linear Group
 - Let $n \in \mathbb{Z}_{>0}$
 - $GL_n(\mathbb{R}) \coloneqq \{$ invertible $n \times n$ matrices with entries in $\mathbb{R}\}$
 - $GL_n(\mathbb{R})$ is a group under matrix multiplication
 - Matrix multiplication is an operation on $GL_n(\mathbb{R})$
 - If $A, B \in GL_n(\mathbb{R})$
 - Then, $AB \in GL_n(\mathbb{R})$, since $(AB)^{-1} = B^{-1}A^{-1}$
 - Associativity
 - This is clear
 - \circ Identity

- The $n \times n$ identity matrix I_n is the identity
- Inverses
 - If $A \in GL_n(\mathbb{R})$, its inverse is A^{-1}
- \circ Note
 - When n > 1, the operation in $GL_n(\mathbb{R})$ is not commutative

Abelian Group

• We say a group *G* is **abelian**, if ab = ba, $\forall a, b \in G$

Proposition 9: Addition and Multiplication in $\mathbb{Z}/n\mathbb{Z}$

- Statement
 - Let $n \in \mathbb{Z}_{>0}$, and let $a_1, a_2, b_1, b_2 \in \mathbb{Z}$
 - If $\overline{a_1} = \overline{b_1}$, and $\overline{a_2} = \overline{b_2}$ in $\mathbb{Z}/n\mathbb{Z}$
 - Then $\overline{a_1 + a_2} = \overline{b_1 + b_2}$, and $\overline{a_1 a_2} = \overline{b_1 b_2}$
- Proof: $\overline{a_1 + a_2} = \overline{b_1 + b_2}$
 - Choose $c_1, c_2 \in \mathbb{Z}$ s.t. $c_1 n = a_1 b_1$ and $c_2 n = a_2 b_2$
 - Then $(c_1 + c_2)n = a_1 b_1 + a_2 b_2 = (a_1 + a_2) (b_1 + b_2)$
 - Thus, $n \left| ((a_1 + a_2) (b_1 + b_2)) \right|$
 - So, $\overline{a_1 + a_2} = \overline{b_1 + b_2}$
- Proof: $\overline{a_1 a_2} = \overline{b_1 b_2}$
 - Choose $c_1, c_2 \in \mathbb{Z}$ s.t. $c_1 n = a_1 b_1$ and $c_2 n = a_2 b_2$
 - \circ Then
 - $a_1a_2 b_1b_2$
 - $= a_1a_2 + (a_1b_2 a_1b_2) b_1b_2$
 - $= a_1(a_2 b_2) + (a_1 b_1)b_2$
 - $\bullet = a_1c_2n + b_2c_1n$
 - $\bullet = (a_1c_2 + b_2c_1)n$
 - Thus, $n|(a_1c_2 + b_2c_1)$
 - So, $\overline{a_1 a_2} = \overline{b_1 b_2}$

Well-definedness

- Example
 - Say we want to "define" a map
 - $f: \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$
 - $f(\bar{a}) = a$
 - Note that f is not a function
 - $\overline{1} = \overline{3}$ in $\mathbb{Z}/2\mathbb{Z}$
 - But $f(\bar{1}) = 1 \neq f(\bar{3}) = 3$

- So we say that *f* is not well defined
- How to check well-definedness
 - To check that a purported function $f: A \rightarrow B$ is well-defined,
 - One needs to check that $a = a' \Rightarrow f(a) = f(a')$

Corollary 10: Addition Group of $\mathbb{Z}/n\mathbb{Z}$

- Statement
 - Let $n \in \mathbb{Z}_{>0}$ be fixed
 - $\mathbb{Z}/n\mathbb{Z}$ is a group under the operation
 - $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$
 - $(\bar{a}, \bar{b}) \mapsto \overline{a+b}$
 - \circ We will denote this operation by +
 - $\circ \quad \text{So } \overline{a} + \overline{b} = \overline{a+b}$
- Proof
 - \circ Well-definedness
 - By proposition 9, the operation $\overline{a} + \overline{b} = \overline{a+b}$ is well-defined
 - Associative
 - Associativity is inherited from the associativity of addition for $\mathbb Z$
 - Identity
 - The identity is $\overline{0}$
 - $\forall \overline{a} \in \mathbb{Z}/n\mathbb{Z}, \overline{a} + \overline{0} = \overline{a+0} = \overline{a} = \overline{0+a} = \overline{0} + \overline{a}$
 - Inverses
 - $\forall \overline{a} \in \mathbb{Z}/n\mathbb{Z}$, the inverse of \overline{a} is $\overline{-a}$
 - $\overline{a} + \overline{-a} = \overline{a a} = \overline{0} = \overline{-a + a} = \overline{-a} + \overline{a}$

$(\mathbb{Z}/n\mathbb{Z})^{\times}$, Properties of Group

Wednesday, February 7, 2018 9:56 AM

$\mathbb{Z}/n\mathbb{Z}$ is Not a Group Under Multiplication

- Let $n \in \mathbb{Z}_{>0}$ be fixed
- Proposition 9 implies that there is a well-defined function
 - $\circ \quad \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$
 - $\circ \quad \left(\overline{a}, \overline{b}\right) \to \overline{ab}$
- Check group property
 - Identity: $\overline{1} \cdot \overline{a} = \overline{1 \cdot a} = \overline{1}$
 - This operation is associative
 - $\circ~\overline{1}$ is a reasonable candidate for an identity, but there is **no inverse**
 - \circ Example in $\mathbb{Z}/4\mathbb{Z}$
 - $\overline{2} \cdot \overline{0} = \overline{0}$
 - $\overline{2} \cdot \overline{1} = \overline{2}$
 - $\overline{2} \cdot \overline{2} = \overline{0}$
 - $\overline{2} \cdot \overline{3} = \overline{2}$

Proposition 11: $(\mathbb{Z}/n\mathbb{Z})^{\times}$

- Definition
 - Define $(\mathbb{Z}/n\mathbb{Z})^{\times} \coloneqq \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} | (a, n) = 1\}$
 - By HW 2 #2,
 - $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times} \Leftrightarrow \exists \bar{c} \in \mathbb{Z}/n\mathbb{Z} \text{ s.t. } \bar{ac} = \bar{1}$
- Statement
 - $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group with operation given by multiplication
- Proof
 - Closure: If $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\overline{ab} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ as well
 - Associativity: Clear, from associativity of multiplication of integers
 - \circ Identity: $\overline{1}$
 - Inverses: Built in HW 2 #2

List of Groups

Set	Operation
\mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}	+
\mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^*	•
$GL_n(\mathbb{R}), n > 0$	Matrix multiplication
$\mathbb{Z}/n\mathbb{Z}$, $n>0$	+

 $\mathbb{Z}/n\mathbb{Z}^*$, n>0 \cdot

Proposition 12: Properties of Group

- Let *G* be a group, then *G* has the following properties
- The **identity** of *G* is **unique**
 - \circ In other word
 - If $\exists 1, 1' \in G$ s.t.
 - $\forall g \in G, 1g = g1 = g \text{ and } 1'g = g1' = g$
 - Then 1 = 1'
 - Proof
 - $1 = 1 \cdot 1' = 1'$
- Each $g \in G$ has a **unique inverse**
 - In other word
 - If $g \in G$ and $\exists h, h' \in G$ s.t.
 - hg = gh = 1 and h'g = gh' = 1
 - Then h = h'
 - \circ Proof
 - Let $g \in G$, and suppose $h, h' \in G$ are both inverses of g
 - Then $h = h \cdot 1 = h(gh') = (hg)h' = 1 \cdot h' = h'$
- $(g^{-1})^{-1} = g, \forall g \in G$
 - Let $g \in G$, then $gg^{-1} = 1 = g^{-1}g$
 - Since the inverse is unique, $g = (g^{-1})^{-1}$
- The Generalized Associative Law
 - i.e. If $g_1, ..., g_n \in G$, then $g_1 ... g_n$ is independent of how it is bracketed
 - First show the result is true for n = 1,2,3
 - Assume for any k < n any bracketing of a product of k elements
 - $b_1 b_2 \cdots b_k$ can be reduced to an expression of the form $b_1(b_2(b_3 \cdots b_k))$
 - Then any bracketing of the product $a_1a_2\cdots a_n$ must break into
 - 2 sub-products, say $(a_1a_2\cdots a_k)(a_{k+1}a_{k+2}\cdots a_n)$
 - $\circ~$ where each sub-product is bracketed in some fashion
 - $\circ~$ Apply the induction assumption to each of these two sub-products
 - Reduce the result to the form $a_1(a_2(a_3 \dots a_n))$ to complete the induction
- $(gh)^{-1} = h^{-1}g^{-1}, \forall g, h \in G$
 - By the generalized associative law

$$(gh)(h^{-1}g^{-1}) = g(hh^{-1})g^{-1} = gg^{-1} = 1$$

- $\circ \ (h^{-1}g^{-1})(gh) = h(gg^{-1})h^{-1} = hh^{-1} = 1$
- Notation

- We will apply the Generalized Associative Law without mentioning it
- In particular, if *G* is a group and $n \in \mathbb{Z}_{>0}$, we will write

•
$$g^n = \underbrace{g \dots g}_{n \text{ copies}}$$

• $g^{-n} = \underbrace{g^{-1} \dots g^{-1}}_{n \text{ copies}}$
• $g^0 = 1$

Proposition 13: Cancellation Law

- Statement
 - Let *G* be a group, and let $a, b, u, v \in G$
 - If au = av, then u = v
 - If ua = va, then u = v
- Proof

$$\circ \quad au = av \Rightarrow a^{-1}au = a^{-1}av \Rightarrow u = v$$

- $\circ \ ua = va \Rightarrow uaa^{-1} = vaa^{-1} \Rightarrow u = v$
- Warning
 - $\circ \quad ua = av \not\Rightarrow u = v$
 - This holds in abelian groups, but not in general

Corollary 14: Cancellation Law and Identity

• Let *G* be a group, and let $g, h \in G$

• If
$$gh = g$$
, then $h = 1$

$$\circ gh = g$$

$$\circ \Rightarrow gh = g1$$

$$\circ \Rightarrow h = 1$$

• If gh = 1, then $h = g^{-1}$

$$\circ gh = 1$$

$$\circ \Rightarrow gh = gg^{-1}$$

$$\circ \Rightarrow h = g^{-1}$$

Order, Definition of S_n

Friday, February 9, 2018 10:07 AM

Order

- Definition
 - If *G* is a group, and $g \in G$
 - The order of g is the smallest positive integer n s.t. $g^n = 1$
 - If *n* is the order of *g*, write |g| = n
 - If no such integer exists, write $|g| = \infty$
 - i.e. $|g| \coloneqq \inf\{n \in \mathbb{Z}_{>0} | g^n = 1\}$
- Note
 - $\circ~$ The order of the identity is 1
- Example 1

• Let
$$A := \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \in GL_2(\mathbb{R})$$

• $A^3 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}^3 = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$

- Therefore, |A| = 3
- Example 2
 - $\circ~$ In $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},$ every nonzero element has infinite order
 - The identity 0 has order of 1
- Example 3
 - $\circ~$ In \mathbb{Q}^* and \mathbb{R}^* , the elements of finite order are
 - |1| = 1
 - I −1 = 2
 - $\circ~$ In \mathbb{C}^* , there are lots more
 - Elements of order n in \mathbb{C} are called n^{th} roots of unity
 - *i* is the fourth root of unity
 - i.e. $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$
- Example 4
 - $\circ~$ What are the orders of the elements in $\mathbb{Z}/6\mathbb{Z}?$

Elements	Order	Note
ō	1	$\overline{0}$ is the identity
1	6	$\overline{1} \cdot 6 = \overline{6} = \overline{0}$
2	3	$\overline{2} \cdot 3 = \overline{6} = \overline{0}$
3	2	$\overline{3} \cdot 2 = \overline{6} = \overline{0}$
4	3	$\overline{4} \cdot 3 = \overline{12} = \overline{0}$

5	6	$\overline{5} \cdot 6 = \overline{30} = \overline{0}$
---	---	---

- In general, if $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$, then the "*n*th power" of \bar{a} is \overline{na}
- Note that all the orders are divisors of 6 (Lagrange Theorem)
- Example 5
 - What are the orders of the elements in $(\mathbb{Z}/5\mathbb{Z})^{\times}$?
 - $\circ \quad (\mathbb{Z}/5\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Elements	Order	Note
ī	1	$\overline{1}$ is the identity
2	4	$\overline{2}^4 = \overline{16} = \overline{1}$
3	4	$\overline{3}^4 = 8\overline{1} = \overline{1}$
4	2	$\overline{4}^2 = \overline{16} = \overline{1}$
	_	

• Note: $(0,5) = 0 \neq 1$, so $\overline{0} \notin \mathbb{Z}/5\mathbb{Z}^{\times}$

Symmetric Group (Section 1.3)

- Definition
 - Let $n \in \mathbb{Z}_{>0}$ be fixed
 - Let $S_n \coloneqq \{$ bijective functions $\{1, ..., n\} \rightarrow \{1, ..., n\} \}$
 - (i.e. S_n is the set of all permutations of $\{1, ..., n\}$)
 - Then S_n is a group with operation given by **function composition**
 - We call this group **symmetric group of degree** *n*
- Proof
 - \circ Function composition is an operation on S_n
 - The composition of bijective functions is still bijective
 - Therefore, function composition is an operation on S_n
 - Associativity
 - Suppose $f: X \to Y, g: Y \to Z, h: Z \to W$
 - $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$
 - $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$
 - Thus $(h \circ g) \circ f = h \circ (g \circ f)$
 - Identity
 - The identity map is the identity
 - Inverses
 - Bijective functions all have inverse functions

Properties of S_n , Properties of Cycles

Monday, February 12, 2018 9:53 AM

Proposition 15: Order of Symmetric Group

- Statement
 - $\circ |S_n| = n!$
- Proof
 - First, we prove that
 - If *X* and *Y* are sets of order *n*
 - Then there are *n*! injective functions from *X* to *Y*
 - We argue by induction on n
 - When *n* = 1, this is clear
 - For *n* > 1
 - Suppose $f: X \to Y$ is injective
 - Let $x \in X$, then there are *n* possibilities for f(x)
 - *f* restricts to an injective function $X \setminus \{x\} \to Y \setminus \{f(x)\}$
 - There are (n 1)! such functions, by induction
 - Thus, there are n(n-1)! = n! injective functions $X \to Y$
 - Now, take $X = \{1, ..., n\} = Y$
 - Since injection between finite sets of the same order is bijective
 - We can conclude that $|S_n| = n!$
 - Note
 - The sets must be finite
 - Counterexample: $f: \mathbb{Z} \to \mathbb{Z}, n \mapsto 2n$ is not bijective

Cycle

- Definition
 - Let $n \in \mathbb{Z}_{>0}$ be fixed
 - Let $a_1, \ldots, a_t \in \{1, \ldots, n\}$
 - The element of S_n given by
 - $a_i \mapsto a_{i+1}$ for $1 \le i \le t-1$
 - $a_t \mapsto a_1$
 - $j \mapsto j$ if $j \notin \{a_1, \dots a_t\}$
 - $\circ~$ is denoted by (a_1,a_2,\ldots,a_t) and is called a **cycle of length** t
- Example
 - Let $\sigma = (1 \ 3 \ 2) \in S_4$, then

$$\circ \begin{pmatrix} i & 1 & 2 & 3 & 4 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \sigma(i) & 3 & 1 & 2 & 4 \end{pmatrix}$$

$$\circ \text{ Notice: } (1 \ 3 \ 2) = (3 \ 2 \ 1) = (2 \ 1 \ 3)$$

Disjoint Cycles

- Definition
 - Two cycles $(a_1, \dots a_t)$ and (b_1, \dots, b_k) are **disjoint** if
 - $\circ \{a_1, \dots, a_t\} \cap \{b_1, \dots, b_k\} = \emptyset$
- Example
 - (1 2), (3 4) \in S₄ are disjoint
- Fact
 - $\circ~$ Every element of S_n can be written as a product of disjoint cycles
 - $S_1 = \{(1)\}$
 - $\circ \ S_2 = \{(1), (1\ 2)\}$
 - $\circ \ S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$
 - $\circ S_4 = \{(1), (12), (13), (14), (23), (24), (34), (123), (124), (132), (142), (134), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432), (1432), (12)(34), (14)(23), (13)(24)\}$
 - Note: We write the identity of S_n as (1)

Cycle Decomposition for Permutations

• Algorithm

Step	Example				
Let $a \coloneqq \min\{x \in \mathbb{N} x \text{ not appeared in previous cycles}\}$	(1				
Begin the new cycle: (<i>a</i>					
Let $b \coloneqq \sigma(a)$	$\sigma(1) = 12 = b$				
If $b = a$	12 ≠ 1				
• close the cycle with a right parenthesis	So write (1 12				
• return to step 1					
If $b \neq a$					
• write <i>b</i> next to a in this cycle: (<i>a b</i>					
Let $c \coloneqq \sigma(b)$	$\sigma(12) = 8$				
If $c = a$	8 ≠ 1				
• close the cycle with a right parenthesis	So continue the cycle as:				
• return to step 1	(1 12 8				
If $c \neq a$					
• write <i>c</i> next to in this cycle: (<i>a b c</i>					
$b \coloneqq c$ and repeat this step until the cycle closes					
Naturally this process stops when all the numbers from	$\sigma = (1\ 1\ 2\ 8\ 10\ 4)(2\ 1\ 3)$				

$\{1,2,\ldots,n\}$ have appeared in some cycle.	(3)(5117)(69)
Remove all cycles of length 1	$\sigma = (1\ 1\ 2\ 8\ 10\ 4)(2\ 1\ 3)$
	(5117)(69)

- Example
 - Take $\sigma \in S_{13}$ to be the following

	$\begin{pmatrix} i \\ \downarrow \\ \sigma(i) \end{pmatrix}$	1	2	3	4	5	6	7	8	9	10	11	12	13\
0	(↓	\downarrow	↓)											
	$\int \sigma(i)$	12	13	3	1	11	9	5	10	6	4	7	8	3/

- Start with 1, $\sigma(1) = 12$, so write 12 after 1.
- Keep going until you cycle back to 1
- Start with the smallest number which hasn't yet appeared, and repeat.
- Repeat this step until 1, ..., 13 have all appeared.

Product of Cycles

- Reminder
 - Read from right to left
- Example
 - Write $\sigma = (1 \ 2 \ 3)(1 \ 2)(3 \ 4)$ as a product of disjoint cycles
 - What is $\sigma(1)$?
 - (3 4) maps 1 to 1
 - (1 2) maps 1 to 2
 - (1 2 3) maps 2 to 3
 - Thus $\sigma(1) = 3$
 - Similarly $\sigma(3) = 4, \sigma(4) = 1$
 - Thus we close the cycle (1 3 4)
 - We won't write down (2), since it is the identity
 - Thus $\sigma = (1 \ 3 \ 4)(2) = (1 \ 3 \ 4)$
 - Note: $\sigma \in S_4$, but it make sense to think of $\sigma \in S_n$ for n > 4
- Commutativity of S_n
 - \circ (12)(123) = (23)
 - \circ (1 2 3)(1 2) = (3 1)
 - In particular S_3 is not abelian
 - Therefore S_n is **not abelian** for $n \ge 3$

Homomorphism, Isomorphism

Wednesday, February 14, 2018 9:39 AM

Homomorphism

- Definition
 - Let G, H be groups
 - A function $f: G \rightarrow H$ is a **homomorphism** if

• $f(g_1g_2) = f(g_1)f(g_2), \forall g_1, g_2 \in G$

- $\circ~$ One says f "respects", or "preserves" the group operation
- Trivial Examples
 - Let *G* be a group
 - The identity map $f: G \to G$ given by $g \mapsto g$ is a homomorphism

• $f(g_1)f(g_2) = 1 \cdot 1 = 1 = f(g_1g_2)$

- The map $f: G \to G$ given by $g \mapsto 1$ is a homomorphism
 - This only works if we send every element of *G* to 1
 - If $x \in G \setminus \{1\}$, and $f: G \to G$ is given by $g \mapsto x, \forall g$
 - $f(g_1g_2) = f(g_1)(g_2) \Rightarrow x = x^2$
 - Thus x = 1
 - This is impossible since $x \in G \setminus \{1\}$
- Example 1
 - Let $f: \mathbb{R} \to \mathbb{R}^{\times}$ be given by $f(x) = e^x$
 - Then *f* is a homomorphism
 - $\circ \ f(x_1 + x_2) = e^{x_1 + x_2} = e^{x_1} e^{x_2} = f(x_1) f(x_2)$
- Example 2
 - Let *G* be a group, and let $x \in G$
 - The map $f: G \to G, g \mapsto xgx^{-1}$ is a homomorphism
 - $\circ \ f(g_1g_2) = xg_1g_2x^{-1} = xg_1x^{-1}xg_2x^{-1} = f(g_1)f(g_2)$
 - This homomorphism is called **conjugation by** *x*
- Example 3
 - Let $n \in \mathbb{Z}$ be fixed
 - Is $f: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x + n$ a homomorphism?
 - Only when n = 0
 - $\circ \ f(0) + f(0) = f(0) \Rightarrow n + n = n \Rightarrow n = 0$
- Example 4
 - Let $n \in \mathbb{Z}_{>0}$ be fixed
 - Is $\alpha: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x^n$ a homomorphism?

- Only when n = 1
- When n = 0
 - $\alpha(x) = x^0 = 1, \forall x \setminus \{0\}$
 - Only constant mapping to identity is a homomorphism
 - But 1 is not the identity (0 is)
 - So this doesn't work
- For $n \ge 2$
 - $\alpha(x_1 + x_2) = \alpha(x_1) + \alpha(x_2) \Leftrightarrow (x_1 + x_2)^n = x_1^n + x_2^n$
 - But this is not always true
 - For instance, when $x_1 = x_2 = 1$, $2^n \neq 2$ for $n \ge 2$
- Example 5
 - Let $n \in \mathbb{Z}$ be fixed
 - \circ β: ℤ → ℤ, *x* ↦ *nx* is a homomorphism

•
$$\beta(x_1 + x_2) = n(x_1 + x_2) = nx_1 + nx_2 = \beta(x_1) + \beta(x_2)$$

- Example 6
 - The previous examples is a special case of the following:
 - Let *G* be a group, and $n \in \mathbb{Z}$
 - Define $\beta: G \to G, g \mapsto g^n$, then
 - β is a **homomorphism** $\forall n \in \mathbb{Z} \Leftrightarrow G$ is **abelian**
 - \circ Proof: homomorphism \Rightarrow abelian
 - Say *n* = −1
 - Let $g_1, g_2 \in G$
 - Since β is a homomorphism
 - $\beta(g_1, g_2) = \beta(g_1)\beta(g_2)$
 - $(g_1g_2)^{-1} = g_1^{-1}g_2^{-1}$
 - $g_2^{-1}g_1^{-1} = g_1^{-1}g_2^{-1}$
 - $(g_2^{-1}g_1^{-1})^{-1} = (g_1^{-1}g_2^{-1})^{-1}$
 - $(g_1^{-1})^{-1}(g_2^{-1})^{-1} = (g_2^{-1})^{-1}(g_1^{-1})^{-1}$
 - $g_1g_2 = g_2g_1$
 - Thus *G* is abelian
 - Proof: abelian \Rightarrow homomorphism
 - Let $g, h \in G$
 - First, suppose $n \ge 0$
 - \Box We argue by induction on *n*
 - \Box If n = 0, this is obvious
 - \Box Suppose n > 0, then
 - $\Box \ \beta(gh) = (gh)^n = gh(gh)^{n-1} = ghg^{n-1}h^{n-1}$

$$\Box = gg^{n-1}hh^{n-1} = g^nh^n = \beta(g)\beta(h)$$

- Now suppose *n* < 0
 - □ Then $x \mapsto x^{-n}$ is a homomorphism, by the above argument
 - $\Box \quad \text{So} \ (ab)^{-m} = a^{-m}b^{-m}, \forall a, b \in G$
 - □ Now, take $a = g^{-1}$ and $b = h^{-1}$ to obtain the result

Isomorphism

- Definition
 - Let *G*, *H* be groups
 - A homomorphism $\alpha: G \rightarrow H$ is a **isomorphism** if
 - there is a homomorphism $\beta: H \to G$ s.t.
 - $\alpha\beta = id_H$, and
 - $\beta \alpha = i d_G$
 - In this case, we say *G* and *H* are **isomorphic**
- Fact
 - $\alpha: G \to H$ is an **isomorphism** $\Leftrightarrow \alpha$ is a **bijective homomorphism**
 - Proof: isomorphism \Rightarrow bijective homomorphism
 - This is clear
 - \circ Proof: bijective homomorphism \Rightarrow isomorphism
 - We need to show that α⁻¹ is a homomorphism
 - Let $h_1, h_2 \in H$
 - Choose $g_1, g_2 \in G$ s.t. $\alpha(g_1) = h_1$ and $\alpha(g_2) = h_2$
 - Then

$$\Box \quad \alpha^{-1}(h_1h_2)$$
$$\Box \quad = \alpha^{-1}(\alpha(g_1)\alpha(g_2))$$
$$\Box \quad = \alpha^{-1}(\alpha(g_1g_2))$$
$$\Box \quad = g_1g_2$$
$$\Box \quad = \alpha^{-1}(h_1)f^{-1}(h_2)$$

- Example
 - $\mathbb{R}_{>0} \coloneqq \{r \in \mathbb{R} | r > 0\}$ is a group under multiplication
 - Define $f: \mathbb{R} \to \mathbb{R}_{>0}$ where $f(x) = e^x$
 - Then f is a homomorphism
 - Moreover, *f* is an isomorphism
 - The inverse of f is $\ln f$
- Observation
 - If G, H are **isomorphic groups**, then |G| = |H|

Homomorphism, Isomorphism, Subgroup

Friday, February 16, 2018 10:05 AM

Proposition 16: Isomorphism Preserves Commutativity

- Statement
 - Let $f: G \to H$ be an **isomorphism**
 - *G* is abelian if and only if *H* is abelian
- Proof
 - (\Rightarrow) Suppose *G* is abelian
 - Let $h, h' \in H$
 - Choose $g, g' \in G$ s.t. f(g) = h, f(g') = h'
 - Then hh' = f(g)f(g') = f(gg') = f(g'g) = f(g')f(g) = h'h
 - (⇐) Apply the same argument with f^{-1} : $H \rightarrow G$

Proposition 16: Injective Homomorphism Preserves Order

- Statement
 - Let $f: G \rightarrow H$ be an **injective homomorphism**
 - Then $\forall g \in G$, |g| = |f(g)|
- Proof
 - $\circ f(1_G) = 1_H$
 - Let $g \in G$, then
 - $f(g) = f(1_G \cdot g) = f(1_G) \cdot f(g)$
 - By Cancellation Law, $f(1_G) = 1_H$
 - When $|g| < \infty$
 - Let $n \coloneqq |g|$, then
 - $1_H = f(1_G) = f(g^n) = f(g)^n$
 - (This last equality follows from an induction argument)
 - Therefore, $|f(g)| \le n$
 - Now, apply this same argument with *f* replaced by *f*⁻¹
 - So we can conclude that |f(g)| = n
 - When $|g| = \infty$
 - If $|f(g)| < \infty$
 - The above argument shows $|g| < \infty$
 - This is impossible
 - Thus, $|f(g)| = \infty$

Groups with Same Order is Not Necessarily Isomorphic

- *G*, *H* are groups, and |G| = |H|, is it the case that $G \cong H$? No
- Example 1: $\mathbb{Z} \ncong \mathbb{Q}$
 - In fact, any homomorphism $f: \mathbb{Z} \to \mathbb{Q}$ is not surjective
 - Let $f: \mathbb{Z} \to \mathbb{Q}$ be a homomorphism
 - If $f(a) = 0, \forall a \in \mathbb{Z}$
 - Obviously *f* is not surjective
 - \circ Assume otherwise
 - By induction, $f(a) = f(1 + 1 + \dots + 1) = a \cdot f(1)$ n copies
 - By assumption, $f(1) \neq 0$, since otherwise f = 0
 - We know that $\frac{f(1)}{2} \in \mathbb{Q}$

• But
$$\nexists a \in \mathbb{Z}$$
 s.t. $\frac{f(1)}{2} = af(1)$

• i.e.
$$\frac{f(1)}{2} \notin \operatorname{im}(f)$$

- Thus *f* is not surjective
- Example 2: $\mathbb{Z}/6\mathbb{Z} \ncong S_3$
 - $\circ \quad |\mathbb{Z}/6\mathbb{Z}| = |S_3|, \text{ but } \mathbb{Z}/6\mathbb{Z} \ncong S_3$
 - Because $\mathbb{Z}/6\mathbb{Z}$ is abelian, but S_3 is not
 - Also $|\overline{1}| = 6$ in $\mathbb{Z}/6\mathbb{Z}$, but S_3 have no element of order 6

Orders of Elements in S_n

- Let $\sigma \in S_n$
- If $\sigma = \sigma_1 \cdots \sigma_m$, where $\sigma_1 \cdots \sigma_m$ are **disjoint** cycles, then $|\sigma| = \text{lcm}(|\sigma_1|, \dots, |\sigma_m|)$
- If σ is a *t*-cycle, then $|\sigma| = t$

Subgroup

- Definition
 - Let *G* be a group, and let $H \subseteq G$
 - *H* is a subgroup if
 - $H \neq \emptyset$ (nonempty)
 - If $h, h' \in H$, then $hh' \in H$ (closed under the operation)
 - If $h \in H$, then $h^{-1} \in H$ (closed under inverse)
 - If *H* is a subgroup of *G*, we write $H \leq G$
- Note
 - $\circ~$ Subgroups of a group are also groups
- Example 1
 - If *G* is a group, then $G \leq G$ and $\{1\} \leq G$
- Example 2

- If $m, n \in \mathbb{Z}_{>0}$, and $n \leq m$, then $S_n \leq S_m$
- Example 3
 - Let *G* be a group, and let $g \in G$
 - Then $\langle g \rangle \coloneqq \{g^n | n \in \mathbb{Z}\} \le G$
 - $\circ \langle g \rangle$ is called the **cyclic subgroup generated by** g
 - $\circ \ \langle g \rangle \neq \emptyset, \text{ since } g \in \langle g \rangle$
 - Let $g^i, g^j \in \langle g \rangle$, then $g^i g^j = g^{ij} \in \langle g \rangle$
 - If $g^i \in \langle g \rangle$, then $(g^i)^{-1} = g^{-i} \in \langle g \rangle$

D_{2n} , Subgroup Criterion, Special Subgroups

Monday, February 19, 2018 9:58 AM

Regular *n*-gon

• A **regular** *n***-gon** is a polygon with all sides and angles equal

Symmetry

- Definition
 - A **symmetry** of a regular *n*-gon is a way of
 - picking up a copy of it
 - moving it around in 3d
 - setting it back down
 - so that it **exactly covers the original**
- Examples
 - Rotations
 - Reflection

Dihedral Groups (Section 1.2)

- Definition
 - $D_{2n} \coloneqq \{\text{symmetries of the } n\text{-gon}\} \text{ is called } n\text{-th dihedral groups}$
- Note
 - $|D_{2n}| = 2n$ (proof on page 24)
 - There are *n* rotations and *n* reflections
 - Symmetries of *n*-gons are determined by
 - $\circ~$ the permutations of the vertices they induce
- Example: n = 3
 - \circ Rotations

- 120°:(1 2 3)
- 240°:(132)
- 360°:(1)
- \circ Reflections
 - (23)
 - (13)
 - (12)

 $\circ \ \ D_6 \cong \{(1), (2\ 3), (1\ 3), (1\ 2), (1\ 3\ 2), (1\ 2\ 3)\} = S_3$

• Example: n = 4

 \circ Rotations

- 90°:(1234)
- 180°:(13)(24)
- 270°: (1 4 3 2)
- 360°:(1)
- \circ Reflections
 - (24)
 - (13)
 - (14)(23)
 - (12)(34)

 $\circ \ \ D_8 \cong \{(1), (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2), (1\ 3), (2\ 4), (1\ 4)(2\ 3), (1\ 2)(3\ 4)\} \le S_4$

- Fact
 - In general D_{2n} is **isomorphic** to a **subgroup of** S_n
 - Every finite group is isomorphic to a subgroup of a symmetric group

Proposition 17: The Subgroup Criterion

- Statement
 - A subset *H* of a group *G* is a subgroup iff
 - $H \neq \emptyset$ and $\forall x, y \in H, xy^{-1} \in H$
- Recall the original definition
 - A subset *H* of a group *G* is a subgroup iff
 - $\circ H \neq \emptyset$
 - $\circ \quad \forall h, h' \in H, hh' \in H$
 - $\forall h \in H, h^{-1} \in H$
- $Proof(\Rightarrow)$
 - This is Clear
- $Proof(\Leftarrow)$
 - Closed under multiplication
 - Let $x \in H$
 - $1 \cdot x^{-1} \in H$
 - Thus, $x^{-1} \in H$
 - $\circ \ \ {\rm Closed} \ {\rm under} \ {\rm inversion}$
 - Let $x, y \in H$, then $y^{-1} \in H$
 - So $x(y^{-1})^{-1} \in H$
 - Thus, $xy \in H$

Examples of Subgroups

- Example 1
 - $\circ \ \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$
- Example 2
 - \circ Definition
 - Fix $n \in \mathbb{Z}_{>0}$

•
$$SL_n(\mathbb{R}) \coloneqq \{A \in GL_n(\mathbb{R}) | \det A = 1\}$$
 is called the **special linear group**

- \circ Claim
 - $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$
- \circ Proof
 - $SL_n(\mathbb{R}) \neq \emptyset$, since $I_n \in SL_n(\mathbb{R})$
 - Let $A, B \in SL_n(\mathbb{R})$

•
$$\det(AB^{-1}) = \det A \cdot \det B^{-1} = \frac{\det A}{\det B} = \frac{1}{1} = 1$$

• Example 3

 \circ Definition

- If *G* is a group
- $Z(G) \coloneqq \{a \in G | ag = ga, \forall g \in G\}$ is called the **center** or *G*
- \circ Claim
 - $Z(G) \leq G$
- \circ Proof
 - $Z(G) \neq \emptyset$, since $1 \in Z(G)$
 - Let $a, b \in Z(G)$
 - If $g \in G$, abg = agb = gab
 - so *Z*(*G*) is closed under multiplication
 - Also $a^{-1}g = (g^{-1}a)^{-1} = (ag^{-1})^{-1} = ga^{-1}$
 - so *Z*(*G*) is closed under inversion

Properties of Cyclic Group, Order of g^a

Wednesday, February 21, 2018 9:56 AM

Cyclic Group

- Definition
 - A group *G* is **cyclic** if $\exists g \in G$ s.t. $\langle g \rangle = G$
- Note

• A finite group G of order n is cyclic iff $\exists g \in G$ s.t. |g| = n

- Example 1: Z is cyclic
 - $\circ \mathbb{Z} = \langle 1 \rangle$
 - $\circ \mathbb{Z} = \langle -1 \rangle$
- Example 2: $\mathbb{Z}/n\mathbb{Z}$ is cyclic
 - If (a, n) = 1, then $\mathbb{Z}/n\mathbb{Z} = \langle \overline{a} \rangle$
- Example 3: *S*₃ is not cyclic
 - Note: If $(a_1, ..., a_t) \in S_n$ is a *t*-cycle, then $|(a_1, ..., a_t)| = t$
 - $\circ \ S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$
 - Every element in S_3 have order 1,2, or 3
 - So S_3 cannot be cyclic

Proposition 18: Isomorphism of Cyclic Group

- Let *G* be a cyclic group
- If $|G| = n < \infty$, then $G \cong \mathbb{Z}/n\mathbb{Z}$
 - Choose $g \in G$ s.t. $G = \langle g \rangle$
 - Define a map $f: \mathbb{Z}/n\mathbb{Z} \to G$ given by $\overline{a} \mapsto g^a$
 - \circ Well-definedness
 - We need to check that *f* is well-defined.
 - That is we must show that if $\bar{a} = \bar{b}$ in $\mathbb{Z}/n\mathbb{Z}$, then $f(\bar{a}) = f(\bar{b})$
 - Let $a, b \in \mathbb{Z}$, suppose $\overline{a} = \overline{b}$ in $\mathbb{Z}/n\mathbb{Z}$
 - Choose $q \in \mathbb{Z}$ s,t, nq = a b
 - $f(\bar{a}) = g^a = g^{nq+b} = g^{nq}g^b = g^b = f(\bar{b})$
 - Thus, *f* is well-defined
 - Homomorphism
 - $f(\overline{a} + \overline{b}) = g^{a+b} = g^a g^b = f(\overline{a})f(\overline{b})$
 - Thus, *f* is a homomorphism
 - Surjectivity
 - Surjectivity is clear by definition

- Injectivity
 - If $f(\bar{a}) = f(\bar{b})$
 - $g^a = g^b$
 - $g^{a-b} = 1$
 - |g||(a-b)
 - n|(a b)
 - $\bar{a} = \bar{b}$
 - Thus *f* is injective
- If $|G| = \infty$, then $G \cong \mathbb{Z}$
 - Choose $g \in G$ s.t. $G = \langle g \rangle$
 - Define a map $f: \mathbb{Z} \to G$ given by $n \mapsto g^n$
 - Homomorphism
 - If $n_1, n_2 \in \mathbb{Z}$
 - then $f(n_1 + n_2) = g^{n_1 + n_2} = g^{n_1}g^{n_2} = f(n_1)f(n_2)$
 - Thus, *f* is a homomorphism
 - Surjectivity
 - Surjectivity is clear
 - Injectivity
 - Suppose $f(n_1) = f(n_2)$
 - Then $g^{n_1} = g^{n_2}$
 - Without loss of generality, assume $n_1 \ge n_2$
 - Then $g^{n_1 n_2} = 1$
 - Since $|g| = \infty$
 - $n_1 n_2 = 0$
 - i.e. $n_1 = n_2$
 - Thus *f* is injective

Least Common Multiple

- Definition
 - Let $a, b \in \mathbb{Z}$ where one of a, b is nonzero.
 - A **least common multiple** of *a* and *b* is a **positive integer** *m* s.t.
 - a|m and b|m
 - If a|m' and b|m', then m|m'
 - We denote the least common multiple of a and b by [a, b]
 - Define $[0,0] \coloneqq 0$
- Uniqueness
 - $\circ~$ Similar to the proof of uniqueness of greatest common divisor

• Existence: If $a, b \in \mathbb{Z}$, and one of a, b is nonzero, then $[a, b] = \frac{ab}{(a, b)}$

• Let
$$m \coloneqq \frac{ab}{(a,b)}$$

- $\circ a | m \text{ and } b | m$
 - This is true since $\frac{ab}{(a,b)}$ is a multiple of *a* and *b*

• Suppose a|m' and b|m'

- Choose $q, q' \in \mathbb{Z}$ s.t. aq = m' and bq' = m'
- Choose $x, y \in \mathbb{Z}$ s.t. ax + by = (a, b), then
 - \square m'(a,b)
 - $\Box = m'(ax + by)$
 - $\Box = m'ax + m'by$
 - $\Box = bq'ax + aqby$
 - $\Box = ab(q'x + qy)$
- Thus ab|(m'(a,b))
- Therefore $\frac{ab}{(a,b)} \mid m' \Rightarrow m \mid m'$

Proposition 19: Order of g^a

• Statement

• If
$$G = \langle g \rangle$$
 is cyclic, and $|G| = n < \infty$, then $|g^a| = \frac{n}{(a, n)}$

- Proof
 - Let $a \in \mathbb{Z}$

• When
$$a = 0$$
, this is clear, since $|g^0| = \frac{n}{(0,n)} = \frac{n}{n} = 1$

• So assume $a \neq 0$

$$\circ |g^{a}| \left| \frac{n}{(a,n)} \right|$$

$$\bullet (g^{a})^{\frac{n}{(a,n)}} = g^{\frac{an}{(a,n)}} = g^{[a,n]} = g^{kn} \text{ for some integer } k$$

$$\bullet \text{ Thus, } (g^{a})^{\frac{n}{(a,n)}} = (g^{n})^{k} = 1, \text{ since } n = |g|$$

$$\circ \frac{n}{(a,n)} |g^{a}|$$

- Let $t = |g^a|$, then $(g^a)^t = 1$
- By HW3 #1, $g^{at} = 1 \Rightarrow n | at$
- Thus, *at* is a common multiple of *n* and *a*
- $[a,n]|at \Rightarrow \frac{an}{(a,n)}|at \Rightarrow \frac{n}{(a,n)}|t \Rightarrow \frac{n}{(a,n)}|g^a|$

• Therefore
$$\frac{n}{(a,n)} = |g^a|$$

Subgroups of Cyclic Groups, (A)

Friday, February 23, 2018 10:07 AM

Theorem 20: Subgroup of Cyclic Group is Cyclic

- Statement
 - Let $G = \langle g \rangle$ be a cyclic group
 - Then every **subgroup of** *G* **is cyclic**
 - More precisely, if $H \leq G$, then either $H = \{1\}$ or $H = \langle g^d \rangle$, where
 - *d* is the smallest positive integer s.t. $g^d \in H$
- Proof
 - Assume $H \neq \{1\}$
 - Let $S \coloneqq \{b \in \mathbb{Z}_{>0} | g^b \in H\}$
 - $\circ \ \left\langle g^d \right\rangle \subseteq H$
 - Choose $a \in \mathbb{Z} \setminus \{0\}$ s.t. $g^a \in H$, then $(g^a)^{-1} = g^{-a} \in H$
 - Thus, *H* contains some positive power of *g*, and so $S \neq \emptyset$
 - By the Well-Ordering Principle, *S* contains a minimum element *d*
 - Therefore, $\langle g^d \rangle \subseteq H$
 - $\circ \ H \subseteq \left\langle g^d \right\rangle$
 - Let $h \in H$, then $h = g^a$ for some $a \in \mathbb{Z}$
 - Choose $q, r \in \mathbb{Z}$ s.t. $a = qd + r, 0 \le r < d$
 - $g^d \in H \Rightarrow g^{a-qd} \in H \Rightarrow g^r \in H$
 - If r > 0, then $r \in S$, which is impossible since r < d
 - The minimality of *d* forces r = 0
 - So $h = g^a = g^{qd} \in \langle g^d \rangle, \forall h \in H$
 - Therefore $H \subseteq \langle g^d \rangle$
 - Therefore $H = \langle g^d \rangle$

Theorem 20: Subgroup of Finite Cyclic Group is Determined by Order

- Statement
 - Let $G = \langle g \rangle$ be a finite cyclic group of order n
 - For all positive integers *a* dividing *n*, \exists ! subgroup $H \leq G$ of order *a*
 - Moreover, this subgroup is $\langle g^d \rangle$, where $d = \frac{n}{a}$
- Proof
 - Let *a* be a positive divisor of *n*, and let $d \coloneqq \frac{n}{a}$
 - Existence

•
$$|\langle g^d \rangle| = \frac{n}{(d,n)} = \frac{n}{d} = a$$
 by Proposition 19

- Uniqueness
 - Suppose $H \le G$ and |H| = a
 - Then, $H = \langle g^b \rangle$, where *b* is the smallest positive integer s.t. $g^b \in H$

• We have
$$\frac{n}{d} = a = |H| = |\langle g^b \rangle| = \frac{n}{(n,b)}$$
 by Proposition 19

- Thus d = (n, b) i.e. d|b
- So $g^b \in \langle g^d \rangle \Rightarrow H = \langle g^b \rangle \le \langle g^d \rangle$
- Since $|H| = |\langle g^d \rangle| = a$, we have $H = \langle g^d \rangle$

Lemma: Intersection of Subgroups is Again a Subgroup

• Statement

• If
$$\{H_i\}_{i \in I}$$
 is a **family of subgroups** of *G*, then $\bigcap_{i \in I} H_i \leq G$

• Proof

• Let
$$H \coloneqq \bigcap_{i \in I} H_i$$

- $\circ \ H \neq \emptyset$
 - Since $1 \in H_i, \forall i \in I$
- Let $h_1, h_2 \in H$
 - Then $h_1, h_2 \in H_i, \forall i \in I$

•
$$\Rightarrow h_1 h_2^{-1} \in H_i, \forall i \in I$$

 $\bullet \ \Rightarrow h_1 h_2^{-1} \in H$

Subgroups Generated by Subsets of a Group (Section 2.4)

- Definition
 - Let *G* be a group and $A \subseteq G$
 - The **subgroup generated by** *A* is
 - $\circ~$ the intersection of every subgroup of G containing A

$$\circ \quad \langle A \rangle \coloneqq \bigcap_{\substack{H \leq G \\ A \subseteq H}} H$$

- Example
 - If $A = \emptyset$, then $\langle A \rangle = \{1\}$
 - If $A = \{1\}$, then $\langle A \rangle = \{1\}$

(A), Finitely Generated Group

Monday, February 26, 2018 10:01 AM

Proposition 21: Construction of $\langle A \rangle$

- Statement
 - If $A \subseteq G$, then $\langle A \rangle = \left\{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_n^{\varepsilon_n} \middle| n \in \mathbb{Z}_{>0}, a_i \in A, \varepsilon \in \{\pm 1\} \right\}$
 - Note: When n = 0, we get 1
- Proof
 - $\circ~$ Denote the right hand side by \bar{A}
 - $\circ \bar{A} \leq G$
 - $\overline{A} \neq \emptyset$, since $1 \in \overline{A}$ (take n = 0)
 - If $a = a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_n^{\varepsilon_n}$, $b = b_1^{\delta_1} b_2^{\delta_2} \dots b_m^{\delta_m} \in \overline{A}$
 - Then $ab^{-1} = a_1^{\varepsilon_1}a_2^{\varepsilon_2}\dots a_n^{\varepsilon_n}b_m^{-\delta_1}b_{m-1}^{-\delta_2}\dots b_1^{-\delta_m} \in \bar{A}$
 - Therefore $\bar{A} \leq G$
 - $\circ \ \langle A\rangle\subseteq \bar{A}$
 - Because $A \subseteq \overline{A}$, and $\langle A \rangle$ is the smallest subgroup of *G* containing *A*
 - $\circ \ \bar{A} \subseteq \langle A \rangle$
 - Because every subgroup of G containing A (i.e. (A)) must contain
 - every finite product of elements of *A* and their inverses.

• Therefore $\langle A \rangle = \overline{A} = \{a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_n^{\varepsilon_n} | n \in \mathbb{Z}_{>0}, a_i \in A, \varepsilon \in \{\pm 1\}\}$

- Example
 - If *G* is a group, and $g \in G$, then $\langle \{g\} \rangle = \langle g \rangle$
- Note
 - When *G* is **abelian** and $A \subseteq G$, then we have
 - $\circ \quad \langle A \rangle = \left\{ a_1^{n_1} \dots a_m^{n_m} \middle| n_i \in \mathbb{Z}, a_i \in A, m \in \mathbb{Z}_{\geq 0} \right\}$

Finitely Generated Group

- Definition
 - A group *G* is **finitely generated** if
 - There is a **finite subset** *A* of *G* s.t. $\langle A \rangle = G$
- Example 1
 - Cyclic groups are finitely generated
- Example 2
 - Finite groups are finitely generated
- Example 3
 - If G, H are finitely generated, then $G \times H$ is also finitely generated

- For instance, $\mathbb{Z} \times \mathbb{Z}$ is finitely generated by $A = \{(1,0), (0,1)\}$
- In particular, products of cyclic groups are finitely generated
- $\circ~$ Every finitely generated abelian group is a product of cyclic groups
- (This is called the Fundamental Theorem of Finite Abelian Groups)
- Example 4

\circ Every finitely generated subgroup of \mathbb{Q} is cyclic.

◦ It follows that \mathbb{Q} is not finitely generated, since \mathbb{Q} is not cyclic ($\mathbb{Q} ≇ \mathbb{Z}$)

• Suppose
$$H \leq \mathbb{Q}$$
, and $H = \left\langle \frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n} \right\rangle$ where $a_i, b_i \in \mathbb{Z}$ and $b_i \neq 0$

• Without loss of generality, assume $a_i \neq 0$

• Let
$$S \coloneqq \left\{ x \in \mathbb{Z}_{>0} \middle| \frac{x}{b_1 b_2 \dots b_n} \in H \right\}$$

• $S \neq \emptyset$, since $\pm \frac{a_1 a_2 \dots a_n}{b_1 b_2 \dots b_n} \in H$

- Applying the Well-Ordering Principle
- We can choose a minimum element $e \in S$

• Claim:
$$H = \left\langle \frac{e}{b_1 b_2 \dots b_n} \right\rangle$$

• Notice that
$$H = \left\{ c_1 \frac{a_1}{b_1} + c_2 \frac{a_2}{b_2} + \dots + c_n \frac{a_n}{b_n} \middle| c_i \in \mathbb{Z} \right\}$$

• So we only need to check that $\frac{a_i}{b_i} \in \left\langle \frac{e}{b_1 b_2 \dots b_n} \right\rangle \forall i$

Let i be fixed

• Set
$$z \coloneqq b_1 \dots b_{i-1} a_i b_{i+1} \dots b_n$$

• So
$$\frac{a_i}{b_i} = \frac{z}{b_1 b_2 \dots b_n}$$

• Choose $q, r \in \mathbb{Z}$ s.t $z = qe + r, 0 \le r < e$

•
$$\frac{z}{b_1 b_2 \dots b_n} - q\left(\frac{e}{b_1 b_2 \dots b_n}\right) = \frac{z - qe}{b_1 b_2 \dots b_n} \in H \Rightarrow \frac{r}{b_1 b_2 \dots b_n} \in H$$

- The minimality of e forces r = 0
- This shows e|z|

• So
$$\frac{a_i}{b_i} = \frac{z}{b_1 b_2 \dots b_n} \in \left\langle \frac{e}{b_1 b_2 \dots b_n} \right\rangle$$

• Therefore $H = \left\langle \frac{e}{b_1 b_2 \dots b_n} \right\rangle$

• So *H* is cyclic

Coset, Normal Subgroup

Wednesday, February 28, 2018 9:59 AM

Coset

- If *G* is a group, $H \leq G$, and $g \in G$
- $gH := \{gh | h \in H\}$ is called a **left coset**
- $Hg := \{hg | h \in H\}$ is called a **right coset**
- An element of a coset is called a **representative** of the coset

Proposition 22: Properties of Coset

- Let *G* be a group and $H \leq G$, then
- For $g_1, g_2 \in G$, $g_1H = g_2H \Leftrightarrow g_2^{-1}g_1 \in H$
 - (⇒) Choose $h \in H$ s.t. $g_1 = g_2 h$ (since $g_1 = g_1 \cdot 1 \in g_1 H = g_2 H$)
 - Therefore $g_2^{-1}g_1 = h \in H$
 - (⇐) Choose $h \in H$ s.t. $g_1 = g_2 h$

$$\circ \quad \forall h' \in H, g_1 h' = g_2 \underbrace{hh'}_{\in H} \in g_2 H \Rightarrow g_1 H \subseteq g_2 H$$

$$\circ \quad \forall h' \in H, g_2 h' = g_1 \underbrace{h^{-1} h'}_{\in H} \in g_1 H \Rightarrow g_2 H \subseteq g_1 H$$

- Therefore $g_1H = g_2H$
- The relation ~ on *G* given by $g_1 \sim g_2$ iff $g_1 \in g_2 H$ is an equivalence relation
 - Reflexive
 - If $g \in G$, then $g = g \cdot 1 \in gH$
 - So *g~g*
 - \circ Symmetric
 - If $g_1, g_2 \in G$, and $g_1 \sim g_2$ i.e. $g_1 \in g_2 H$, then
 - $g_1 = g_2 h$ for some $h \in H$
 - Thus $g_1 h^{-1} = g_2$
 - So $g_2 \in g_1 H$, which means $g_2 \sim g_1$
 - \circ Transitive
 - Suppose $g_1 \sim g_2$ and $g_2 \sim g_3$
 - This means $g_1 \in g_2 H$ and $g_2 \in g_3 H$
 - Choose $h_1, h_2 \in H$ s.t. $g_1 = g_2 h$, and $g_2 = g_3 h$
 - Then $g_1 = g_3 h_2 h_1 \in g_3 H$
 - So g₁∼g₂
- In particular, left/right cosets are either equal or disjoint
 - Suppose $g_1, g_2 \in G$, and $z \in g_1H \cap g_2H$
 - Suppose $x \in g_1H$, then $x \sim g_1 \sim z \sim g_2$

- So $x \in g_2 H$
- This implies that $g_1 H \subseteq g_2 H$
- To get $g_2H \subseteq g_1H$, exchange the roles of g_1 and g_2
- Therefore $g_1H = g_2H$
- Example 1
 - Let *G* be a group, $H \leq G$
 - If $h \in H$, then hH = H
 - Let $h' \in H$, then $h' = h(h^{-1}h') \in hH$
 - Thus $H \subseteq hH$
 - By closure under the operation, $hH \subseteq H$
 - Therefore hH = H
- Example 2
 - Let $G = \mathbb{Z}/6\mathbb{Z}$, and H = unique subgroup of $\mathbb{Z}/6\mathbb{Z}$ of order 2
 - $\circ \ \ H = \{\overline{0}, \overline{3}\} \leq \mathbb{Z}/6\mathbb{Z}$
 - \circ Left cosets of *H* in G
 - $\overline{0} + {\overline{0}, \overline{3}} = {\overline{0}, \overline{3}}$
 - $\overline{1} + \{\overline{0}, \overline{3}\} = \{\overline{1}, \overline{4}\}$
 - $\bar{2} + \{\bar{0}, \bar{3}\} = \{\bar{2}, \bar{5}\}$
 - $\bar{3} + \{\bar{0}, \bar{3}\} = \{\bar{0}, \bar{3}\}$
 - $\bar{4} + \{\bar{0}, \bar{3}\} = \{\bar{1}, \bar{4}\}$
 - $\overline{5} + \{\overline{0}, \overline{3}\} = \{\overline{2}, \overline{5}\}$
 - Note
 - |G| = 6, |H| = 2, and *H* has 3 distinct cosets $(2 \cdot 3 = 6)$
 - If *G* is a finite group, and $H \leq G$, then |H|||G|, and
 - *H* has $\frac{|G|}{|H|}$ distinct left (or right) cosets in *G*
 - This is called the Lagrange's Theorem

Normal Subgroup

- Definition
 - Let *G* be a group, $N \leq G$
 - *N* is a **normal subgroup** if $gng^{-1} \in N$, $\forall n \in N$, $\forall g \in G$
 - In other words, *N* is closed under conjugation
 - If $N \leq G$ is normal, we write $N \leq G$
- Example 1
 - If G is abelian, every subgroup of G is normal
 - Suppose $H \leq G$

- Let $h \in H$ and $g \in G$
- Then $ghg^{-1} = hgg^{-1} = h \in H$
- Example 2
 - Let $G = S_3$, $H = \langle (1 2) \rangle$
 - Suppose $g = (1 2 3) \in G$, and $h = (1 2) \in H$
 - Then $ghg^{-1} = (1 \ 2 \ 3)(1 \ 2)(1 \ 2 \ 3)^{-1} = (1 \ 2 \ 3)(1 \ 2)(1 \ 3 \ 2) = (2 \ 3) \notin H$
 - Therefore $H \not \supseteq G$
- Example 3
 - $\langle (1\,2\,3) \rangle$ in S_3 is normal
- Note
 - In $GL_n(\mathbb{R})$, conjugation amounts to changing basis
 - Let $G = GL_n(\mathbb{R})$
 - Let $P, A \in G$, then PAP^{-1} is change of basis matrix
- Example 4
 - Let $f: G \rightarrow H$ be a **homomorphism**, then ker $f \trianglelefteq G$
 - $\circ \ \ker f \leq G$
 - ker $f \neq \emptyset$, since $f(1_G) = 1_H$
 - If $k_1, k_2 \in \ker f$
 - $f(k_1k_2^{-1}) = f(k_1)f(k_2)^{-1} = 1_H$
 - Thus $k_1 k_2^{-1} \in \ker f$
 - Therefore ker $f \leq G$
 - \circ ker *f* is normal
 - Let $g \in G, k \in \ker f$
 - $f(gkg^{-1}) = f(g)f(k)f(g)^{-1} = f(g)f(g)^{-1} = 1_H$
 - $\Rightarrow gkg^{-1} \in \ker f$

Proposition 23: Criteria for a Subgroup to be Normal

- Statement
 - Let *N* be a subgroup of a group *G*
 - $\circ \quad N \trianglelefteq G \Leftrightarrow gN = Ng, \forall g \in G$
- $Proof (\Rightarrow)$
 - Suppose $N \trianglelefteq G$
 - Let $g \in G, n \in N$

$$\circ gn = gn(g^{-1}g) = \underbrace{gng^{-1}}_{\in N} g \in Ng \Rightarrow gN \subseteq Ng$$

$$\circ ng = (gg^{-1})ng = g\underbrace{g^{-1}ng}_{\in N} \in gN \Rightarrow Ng \subseteq gN$$

• Therefore gN = Ng

- $Proof(\Leftarrow)$
 - Suppose $gN = Ng, \forall g \in G$
 - Let $g \in G, n \in N$
 - $\circ \quad \text{We must show that } gng^{-1} \in N$
 - Choose $n' \in N$ s.t. gn = n'g
 - Then $gng^{-1} = n' \in N$
 - Therefore $N \trianglelefteq G$

Quotient Group, Index, Lagrange's Theorem

Monday, March 5, 2018 9:41 AM

Proposition 24: Quotient Group

- Statement
 - Let *G* be a group, $N \trianglelefteq G$
 - The **set of left costs of** *N* is a group under the operation
 - $(g_1N)(g_2N) = g_1g_2N$
 - This group is denoted as G/N (say " $G \mod N$ ")
 - We call this group **quotient group** or factor group
- Proof
 - Check $G/N \times G/N \to G/N$, given by $(g_1N, g_2N) \mapsto g_1g_2N$ is well-defined
 - Suppose $g_1N = g'_1N$, and $g_2N = g'_2N$ $\Box g_1N = g'_1N \Leftrightarrow (g_1')^{-1}g_1 \in N$ $\Box g_2N = g'_2N \Leftrightarrow (g_2')^{-1}g_2 \in N$

•
$$(g_1'g_2')^{-1}g_1g_2 \in N$$

$$\Box (g'_{1}g'_{2})^{-1}g_{1}g_{2}$$

$$\Box = (g'_{2})^{-1}(g'_{1})^{-1}g_{1}g_{2}$$

$$\Box = (g'_{2})^{-1}(g'_{1})^{-1}g_{1}[g'_{2}(g'_{2})^{-1}]g_{2}$$

$$\Box = (g'_{2})^{-1}\underbrace{(g'_{1})^{-1}g_{1}}_{\in N}g'_{2}\underbrace{(g'_{2})^{-1}g_{2}}_{\in N}$$

$$\Box = \underbrace{(g'_{2})^{-1}(g'_{1})^{-1}g_{1}g'_{2}}_{\in N}\underbrace{(g'_{2})^{-1}g_{2}}_{\in N} \in N$$

- Therefore $g_1g_2N = g'_1g'_2N$
- So the operation is well-defined
- Identity
 - $1 \cdot N = N$
- Inverse
 - $(gN)^{-1} = g^{-1}N$
 - Since $(gN)(g^{-1}N) = gg^{-1}N = N$
- \circ Associativity
 - $(g_1Ng_2N)(g_3N)$
 - $\bullet = (g_1 g_2 N)(g_3 N)$
 - = $g_1g_2g_3N$
 - $\bullet = g_1 N (g_2 g_3 N)$
 - $\bullet = g_1 N (g_2 N g_3 N)$
- Note

- If $N \trianglelefteq G$, then there is a surjective homomorphism
 - $f: G \to G/N$ given by $g \mapsto gN$ with ker f = N
 - Since $f(g) = 1_{G/N} \Leftrightarrow gN = N \Leftrightarrow g \in N$
- This shows that, if $H \leq G$, then
 - $H \trianglelefteq G \Leftrightarrow H$ is the kernel of a homomorphism from *G* to some other group
- Example 1
 - Let *H* be a subgroup of \mathbb{Z}
 - Then $H riangleq \mathbb{Z}$ since \mathbb{Z} is abelian
 - Since \mathbb{Z} is cyclic, *H* is also cyclic
 - So we can write $H = \langle n \rangle$
 - There is isomorphism
 - $\mathbb{Z}/\langle n \rangle \to \mathbb{Z}/n\mathbb{Z}$
 - $a + \langle n \rangle \rightarrow \overline{a}$
- Example 2
 - If *G* is a group, then $\{1_G\} \trianglelefteq G$ and $G \trianglelefteq G$
 - $G/\{1_G\} \cong G$
 - $G/G \cong *$, where * is the trivial group of order 1
 - Intuition: The bigger the subgroup, the smaller the quotient

Index of a Subgroup

- Definition
 - If *G* is a group, and $H \leq G$, then
 - The **index** of *H* is the **number of distinct left cosets** of *H* in *G*
 - Denote the index by [G:H]
- Note
 - If $N \trianglelefteq G$, then [G:N] = |G/N|
- Example
 - $\circ \quad [\mathbb{Z}:\langle n\rangle] = |\mathbb{Z}/n\mathbb{Z}| = n$

Theorem 25: Lagrange's Theorem

- Statement
 - If *G* is finite group, and $H \leq G$, then $|G| = |H| \cdot [G:H]$
 - In particular, |H|||G|
- Notice
 - If in the setting of Lagrange's Theorem, $H \trianglelefteq G$, then

$$\circ |G| = |H| \cdot |G/H| \Rightarrow |G/H| = \frac{|G|}{|H|}$$

• Proof

- Let $n \coloneqq |H|$, and $k \coloneqq [G:H]$
- Cosets partition *G*
 - Let $g_1, ..., g_k$ be the representatives of the distinct cosets of H in G
 - (In other words: if $g \in G$, then $gH \in \{g_1H, g_2H, \dots, g_kH\}$)
 - By proposition 22, left costs are either equal or disjoint
 - So, $G = g_1 H \cup g_2 H \cup \cdots \cup g_k H$
- $\circ~$ Cosets have the same size
 - Let $g \in G$, then there is a function $f: H \to gH$ given by $h \mapsto gh$
 - *f* is certainly surjective
 - *f* is also injective since if $gh_1 = gh_2$, then $h_1 = h_2$
 - Thus, |gH| = |H|

• Therefore $|G| = |g_1H| + \dots + |g_kH| = \underbrace{n+n+\dots+n}_{k \text{ copies}} = kn = |H| \cdot [G:H]$

Lagrange's Theorem, Product of Subgroups

Wednesday, March 7, 2018 9:56 AM

Corollary 26: Group of Prime Order is Cyclic

- Statement
 - If G is a group, and |G| is prime, then G is cyclic
 - Hence, $G \cong \mathbb{Z}/p\mathbb{Z}$
- Proof
 - If $g \in G$, then $|g| = |\langle g \rangle|$
 - By Lagrange's Theorem, $|\langle g \rangle| ||G|$
 - Thus, $|g| \in \{1, |G|\}$
 - It follows that if $g \in G \setminus \{1\}$, then |g| = |G|
 - Therefore $\langle g \rangle = G$
 - i.e. *G* is cyclic

Groups of Small Order

Order	Property
2	Cyclic
3	Cyclic
4	Cyclic or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
5	Cyclic
6	Cyclic or S ₃

Corollary 27: $g^{|G|} = 1$

- Statement
 - If *G* is a finite group, and $g \in G$, then $g^{|G|} = 1$
- Proof
 - By Lagrange's Theorem, $|\langle g \rangle| ||G|$
 - Since $|g| = |\langle g \rangle|$, we have |g|||G|
 - Thus, $g^{|G|} = g^{|g|m}$ for some integer m
 - Therefore $g^{|G|} = (g^{|g|})^m = 1$

Corollary 28: The Fundamental Theorem of Cyclic Groups

- Statement
 - If *G* is a **finite cyclic group**, then there is a **bijection**
 - {positive divisors of |G|} \leftrightarrow {subgroups of G}
- Proof

- (\Rightarrow) Divisor *m* of $|G| \mapsto$ the unique subgroup *G* with order *m*
- (⇐) Subgroup H of $G \mapsto |H|$

Product of Subgroups

- Let *G* be a group and $H, K \leq G$
- Define $HK \coloneqq \{hk | h \in H, k \in K\}$

Proposition 29: Order of Product of Subgroups

• Statement

• If *H*, *K* are **finite subgroups** of a group *G*, then $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$

- Proof
 - Notice that HK is the union of left cosets of K

•
$$HK = \bigcup_{h \in H} hK$$

• In the proof of Lagrange's Theorem, we know that |hK| = |K|

• We want to show that there are
$$\frac{|H|}{|H \cap K|}$$
 cosets of the form *hK*, where $h \in H$

• Let
$$h_1, h_2 \in H$$

•
$$h_1K = h_2K$$

- $\Leftrightarrow h_2^{-1}h_1 \in K$
- $\Leftrightarrow h_2^{-1}h_1 \in H \cap K$
- $\Leftrightarrow h_1(H \cap K) = h_2(H \cap K)$
- By Lanrange's Theorem, the number of distinct cosets of the form hK, h ∈ H is

•
$$[H:H \cap K] = \frac{|H|}{|H \cap K|}$$

• Thus *HK* consists of $\frac{|H|}{|H \cap K|}$ distinct cosets of *K*

• Therefore,
$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

• Note: *HK* is not always a subgroup

• Let $G = S_3$, $H = \langle (1 2) \rangle$, $K = \langle (1 3) \rangle$

•
$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|} = \frac{2 \times 2}{1} = 4$$

- But |HK| is not a divisor of S_3
- $\circ~$ By Lagrange's Theorem, HK is not a subgroup of S_3

Proposition 30: Permutable Subgroups

- Statement
 - If $H, K \leq G$, then $HK \leq G \Leftrightarrow HK = KH$
- Note

• HK = KH is not equivalent to $hk = kh, \forall h \in H, k \in K$

- It implies that every product hk is of the form k'h' and conversely
- $Proof(\Rightarrow)$
 - $\circ \quad KH \subseteq HK$
 - This is true because $H \le HK, K \le HK$
 - $\circ \quad HK \subseteq KH$
 - Let $hk \in HK$
 - Set $a \coloneqq (hk)^{-1}$, then $a \in HK$
 - So, a = h'k' for some $h' \in H, k' \in K$
 - Then $hk = a^{-1} = (h'k')^{-1} = (k')^{-1}(h')^{-1} \in KH$
- $Proof(\Leftarrow)$
 - $HK \neq \emptyset$, since $1 \cdot 1 = 1 \in HK$
 - Let $hk, h'k' \in HK$
 - We must show that $hk(h'k')^{-1} \in HK$

•
$$hk(h'k')^{-1} = h\underbrace{k(k')^{-1}(h')^{-1}}_{\in KH}$$

- Choose $h'' \in H, k'' \in K$ s.t. $\underbrace{k(k')^{-1}(h')^{-1}}_{\in KH} = \underbrace{h''k''}_{\in HK}$
- Then $hk(h'k')^{-1} = h\underbrace{h''k''}_{\in HK} = \underbrace{hh''}_{\in H}\underbrace{k''}_{\in K} \in HK$
- Therefore $HK \leq G$
- Example

• Let
$$G = S_3$$
, $H = \langle (1 2) \rangle$, $K = \langle (1 3) \rangle$

- $\circ HK = \{(1), (12), (13), (132)\}$
- $\circ \quad KH = \{(1), (1\ 2), (1\ 3), (1\ 2\ 3)\}$
- Thus $HK \neq KH$
- Therefore *HK* is not a subgroup of S_3

Corollary 31: Product of Subgroup and Normal Subgroup

- Statement
 - If $H, K \leq G$, and either H or K is normal in G, then $HK \leq G$
- Proof
 - Without loss of generality, assume $K \trianglelefteq G$
 - Let $h \in H, k \in K$

• Therefore HK = KH

The First & Second Isomorphism Theorems

Friday, March 9, 2018 10:06 AM

Theorem 32: The First Isomorphism Theorem

- Statement
 - If $f: G \rightarrow H$ is a **homomorphism**, then f induces an isomorphism

•
$$\overline{f}: G/\ker f \xrightarrow{\cong} \operatorname{im}(f)$$

• $g \ker f \mapsto f(g)$

- Intuition
 - This is an analogue of the Rank-Nullity Theorem in Linear Algebra
 - Given vector space *V*, *W* and a linear transformation $A: V \rightarrow W$

$$\circ \ ^{V}/_{\ker A} \cong \operatorname{im}(A)$$

$$\circ \Rightarrow \dim(V/_{\ker A}) = \dim(\operatorname{im}(A))$$

- $\circ \ \Rightarrow \dim V \text{nullity } A = \operatorname{rank} A$
- Proof
 - $\circ \ ar{f}$ is well-defined and injective
 - Let $g_1, g_2 \in G$
 - $g_1 \ker f = g_2 \ker f$
 - $\Leftrightarrow g_2^{-1}g_1 \in \ker f$
 - $\Leftrightarrow f(g_2^{-1}g_1) = 1$
 - $\Leftrightarrow f(g_2)^{-1}f(g_1) = 1$
 - $\Leftrightarrow f(g_1) = f(g_2)$
 - $\Leftrightarrow \bar{f}(g_1 \ker f) = \bar{f}(g_2 \ker f)$
 - Thus *f* is well-defined and injective
 - $\circ \ \bar{f}$ is surjective
 - Let $h \in \operatorname{im} f$
 - Choose $g \in G$ s.t. f(g) = h
 - Then $\overline{f}(g \ker f) = h$
 - $\circ \ \bar{f}$ is a homomorphism
 - If $g_1 \ker f$, $g_2 \ker f \in \frac{G}{\ker f}$
 - $\bar{f}(g_1 \ker f \cdot g_2 \ker f)$
 - = $\overline{f}(g_1g_2\ker f)$
 - = $f(g_1g_2)$
 - = $f(g_1)f(g_2)$

• = $\bar{f}(g_1 \ker f)\bar{f}(g_2 \ker f)$

Corollary 33: Order of Kernel and Image

- Statement
 - $\circ \ [G: \ker f] = |\operatorname{im} f|$
- Example
 - Let $m, n \in \mathbb{Z}$ be coprimes
 - Then any homomorphism $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is trivial
 - i.e. $f(\overline{n}) = \overline{0}, \forall \overline{n} \in \mathbb{Z}/m\mathbb{Z}$

• Proof

0

• Let f be such a homomorphism

• By the First Isomorphism Theorem,
$$\left|\frac{\mathbb{Z}/n\mathbb{Z}}{ker f}\right| = |\operatorname{im} f|$$

So
$$\frac{n}{|\ker f|} = |\operatorname{im} f|$$
, where
• $\frac{n}{|\ker f|}$ is a divisor of *n*, and

- |im f| is a divisor of m, by Lagrange's Theorem
- Thus, $|\operatorname{im} f| = 1$, so $\operatorname{im} f = {\overline{0}}$
- Note
 - The same proof tells us that
 - If G, H are finite groups such that (|G|, |H|) = 1, then
 - All **homomorphism** between them are **trivial**

Theorem 34: The Second Isomorphism Theorem

- Statement
 - If $A \leq G$, and $B \trianglelefteq G$
 - Then $A \cap B \trianglelefteq A$, and ${}^{AB}/{}_B \cong {}^{A}/{}_A \cap B$
- Intuition

 $\frac{SN}{N} \cong \frac{S}{S \cap N}$

- Note
 - $B \trianglelefteq AB \le G$ by Corollary 31
 - So, $^{AB}/_B$ make sense
- Proof
 - $\circ~$ We have homomorphisms
 - $\alpha: A \to AB$ given by $a \mapsto a$

•
$$\beta: AB \to AB/B$$
 given by $x \mapsto xB$

• Let $f \coloneqq \beta \circ \alpha$, then

•
$$f: A \to AB/_B$$
, where $a \mapsto aB$

- \circ *f* is certainly surjective
- Compute ker f
 - Let $a \in A$
 - $f(a) = 1_{AB_{/B}} \Leftrightarrow aB = B \Leftrightarrow a \in B$
 - Thus, ker $f = A \cap B \trianglelefteq A$
- $\circ~$ The First Isomorphism Theorem gives an isomorphism

•
$$\bar{f}: A/_{A \cap B} \xrightarrow{\cong} AB/_{B}$$

The Third & Fourth Isomorphism Theorem

Monday, March 12, 2018 9:57 AM

Theorem 35: The Third Isomorphism Theorem

- Statement
 - Let *G* be a group, and $H, K \trianglelefteq G$, where $H \le K$
 - Then $K/H \trianglelefteq G/H$, and $\frac{G/H}{K/H} \cong G/K$
- Note
 - $\circ \quad K/H \coloneqq \{gH \in G/H | g \in K\}$
 - Also, $H \trianglelefteq G \Rightarrow H \trianglelefteq K$, and so K/H makes sense
- Intuition

- Proof
 - $\circ \ K/H \le G/H$
 - Certainly $K/H \neq \emptyset$ since $K \neq \emptyset$
 - Let $k_1H, k_2H \in K/H$
 - Then $k_1 H (k_2 H)^{-1} = k_1 H k_2^{-1} H = k_1 k_2^{-1} H \in K/H$
 - $\circ \ K/H \trianglelefteq G/H$
 - Let $kH \in K/H$ and $gH \in G/H$
 - Then $gHkH(gH)^{-1} = \underbrace{gkg^{-1}}_{\in K}H \in K/H$
 - Define a homomorphism $\alpha: G/H \to G/K$ given by $gH \mapsto gK$
 - $\circ \alpha$ is well-defined
 - Suppose $g_1H = g_2H$

- Then $g_2^{-1}g_1 \in H$
- Since $H \le K$, we have $g_2^{-1}g_1 \in K$
- So $g_1 K = g_2 K$
- i.e. $\alpha(g_1H) = \alpha(g_1H)$
- $\circ \alpha$ is surjective
 - If $gK \in G/K$, then $\alpha(gH) = gK$
- Compute ker α
 - ker $\alpha = \{gH \in G/H | gK = K\} = \{gH \in G/H | g \in K\} = K/H$
- o By First Isomorphism Theorem

•
$${}^{G/H}/_{K/H} = {}^{G/H}/_{\ker \alpha} \cong \operatorname{im} \alpha = G/K$$

- Example
 - Let $G = \mathbb{Z}, K = \mathbb{Z}/2\mathbb{Z}, H = \mathbb{Z}/4\mathbb{Z}$
 - \circ $\,$ Then the Third Isomorphism Theorem tells us that
 - The map $f: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ given by $\bar{a} \to \bar{a}$ is well-defined and surjective
 - $\circ \quad \ker f = 2\mathbb{Z}/4\mathbb{Z} = \{\overline{0}, \overline{2}\} \subseteq \mathbb{Z}/4\mathbb{Z}$
 - Therefore, $\mathbb{Z}/4\mathbb{Z}/2\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$

Proposition 36: Criterion for Defining Homomorphism on Quotient

- Statement
 - Let G, H be groups, and $N \trianglelefteq G$
 - A homomorphism $\alpha: G \rightarrow H$ induces a homomorphism
 - $\overline{\alpha}$: $G/N \to H$ given by $gN \mapsto \alpha(g)$
 - If and only if $N \leq \ker \alpha$
- $Proof (\Rightarrow)$
 - Let $n \in N$, then
 - $\bar{\alpha}(nN) = 1_H$ since homomorphisms preserve identities
 - $\bar{\alpha}(nN) = \alpha(n)$, by definition of $\bar{\alpha}$
 - Thus, $\alpha(n) = 1_H$
 - i.e. *N* ⊆ ker *α*
 - $\circ~$ And N certainly meets the Subgroup Criteria
 - Therefore $N \leq \ker \alpha$
- $Proof(\Leftarrow)$
 - $\bar{\alpha}$: $G/N \to H$, $gN \mapsto \alpha(g)$ is well-defined
 - Suppose $g_1 N = g_2 N$, we must check that $\alpha(g_1) = \alpha(g_2)$
 - $g_1 N = g_2 N$
 - $\Leftrightarrow g_2^{-1}g_1 \in N$
 - $\Rightarrow \alpha(g_2^{-1}g_1) = 1_H \text{ (since } N \leq \ker \alpha)$

- $\Leftrightarrow \alpha(g_2)^{-1}\alpha(g_1) = 1_H$
- $\Leftrightarrow \alpha(g_2) = \alpha(g_1)$
- $\circ \ \overline{\alpha}$ is a homomorphism
 - $\overline{\alpha}(g_1Hg_2H) = \overline{\alpha}(g_1g_2H) = \alpha(g_1g_2) = \alpha(g_1)\alpha(g_2) = \overline{\alpha}(g_1H)\overline{\alpha}(g_2H)$

Theorem 37: The Correspondence Theorem

- Statement
 - Let *G* be a group, and let $N \trianglelefteq G$, then there is a bijection
 - {subgroups of G/N} $\stackrel{F}{\underset{E_{I}}{\longrightarrow}}$ {subgroups of G containing N}
- Proof
 - Define
 - $F(H) = \{g \in G | gN \in H\}$
 - $F'(K) = K/N \coloneqq \{gN \in G/N | g \in K\}$
 - $\circ F(H)$ is a subgroup of G containing N
 - If $n \in N$, then $nN = id_{G/N} \in H$
 - Thus, $N \subseteq F(H)$
 - This also shows that $F(H) \neq \emptyset$
 - If $g_1, g_2 \in F(H)$, then
 - $\Box \quad g_1N, g_2N \in H$
 - $\Box \Rightarrow g_1 N (g_2 N)^{-1} = g_1 g_2^{-1} N \in H$
 - $\Box \Rightarrow g_1 g_2^{-1} \in F(H)$
 - $\circ \quad F \circ F' \text{ and } F' \circ F \text{ are the identity maps}$
 - $(F \circ F')(K) = F(K/N) = \{g \in G | gN \in K/N\} = K$
 - $(F' \circ F)(H) = F'(\{g|gN \in H\}) = \frac{\{g|gN \in H\}}{N} = H$

Transposition, Sign of Permutation

Wednesday, March 14, 2018 9:56 AM

Transposition

- Fix *n* to be a positive integer
- A 2-cycle (*i j*) in *S_n* is a **transposition**

Proposition 38: Transposition Decomposition of Permutation

- Statement
 - Every $\sigma \in S_n$ can be written as a **product of transposition**
- Example
 - $\circ \ (15324) = (14)(12)(13)(15)$
 - \circ (35) = (15)(13)(15)
- Proof
 - Fix $\sigma \in S_n$
 - We may assume that σ is a cycle $\sigma = (a_1 a_2 \dots a_t)$
 - By induction on *t*, we claim
 - $(a_1 a_2 \dots a_t) = (a_1 a_t)(a_1 a_{t-1}) \dots (a_1 a_2)$
 - Base case: t = 2
 - $(a_1 a_2) = (a_1 a_2)$
 - Inductive step: t > 2
 - $(a_1 a_t)(a_1 a_{t-1}) \dots (a_1 a_2)$
 - = $(a_1 a_t)(a_1 a_2 \dots a_{t-1})$
 - = $(a_1 a_2 \dots a_{t-1} a_t)$
- Note
 - S_n is generated by {(12), (13), ..., (1n)}

Sign of Permutation ϵ (Transposition Definition)

- Intuition
 - The **numbers of transposition** used to write some $\sigma \in S_n$
 - is not well-defined, but it is **always either even or odd**
- Definition
 - Let $\epsilon: S_n \to \mathbb{Z}/2\mathbb{Z}$

 $\sigma \mapsto \begin{cases} \overline{0} & \sigma \text{ is a product of even number of transposition} \\ \overline{1} & \sigma \text{ is a product of odd number of transposition} \end{cases}$

- Then ϵ is a group homomorphism
- $A_n \coloneqq \ker \epsilon$ is the **alternating group of degree** n

Sign of Permutation ϵ' (Auxiliary Polynomial Definition)

• Auxiliary Polynomial Δ

•
$$\Delta \coloneqq \prod_{1 \le i < j \le n} (x_i - x_j)$$

• For $\sigma \in S_n$, define $\sigma(\Delta) \coloneqq \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$

- Then $\sigma(\Delta)$ is always either Δ or $-\Delta$
- Example
 - Let n = 4 and $\sigma = (1 \ 2 \ 3 \ 4)$
 - $\Delta = (x_1 x_2)(x_1 x_3)(x_1 x_4)(x_2 x_3)(x_2 x_4)(x_3 x_4)$

$$\circ \ \ \sigma(\Delta) = (x_2 - x_3)(x_2 - x_4)(x_2 - x_1)(x_3 - x_4)(x_3 - x_1)(x_4 - x_1) = -\Delta$$

- Definition
 - Let $\epsilon': S_n \to \mathbb{Z}/2\mathbb{Z}$

$$\sigma \mapsto \begin{cases} \overline{0} & \sigma(\Delta) = \Delta \\ \overline{1} & \sigma(\Delta) = -\Delta \end{cases}$$

- $\circ \epsilon'(\sigma)$ is the **sign** of σ , often denoted as sgn σ
- σ is **even** if $\epsilon'(\sigma) = \overline{0}$
- $\circ \sigma$ is **odd** if $\epsilon'(\sigma) = \overline{1}$

Proposition 39: ϵ' is a Group Homomorphism

- Statement
 - ϵ' is a group **homomorphism**
- Example

• Let
$$\sigma = (1 2), \tau = (1 2 3) \Rightarrow \tau \sigma = (1 3)$$

• Let
$$\Delta = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$$

•
$$\sigma(\Delta) = (x_2 - x_1)(x_1 - x_3)(x_2 - x_3) = -\Delta$$

- $\tau(\Delta) = (x_2 x_3)(x_2 x_1)(x_3 x_1) = (-1)^2 \Delta = \Delta$
- $(\tau\sigma)(\Delta) = (x_3 x_2)(x_3 x_1)(x_2 x_1) = (-1)^3 \Delta = -\Delta$
- $\epsilon'(\tau\sigma) = \epsilon'(\tau)\epsilon'(\sigma)$, since
 - $\epsilon'(\tau\sigma) = \overline{1}$

•
$$\epsilon'(\tau)\epsilon'(\sigma) = \overline{0} + \overline{1} = \overline{1}$$

- Proof
 - Fix $\sigma, \tau \in S_n$

• Let
$$\Delta \coloneqq \prod_{1 \le i < j \le n} (x_i - x_j)$$
, then
• $\tau(\Delta) = \prod_{1 \le i < j \le n} (x_{\tau(i)} - x_{\tau(j)})$

•
$$\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

•
$$(\tau\sigma)(\Delta) = \prod_{1 \le i < j \le n} (x_{(\tau\sigma)(i)} - x_{(\tau\sigma)(j)})$$

• Suppose $\sigma(\Delta)$ has k "reversed factor" (i.e. factors $(x_j - x_i)$, where i < j), then

•
$$(\tau\sigma)(\Delta)$$

• $= \prod_{1 \le i < j \le n} \left(x_{\tau(\sigma(i))} - x_{\tau(\sigma(j))} \right)$
• $= (-1)^k \prod \left(x_{\tau(i)} - x_{\tau(j)} \right)$

$$\frac{1}{1 \le i < j \le n}$$

• =
$$(-1)^k \tau(\Delta)$$

• =
$$\sigma(\Delta)\tau(\Delta)$$

• Therefore
$$\epsilon'(\tau\sigma) = \epsilon'(\tau)\epsilon'(\sigma)$$

Homework 6

Friday, March 16, 2018 9:51 AM

Homework 6 Question 1

- Statement
 - Suppose $A, B \trianglelefteq H, AB = H$
 - Then there is an **isomorphism** ${}^{H}/_{A \cap B} \xrightarrow{\cong} ({}^{H}/_{A}) \times ({}^{H}/_{B})$
- Proof
 - Define a map

•
$$f: H \to (H/A) \times (H/B)$$

 $h \mapsto (hA, hB)$

- Check *f* is a homomorphism
 - $f(h_1h_2)$
 - $\bullet = (h_1 h_2 A, h_1 h_2 B)$
 - = (h_1Ah_2A, h_1Bh_2B)
 - $\bullet = (h_1 A, h_1 B)(h_2 A, h_2 B)$
 - $\bullet = f(h_1)f(h_2)$
- \circ Compute ker f
 - Let $h \in \ker f$
 - \Leftrightarrow $f(h) = (1_{H/A}, 1_{H/B}) = (A, B)$
 - $\Leftrightarrow h \in A \text{ and } h \in B$
 - $\Leftrightarrow h \in A \cap B$
 - Therefore ker $f = A \cap B$
- Prove surjectivity
 - Let $(h_1A, h_2B) \in (H/A) \times (H/B)$
 - Choose $a_1, a_2 \in A, b_1, b_2 \in B$ s.t.
 - $\Box \quad h_1 = a_1 b_1$
 - $\square \quad h_2 = a_2 b_2$
 - Then
 - $\Box \quad h_1 A = A h_1 = A a_1 b_1 = A b_1$
 - $\Box \quad h_2 B = a_2 b_2 B = a_2 B$
 - $f(a_2b_1) = (h_1A, h_2B)$ $\Box f(a_2b_1)$ $\Box = (a_2b_1A, a_2b_1B)$ $\Box = (Aa_2b_1, a_2B)$

- $\Box = (Ab_1, a_2B)$
- $\Box = (h_1 A, h_2 B)$
- Therefore *f* is surjective
- By the First Isomorphism theorem, there is an isomorphism
 - $\bar{f}: \frac{H}{\ker f} \to \operatorname{im} f$

•
$$\Rightarrow \bar{f}: {}^{H}/_{A \cap B} \rightarrow ({}^{H}/_{A}) \times ({}^{H}/_{B})$$

- Note
 - Given two homomorphism $f_1: G \to H_1, f_2: G \to H_2$
 - \circ Then their direct product
 - $f: G \to H_1 \times H_2$ given by $g \to (f_1(g), f_2(g))$
 - is also a homomorphism

Homework 6 Question 2

- Statement
 - *G* is abelian $\Leftrightarrow G/Z(G)$ is cyclic
- $Proof (\Longrightarrow)$
 - Suppose *G* is abelian, then G = Z(G)
 - So G/Z(G) is the trivial group
 - Therefore G/Z(G) is cyclic
- $Proof(\Leftarrow)$
 - Suppose G/Z(G) is cyclic
 - Choose $gZ(G) \in G/Z(G)$ s.t. $\langle gZ(G) \rangle = G/Z(G)$
 - Let $x \in G$, then
 - $xZ(G) = g^k Z(G)$ for some $k \in \mathbb{Z}$, and $g^{-k} x \in Z(G)$
 - Let $a, b \in G$
 - Choose $k_1, k_2 \in \mathbb{Z}$ and $z_1, z_2 \in Z(G)$ s.t
 - $g^{-k_1}a = z_1$ and $g^{-k_2}b = z_2$
 - So, $a = g^{k_1} z_1$, $b = g^{k_2} z_2$
 - Then $ab = g^{k_1}z_1g^{k_2}z_2 = g^{k_2}z_2g^{k_1}z_1 = ba$

Homework 6 Question 4

- Statement
 - $\circ \quad G = \langle g \rangle \text{ is cyclic of order } n, d | n, d > 0$
 - Then $G_{(a^d)}$ is cyclic of order d
- Proof: If *H* is a cyclic group and $A \le H$, then H/A is also cyclic
 - Choose a generator $h \in H$
 - Then hA is a generator of H/A

- If $h'A \in H/A$
- Choose $k \in \mathbb{Z}$ s.t. $h' = h^k$
- Therefore $h'A = h^k A = (hA)^k$
- Proof
 - $\circ |\langle g^d \rangle| = \frac{n}{(n,d)} = \frac{n}{d}$
 - By Lagrange's Theorem

$$\circ \quad n = |G| = |\langle g^d \rangle| \cdot [G: \langle g^d \rangle] = \frac{n}{d} |G/\langle g^d \rangle|$$
$$\circ \quad \Rightarrow |G/\langle g^d \rangle| = d$$

Sign of Permutation, A_n

Monday, March 19, 2018 9:50 AM

Recall

• $\epsilon: S_n \to \mathbb{Z}/2\mathbb{Z}$

 $\sigma \mapsto \begin{cases} \overline{0} & \sigma \text{ is a product of even number of transposition} \\ \overline{1} & \sigma \text{ is a product of odd number of transposition} \end{cases}$

• $\epsilon': S_n \to \mathbb{Z}/2\mathbb{Z}$

$$\sigma \mapsto \begin{cases} \overline{0} & \sigma(\Delta) = \Delta \\ \overline{1} & \sigma(\Delta) = -\Delta \end{cases}$$

•
$$\Delta \coloneqq \prod_{1 \le i < j \le n} (x_i - x_j), \sigma(\Delta) \coloneqq \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

Proposition 40: Sign of Transposition

- Statement
 - Let $n \in \mathbb{Z}_{>0}$
 - If $\tau \in S_n$ is **transposition**, then $\epsilon'(\tau) = \overline{1}$
- Example
 - Suppose $n = 4, \tau = (1 2)$
 - $\Delta = (x_1 x_2)(x_1 x_3)(x_1 x_4)(x_2 x_3)(x_2 x_4)(x_3 x_4)$
 - $\circ \ \tau(\Delta) = (x_2 x_1)(x_2 x_3)(x_2 x_4)(x_1 x_3)(x_1 x_4)(x_3 x_4)$
 - $\circ \ \tau(\Delta) = -\Delta \Rightarrow \epsilon'(\tau) = \overline{1}$
- Proof
 - Suppose $\tau = (1 2)$
 - Say $(x_i x_j)$ is a factor of Δ
 - Then $\tau(i) > \tau(j) \Leftrightarrow i = 1, j = 2$
 - Thus $\tau(\Delta) = -\Delta$
 - So $\epsilon'(\tau) = \overline{1}$
 - Suppose $\tau = (i j), 1 \le i < j \le n$
 - Let $\lambda \in S_n$ denote the following permutation
 - $\lambda(1) = i$ $\lambda(2) = j$ $\lambda(i) = 1$ $\lambda(j) = 2$ $\lambda(k) = k, k \notin \{1, 2, i, j\}$
 - $(i j) = \lambda (1 2) \lambda$

- $\Box \quad [\lambda(1\ 2)\lambda](i) = [\lambda(1\ 2)](1) = \lambda(2) = j$
- $\Box \quad [\lambda(1\ 2)\lambda](j) = [\lambda(1\ 2)](2) = \lambda(1) = i$
- □ Without loss of generality, assume $i, j \notin \{1, 2\}$
- $\Box \ [\lambda(1\ 2)\lambda](1) = [\lambda(1\ 2)](i) = \lambda(i) = 1$
- $\Box \quad [\lambda(1\ 2)\lambda](2) = [\lambda(1\ 2)](j) = \lambda(j) = 2$
- □ For $k \notin \{1, 2, i, j\}$
- $\Box \ [\lambda(1\ 2)\lambda](k) = [\lambda(1\ 2)](k) = \lambda(k) = k$
- We know ϵ' is a homomorphism, so

$$c \epsilon'(i j) = \epsilon'(\lambda(1 2)\lambda)$$

$$c \epsilon'(\lambda) + \epsilon'(1 2) + \epsilon'(\lambda)$$

$$c \epsilon'(\lambda) + \overline{1}$$

$$c \epsilon \overline{0} + \overline{1} = \overline{1}$$

Corollary 41: Equivalence of Two Definitions of Sign

- Statement
 - ϵ is well-defined, and $\epsilon = \epsilon'$
- Proof
 - Let $\sigma \in S_n$
 - Say $\sigma = \tau_1 \cdots \tau_k$ where τ_i is a transposition, then
 - $\circ \ \epsilon'(\sigma) = \epsilon'(\tau_1) + \dots + \epsilon'(\tau_k) = \underbrace{\overline{1} + \dots + \overline{1}}_{k \text{ copies}} = \overline{k}$
 - If k is odd, then
 - *σ* cannot be written as a product of an even number of transpositions
 - So $\epsilon(\sigma) = \epsilon'(\sigma) = \overline{0}$ for σ with odd k, and vice verse
 - This shows ϵ is well-defined, and $\epsilon = \epsilon'$

Corollary 42: Surjectivity of ϵ

- Statement
 - If $n \ge 2$, then ϵ is **surjective**
- Proof
 - $\epsilon(1) = \overline{0}$, and $\epsilon(1 2) = \overline{1}$
 - Since $\mathbb{Z}/2\mathbb{Z}$ has only 2 elements, ϵ is surjective

Alternating Group

- Definition
 - The alternative group, denoted as A_n is the kernel of ϵ
 - That is, A_n contains of all **even permutations** in S_n
- Order of A_n
 - By the First Isomorphism Theorem

- We have an isomorphism $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$
- By Lagrange's Theorem, $|A_n|[S_n:A_n] = |S_n|$

$$\circ \Rightarrow |\mathbf{A}_{\mathbf{n}}| = \frac{|S_n|}{[S_n:A_n]} = \frac{\mathbf{n}!}{2}$$

- Note
 - We showed earlier that, if $(a_1 \dots a_t) \in S_n$,

$$\circ (a_1 \dots a_t) = \underbrace{(a_1 a_t)(a_1 a_{t-1}) \cdots (a_1 a_2)}_{t-1 \text{ terms}}$$

- *t*-cycle is even when *t* is odd, and vise versa
- Thus, $(a_1 \dots a_t) \in A_n \Leftrightarrow t$ is odd
- Examples
 - \circ A_2 = trivial group
 - $\circ \ A_3 = \{(1), (1\ 2\ 3), (1\ 3\ 2)\} = \langle (1\ 2\ 3)\rangle$
 - $\circ A_4 = \{(1), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3), (1 2) \\ (3 4), (1 3)(2 4), (1 4)(2 3)\}$
- Subgroups of A₄

Order	Subgroup
1	{(1)}
2	$ \{ (1), (1 2)(3 4) \} \\ \{ (1), (1 3)(2 4) \} \\ \{ (1), (1 4)(2 3) \} $
3	$ \{(1), (1 2 3), (1 3 2)\} \\ \{(1), (1 2 4), (1 4 2)\} \\ \{(1), (1 3 4), (1 4 3)\} \\ \{(1), (2 3 4), (2 4 3)\} $
4	{(1), (12)(34), (13)(24), (14)(23)}
6	None
12	A4

Converse of Lagrange's Theorem

- A₄ has no subgroup of order 6
- This shows that the converse of Lagrange's Theorem is false
 - If d||G|, there is not necessarily a subgroup of G with order d
- But the converse does hold for finite cyclic groups
- Cauchy's Theorem
 - If p is a **prime**, and p||G|, then G contains a subgroup of order p
- Sylow's Theorem
 - If $|G| = p^{\alpha}m$, where *p* is prime and (p, m) = 1
 - Then *G* contains a subgroup of order p^{α}

Subgroups of A₄, Group Action, Orbit, Stabilizer

Wednesday, March 21, 2018 9:57 AM

Proposition 43: Subgroup of Index 2 is Normal

- Statement
 - If *G* is a group, $H \leq G$, and [G: H] = 2, then $H \leq G$
- Proof
 - If $g \in H$, then gH = H = Hg
 - If $g \notin H$, then $gH = G \setminus H = Hg$
 - Therefore gH = Hg, $\forall g \in G$
 - $\circ \quad \text{So} \ H \trianglelefteq G$
- Corollary (See HW8 #2)
 - Let p be the smallest prime dividing |G|
 - If [G:H] = p, then $H \trianglelefteq G$

Proposition 44: Conjugate Cycle

- Statement
 - If $(a_1 \dots a_t)$, $(a_1' \dots a_t')$ are *t*-cycles in S_n
 - Then $\exists \sigma \in S_n$ s.t. $\sigma(a_1 \dots a_t) \sigma^{-1} = (a_1' \dots a_t')$
- Proof
 - Choose $\sigma \in S_n$ s.t. $\sigma(a_i) = a'_i, \forall i \in \{1, ..., t\}$
 - By HW 7 #1, $\sigma(a_1 ... a_t) \sigma^{-1} = (\sigma(a_1) ... \sigma(a_t)) = (a_1' ... a_t')$

Theorem 45: A_4 Have No Subgroup of Order 6

• Statement

• A₄ have no subgroup of order 6

- Proof
 - By way of contradiction, suppose $H \leq G$, and |H| = 6
 - Then $[A_4: H] = 2$ and thus $H \leq A_4$
 - $\circ~$ Since A_4 contains eight 3-cycles, H must contain some 3-cycle α
 - Write $\alpha = (a \ b \ c)$, then
 - $(a b d)(a b c)(a b d)^{-1} = (b d c) \in H$
 - $(b c d)(a b c)(b c d)^{-1} = (a c d) \in H$
 - $(b d c)(a b c)(b d c)^{-1} = (a d b) \in H$
 - So far, we have (1), (a b c), (b d c), (a c d), $(a d b) \in H$
 - Also, since *H* is closed under inverses, $(a \ c \ b), (b \ c \ d) \in H$
 - Thus, $|H| \ge 7$, which makes a contradiction

• Therefore A_4 have no subgroup of order 6

Group Action

- Definition
 - An **action** of *G* on *X* is a function $G \times X \to X$, $(g, x) \mapsto gx$ s.t.
 - $\mathbf{1}_G x = x, \forall x \in X$
 - $g(hx) = (gh)x, \forall g, h \in G, x \in X$
- Examples

Set	Group	Action
\mathbb{R}^n	$GL_n(\mathbb{R})$	$(A, v) \mapsto Av$
$\{1,, n\}$	S _n	$(\sigma,i)\mapsto \sigma(i)$
Group G	Group G	$(g,h) \mapsto gh$
Group G	Group G	$(g,h)\mapsto ghg^{-1}$
Set of cosets of $H \leq G$	Group G	$(g,g'H)\mapsto gg'H$
Set of all subgroups of group G	Group G	$(g,H)\mapsto gHg^{-1}$

- Proof: Conjugation on subgroup is a group action
 - If $H \le G$, and $g \in G$, then $gHg^{-1} = \{ghg^{-1} | h \in H\} \le G$
 - $gHg^{-1} \neq \emptyset$, since $g1g^{-1} = 1 \in gHg^{-1}$
 - If ghg^{-1} , $gh'g^{-1} \in gHg^{-1}$, then
 - $\circ \ ghg^{-1}(gh'g^{-1})^{-1} = ghg^{-1}g(h')^{-1}g^{-1} = gh(h')^{-1} \in gHg^{-1}$

Orbit and Stabilizer

- Suppose a group *G* acts on a set *X*
- Let $x \in X$
- The **orbit** of *x*, denoted $\operatorname{orb}(x)$, is $\{g \cdot x | g \in G\} \subseteq X$
- The **stabilizer** of *x*, denoted stab(*x*), is $\{g \in G | g \cdot x = x\} \subseteq G$

Proposition 46: Stabilizer is a Subgroup

- Statement
 - If *G* acts on *X*, and $x \in X$, then stab $(x) \leq G$
- Proof
 - $\operatorname{stab}(x) \neq \emptyset$, because 1x = x
 - Let $g, h \in \operatorname{stab}(x)$
 - $\circ (gh)x = g(hx) = gx = x \Rightarrow gh \in \operatorname{stab}(x)$

•
$$x = 1 \cdot x = (g^{-1}g)x = g^{-1}(gx) = g^{-1}x \Rightarrow g^{-1} \in \operatorname{stab}(x)$$

Centralizer

- Let *G* be a group, and let *G* act on itself by conjugation
- If $h \in G$, then stab $(h) = \{g \in G | ghg^{-1} = h\} = \{g \in G | gh = hg\}$
- This set is called the **centralizer** of h, denoted as $C_G(h)$

• $C_G(h)$ is the set of elements in G that commute with the element h

Center

- Intersections of subgroups are subgroup
- Thus if *G* acts on a set *X*, $\bigcup_{x \in X} \operatorname{stab}(x) \le G$
- In the example above, $\bigcup_{h \in G} C_G(h) = Z(G)$ is called the **center** of *G*
- *Z*(*G*) is the set of elements that **commute with every element** of *G*

Normalizer

- Let *X* be the set of subgroups of a group *G*
- Let *G* acts on *X* by $g \cdot H = gHg^{-1}$
- If $H \leq G$, then

•
$$stab(H) = \{g \in G | gHg^{-1} = H\} = \{g \in G | gH = Hg\}$$

- This set is called the **normalizer** of *H* in *G*, denoted $N_G(H)$
- $N_G(H)$ is the set of **elements in** *G* that **commute with the set** *H*
- Note: $N_G(H) = G \Leftrightarrow H \trianglelefteq G$

Orbit, Stabilizer, Cayley's Theorem

Friday, March 23, 2018 10:07 AM

Proposition 47: Orbits Equivalence

- Statement
 - Let G act on a set X
 - The relation $x \sim x' \Leftrightarrow \exists g \in G$ s.t. gx = x' is an equivalence relation
- Proof
 - Reflexive
 - $1 \cdot x = x$
 - \circ Symmetric
 - Suppose $x \sim x'$, then $\exists g \in G$ s.t. $gx = x' \Rightarrow x = g^{-1}x'$
 - \circ Transitive
 - Suppose *x*~*x*′ and *x*′~*x*″
 - Choose $g, h \in G$ s.t. gx = x' and hx' = x''
 - Then ghx = hx' = x''
- Note
 - The equivalence classes are the orbits of the group action
 - Thus, the orbits partition *X*

Proposition 48: Orbit-Stabilizer Theorem

- Statement
 - If *G* acts on *X*, and $x \in X$, then |orb(x)| = [G: stab(x)]
- Proof
 - Define a function
 - $F: \operatorname{orb}(x) \to \{\operatorname{left costs of stab}(x)\}$
 - $gx \mapsto g \operatorname{stab}(x)$
 - \circ *F* is injective
 - $g \operatorname{stab}(x) = g' \operatorname{stab}(x)$
 - \Leftrightarrow $(g')^{-1}g \in$ stab(x)
 - $\Leftrightarrow (g')^{-1}gx = x$
 - $\Leftrightarrow gx = g'x$
 - *F* is surjective
 - This is clear
 - So $orb(x) \cong \{ left costs of stab(x) \}$
 - Therefore |orb(x)| = [G: stab(x)]

Proposition 49: Permutation Representation of Group Action

- Statement
 - Let *G* be a group acting on a finite set $X = \{x_1, ..., x_n\}$
 - Then each $g \in G$ determines a permutation $\sigma_g \in S_n$ by

•
$$\sigma_g(i) = j \Leftrightarrow g \cdot x_i = x_j$$

- Proof
 - The map $f: X \to X$, given by $x \mapsto g \cdot x$ is bijection $\forall g \in G$
 - Injectivity: $g \cdot x = g \cdot x' \Rightarrow (g^{-1}g) \cdot x = (g^{-1}g) \cdot x' \Rightarrow x = x'$
 - Surjectivity: $f(g^{-1} \cdot x) = (gg^{-1}) \cdot x = x$
 - So each $g \in G$ determines a permutation $\sigma_g \in S_n$ where

• $\sigma_g(i) = j \Leftrightarrow g \cdot x_i = x_j$

Proposition 49: Induced Homomorphism of Group Action

- Statement
 - The map $\Phi: G \to S_n$, given by $g \mapsto \sigma_g$ is a homomorphism
- Proof
 - Let $g, h \in G, i \in \{1, \dots, n\}$
 - Suppose $\sigma_{gh}(i) = j$ for some j
 - Then $(gh)x_i = x_i$
 - Write $hx_i = x_k$ for some k, then $\sigma_h(i) = k$
 - $\circ (gh)x_i = x_j \Leftrightarrow gx_k = x_j \Leftrightarrow \sigma_g(k) = j \Leftrightarrow \sigma_g(\sigma_h(i)) = j$
 - Therefore $\sigma_{gh}(i) = \sigma_g \sigma_h(i), \forall i \in \{1, ..., n\}$

Theorem 50: Cayley's Theorem

- Statement
 - Every finite group is isomorphic to a subgroup of the symmetric group
- Proof
 - Let $G = \{g_1, \dots, g_n\}$ act on itself by left multiplication $g \cdot h = gh$
 - Then this action determines a homomorphism
 - $\Phi: G \to S_n$
 - $g \mapsto \sigma_g$, where $\sigma_g(i) = j \Leftrightarrow g \cdot g_i = g_j$
 - $\circ \Phi$ is injective

•
$$\Phi(g) = \Phi(h) \Leftrightarrow \sigma_q = \sigma_h \Leftrightarrow ggi = hgi, \forall i \Leftrightarrow g = hgi$$

- Thus $G \cong \operatorname{im}(\Phi) \leq S_n$
- Example
 - Klein 4 group $K = \{1, a, b, c\}$
 - where $a^2 = b^2 = c^2 = 1 \Leftrightarrow ab = c, bc = a, ac = b$

	1	а	b	С
1	1	а	b	С
a	а	1	С	b
b	b	С	1	a
С	С	b	а	1

- $\circ~$ Label the group elements with 1, 2, 3, 4
- 1 \mapsto σ_1 = (1) since
 - $\sigma_1(1) = 1$
 - $\sigma_2(2) = 2$
 - $\sigma_3(3) = 3$
 - $\sigma_4(4) = 5$
- $a \mapsto \sigma_a = (1 \ 2)(3 \ 4)$ since
 - $\sigma_a(1) = 2$
 - $\sigma_a(2) = 1$
 - $\sigma_a(3) = 4$
 - $\sigma_a(4) = 3$
- $b \mapsto \sigma_b = (1 \ 3)(2 \ 4)$ since
 - $\sigma_b(1) = 3$
 - $\sigma_b(2) = 4$
 - $\sigma_b(3) = 1$
 - $\sigma_b(4) = 2$
- ∘ $c \mapsto \sigma_c = (1 \ 4)(2 \ 3)$ since
 - $\sigma_c(1) = 4$
 - $\sigma_c(2) = 3$
 - $\sigma_c(3) = 2$
 - $\sigma_c(4) = 1$
- Therefore $K \cong \{(1), (12)(34), (13)(24), (14)(23)\} \le S_4$

Conjugacy Class, The Class Equation

Monday, April 2, 2018 9:57 AM

Conjugacy Class

- Definition
 - If *G* is a group, *G* acts on itself by conjugation: $g \cdot h = ghg^{-1}$
 - The orbits under this action are called **conjugacy classes**
 - Denote a conjugate class represented by some element $g \in G$ by conj(g)
- Example 1
 - If $g \in G$, and $g \in Z(G)$, then $\operatorname{conj}(g) = \{g\}$
 - Since $hgh^{-1} = hh^{-1}g = g, \forall h \in G$
 - The converse is also true: If $conj(g) = \{g\}$, then $g \in Z(G)$
- Example 2
 - Let $G = S_n$
 - If $\sigma \in S_n$, then $\operatorname{conj}(g) = \{ all \text{ permutations of the same cycle type as } \sigma \}$
 - For instance
 - If σ is a *t*-cycle, then conj(σ) = {all *t*-cycles}
 - More generally
 - Let $\sigma = (a_1^{(1)} \dots a_{t_1}^{(1)}) \cdots (a_1^{(m)} \dots a_{t_m}^{(m)})$ be a product of disjoint cycles
 - Then conj(σ) = {all products of disjoint cycles of length t₁, ..., t_m}

Theorem 51: The Class Equation

- Statement
 - Let G be a finite group
 - Let $g_1, \dots g_r \in G$ be
 - **representatives of the conjugacy classes** of *G* that are
 - not contained in the center Z(G)

• Then
$$|G| = |Z(G)| + \sum_{i=1}^{r} [G: C_G(g_i)]$$

- Recall: $C_G(g_i) = \{g \in G | gg_i = g_i g\}$
- Proof
 - \circ G is the disjoint union of its disjoint conjugate classes

• Then
$$G = Z(G) \cup \bigcup_{i=1}^{r} \operatorname{conj}(g_i)$$

• $\Rightarrow |G| = |Z(G)| + \sum_{i=1}^{r} |\operatorname{conj}(g_i)|$

$$\Rightarrow |G| = |Z(G)| + \sum_{i=1}^{r} |\operatorname{orb}(g_i)| \text{ (under conjugacy action)}$$

$$\Rightarrow |G| = |Z(G)| + \sum_{i=1}^{r} [G: \operatorname{stab}(g_i)] \text{ by Proposition 48}$$

$$\Rightarrow |G| = |Z(G)| + \sum_{i=1}^{r} [G: C_G(g_i)]$$

Corollary 52: Center of *p*-Group is Non-Trivial

- Statement
 - If *p* is a prime, and *P* is a **group of order** p^{α} ($\alpha > 1$), then |Z(P)| > 1
- Note
 - Group of order p^{α} for prime *p* is called a *p***-group**
- Proof

• By the class equation,
$$|Z(P)| = |P| - \sum_{i=1}^{r} [P: C_P(p_i)]$$
, where $p_1, \dots, p_r \in P$ are

- \circ representatives of the conjugate classes of *P* not contained in *Z*(*P*)
- $\circ \ g_i \not\in Z(P) \Rightarrow C_P(g_i) \neq P \Rightarrow [P:C_P(g_i)] \neq 1$
- By Lagrange's Theorem, $[P: C_P(g_i)] | p^{\alpha}$
- Combing previous two results, $p|[P: C_P(g_i)]$

• Thus,
$$p \left| \left(|P| - \sum_{i=1}^{r} [P: C_P(g_i)] \right) = |Z(P)|$$
, since $p ||P|$
• $\Rightarrow |Z(P)| \neq 1$

Corollary 53: Group of Order Prime Squared is Abelian

- Statement
 - If *p* is a prime, and *P* is a group of **order** p^2 , then *P* is **abelian**.
 - In fact, either $P \cong \mathbb{Z}/p^2\mathbb{Z}$ or $P \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$
- Proof
 - By Corollary 52 and Lagrange's Theorem, |Z(P)| = p or p^2
 - Suppose |Z(P)| = p
 - $|P/Z(P)| = [P:Z(P)] = \frac{|P|}{|Z(P)|} = \frac{p^2}{p} = p$
 - By Corollary 26, *P*/*Z*(*P*) is cyclic
 - By HW6 #2, *P* is abelian
 - In this case $Z(P) = P \Rightarrow |Z(P)| = p^2$
 - Therefore |Z(P)| = p is impossible
 - Suppose $|Z(p)| = p^2$

- We have $|Z(p)| = |P| \Rightarrow Z(P) = P$
- So *P* is abelian
- If *P* is cyclic, then clearly $P \cong \mathbb{Z}/p^2\mathbb{Z}$
- If *P* is not cyclic, we need to show that $P \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$
 - Let $z \in P \setminus \{1\}$, then |z| = p
 - Let $y \in P \setminus \langle z \rangle$
 - Set $H := \langle z \rangle, K := \langle y \rangle$, then $H \cap K = \{1\}$
 - \Box Since any non-identity element of *H* or *K* is a generator
 - □ For instance, if $1 \neq y^k \in H$ for some *k*, then $y \in H$
 - □ This is impossible, so $H \cap K = \{1\}$

•
$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|} = |H| \cdot |K| = p^2 = |P| \Rightarrow HK = P$$

• By HW6 #1, there exists an isomorphism $P \xrightarrow{\cong} P/H \times P/K$

•
$$|P/H| = [P:H] = \frac{|P|}{|H|} = \frac{p^2}{p} = p \Rightarrow P/H \cong \mathbb{Z}/p\mathbb{Z}$$

- Similarly for *P*/*K*
- Therefore $P = HK \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$

Cauchy's Theorem, Recognizing Direct Products

Wednesday, April 4, 2018 9:48 AM

Theorem 54: Cauchy's Theorem

- Statement
 - If *G* is a finite group, and *p* is a prime divisor of |G|, then $\exists H \leq G$ of order *p*
- Proof
 - Write |G| = mp
 - $\circ~$ We argue by strong induction on m
 - When m = 1, this is trivial, since any non-identity element of *G* has order *p*
 - Suppose m > 1, and $\forall n \in \{1, ..., m-1\}$ if |G'| = np, then $\exists H' \leq G'$ of order p
 - If *G* is abelian
 - Let $x \in G \setminus \{1\}$
 - If $\langle x \rangle = G$
 - □ By the Fundamental Theorem of Cyclic Groups,
 - \Box $G = \langle x \rangle$ contains a (unique) subgroup of order p
 - If $\langle x \rangle \neq G$
 - $\Box \quad \text{Set}\, H \coloneqq \langle x \rangle \trianglelefteq G$
 - □ By the Lagrange's Theorem, $|G| = |H|[G:H] = |H| \cdot |G/H|$
 - □ Since p||G|, either p||H| or p||G/H|
 - \Box If p||H|
 - Since *H* is cyclic, *H* contains a (unique) subgroup of order *p*
 - It follows that *G* contains a subgroup of order *p*
 - \Box If p||G/H|
 - |G/H| < |G|, so, by induction, $\exists gH \in G/H$ s.t. |gH| = p
 - So we only need to prove |gH|||g|
 - ♦ If $K \xrightarrow{f} K'$ is a group homomorphism, |f(k)| ||k|, $\forall k \in K$
 - ♦ Now, take K = G, K' = G/H, f the usual surjection $g \mapsto gH$
 - Therefore p||g|
 - Since $\langle g \rangle$ is cyclic, $\langle g \rangle$ contains a (unique) subgroup of order p
 - It follows that *G* contains a subgroup of order *p*
 - If *G* is not abelian
 - By the Lagrange's Theorem, $|G| = |C_G(g_i)| \cdot [G:C_G(g_i)], \forall i \in \{1, ..., r\}$
 - Since p||G|, either $p||C_G(g_i)|$ or $p|[G:C_G(g_i)]$
 - If $p || C_G(g_i) |$ for some *i*

- □ Since *G* is not abelian, $C_G(g_i) \leq G$ for all *i*
- □ Apply the induction hypothesis, $C_G(g_i)$ contains a subgroup of order p
- $\hfill\square$ It follows that G contains a subgroup of order p
- If $p|[G:C_G(g_i)], \forall i$

□ By the Class Equation, $|G| = |Z(G)| + \sum_{i=1}^{r} [G: C_G(g_i)]$ where $g_1, ..., g_r$ $\in G$

 \Box are the representatives of the conjugate classes not contained in *Z*(*G*)

$$\Box \text{ It follows that } p \left| \left(|G| - \sum_{i=1}^{r} [G: C_G(g_i)] \right) = |Z(G)|$$

- \Box *G* is not abelian, so *Z*(*G*) $\leq G$
- \Box Apply the induction hypothesis, Z(G) contains a subgroup of order p
- \Box It follows that *G* contains a subgroup of order *p*

Lemma 55: Recognizing Direct Products

- Statement
 - Let G be a group with normal subgroups N_1 , N_2
 - The map $\alpha: N_1 \times N_2 \to G$ given by $(n_1, n_2) \mapsto n_1 n_2$ is an **isomorphism**
 - if and only if $N_1N_2 = G$ and $N_1 \cap N_2 = \{1\}$
- $Proof (\Rightarrow)$
 - Since α is surjective, $N_1N_2 = G$
 - Suppose $n \in N_1 \cap N_2$
 - Then $\alpha(n, 1) = n = \alpha(1, n)$
 - Since α is injective, $(1, n) = (n, 1) \Rightarrow n = 1$
 - So $N_1 \cap N_2 = \{1\}$
- Proof (⇐)
 - $\circ \alpha$ is surjective
 - This is true since $N_1N_2 = G$
 - $\circ \alpha$ is a homomorphism
 - $\alpha((n_1, n_2), (n'_1, n'_2)) = \alpha((n_1n'_1, n_2n'_2)) = n_1n'_1n_2n'_2$
 - $\alpha(n_1, n_2)\alpha(n'_1, n'_2) = n_1 n_2 n'_1 n'_2$
 - We want show that $\alpha((n_1, n_2), (n_1', n_2'))(\alpha(n_1, n_2)\alpha(n_1', n_2'))^{-1} = 1$
 - $(n_1n'_1n_2n'_2)(n_1n_2n'_1n'_2)^{-1} = n_1n'_1n_2n'_2(n'_2)^{-1}(n'_1)^{-1}n_2^{-1}n_1^{-1}$

• =
$$n_1 \underbrace{n'_1 n_2(n'_1)^{-1}}_{\in N_2} n_2^{-1} n_1^{-1} = n_1 \underbrace{n'_1 n_2(n'_1)^{-1} n_2^{-1}}_{\in N_2} n_1^{-1} \in N_2$$

• =
$$n_1 n'_1 \underbrace{n_2(n'_1)^{-1} n_2^{-1}}_{\in N_1} n_1^{-1} = n_1 \underbrace{n'_1 n_2(n'_1)^{-1} n_2^{-1}}_{\in N_1} n_1^{-1} \in N_1$$

• Thus $(n_1n'_1n_2n'_2)(n_1n_2n'_1n'_2)^{-1} \in N_1 \cap N_2 = \{1\}$

- Therefore $\alpha((n_1, n_2), (n'_1, n'_2)) = \alpha((n_1, n_2), (n'_1, n'_2))$
- $\circ \alpha$ is injective
 - If $(n_1, n_2) = 1$
 - $\Rightarrow n_1 n_2 = 1$
 - $\Rightarrow n_1 = n_2^{-1}$
 - \Rightarrow $n_1 \in N_2, n_2 \in N_1$
 - $\Rightarrow n_1 = n_2 = 1$
 - \Rightarrow $(n_1, n_2) = (1, 1)$
 - $\Rightarrow \alpha$ is injective

Homework 8, Properties of Finite Abelian Group

Saturday, April 7, 2018 10:09 PM

Homework 8 Question 3

- Statement
 - If *G* is a group with $|G| \le 11$, and d||G|, then *G* has a subgroup of order *d*
- Proof
 - For |G| = 2,3,5,7,11
 - |*G*| is prime, thus cyclic
 - For |G| = 4,6,9,10
 - |*G*| is product of two primes, so use the Cauchy's Theorem
 - For |G| = 8
 - $d \in \{1,2,4,8\}$
 - When d = 1,2,8, this is obvious
 - So assume d = 4
 - If *G* contains an element of order 4, then we are done
 - So, we may assume $|g| = 2, \forall g \in G \setminus \{1\}$, then *G* is abelian
 - Let $a, b \in G \setminus \{1\}$. Let $H \coloneqq \{1, a, b, ab\}$
 - *H* is closed under inverse
 - \Box The inverse of every element of *G* is itself
 - *H* is closed under multiplication by multiplication table below

	•	1	а	b	ab
	1	1	а	b	ab
	а	а	1	ab	b
	b	b	ab	1	а
	ab	ab	b	а	1

Lemma 56: Coprime Decomposition of Finite Abelian Group

- Statement
 - Let *G* be a **finite abelian group of order** mn, where (m, n) = 1
 - Let $M = \{x \in G | x^m = 1\}, N = \{x \in G | x^n = 1\}$, then
 - $M, N \leq G$, and
 - The map α : $M \times N \rightarrow G$ given by $(g, h) \mapsto gh$ is an **isomorphism**
 - Moreover, if $m, n \neq 1$, then M and N are nontrivial
- Proof
 - $\circ \ M,N\leq G$
 - It suffices to check $M \leq G$

- $M \neq \emptyset$, since $1 \in M$
- If $x, y \in M$, then $(xy^{-1})^m = x^m (y^m)^{-1} = 1$. Thus $xy^{-1} \in M$
- \circ MN = G
 - Choose $r, s \in \mathbb{Z}$ s.t. mr + ns = 1
 - Let $g \in G$, then $g = g^{mr+ns} = g^{mr}g^{ns}$
 - $(g^{mr})^n = (g^{mn})^r = (g^{|G|})^r = 1$ by Lagrange's Theorem
 - Similarly, $(g^{ns})^m = 1$
 - So, $g^{ns} \in M$, $g^{mr} \in N$, so $g \in MN$
 - Therefore MN = G
- $\circ \ M \cap N = \{1\}$
 - Let $g \in M \cap N$, then $g^m = 1 = g^n$
 - Then |g||m and |g||n
 - Since (m, n) = 1, |g| = 1
 - Thus $M \cap N = \{1\}$
- By Lemma 55, $M \cap N = \{1\}$ and $MN = G \Rightarrow \alpha$ is an isomorphism
- \circ *M* and *N* are nontrivial
 - Suppose $m \neq 1$
 - Let *p* be a prime divisor of *m*
 - Then *G* contains an element *z* of order *p*, by Cauchy's Theorem
 - $z \in M$, so $M \neq \{1\}$
 - Similarly, if $n \neq 1$, $N \neq \{1\}$

Corollary 57: *p*-Group Decomposition of Finite Abelian Group

- Statement
 - Let *G* be a **finite abelian group**, and *p* be a prime divisor of |G|
 - Choose $m \in \mathbb{Z}_{>0}$ s.t. $|G| = p^m n$ and $p \nmid n$
 - Then $\boldsymbol{G} \cong \boldsymbol{P} \times \boldsymbol{T}$, where $P, T \leq G$, $|P| = p^m$, and $p \nmid |T|$
- Intuition
 - If $|G| = p_1^{m_1} p_2^{m_2} \dots p_n^{m_n}$
 - This corollary says $G \cong P_1 \times \cdots \times P_n$, where $|P_i| = p_i^{m_i}$
 - o This reduces the Fundamental Theorem of Finite Abelian Groups
 - \circ to the case where the group has order given by a prime power
- Proof
 - Let $P \coloneqq \{x \in G | x^{p^m} = 1\}, T \coloneqq \{x \in G | x^n = 1\}$
 - By Lemma 56, $G \cong P \times T$
 - $\circ p \nmid |T|$
 - Suppose, by way of contradiction, that p||T|

Page 100

- By Cauchy's Theorem, $\exists z \in T$ s.t. |z| = p
- Since $z \in T$, $z^n = 1$, so p|n
- This is impossible, thus $p \nmid |T|$

 $\circ |P| = p^m$

- Since $|G| = |P| \cdot |T| = p^m n, p^m ||T|$
- Suppose $p^m < |P|$
- Then, \exists prime q s.t. $p \neq q$ and q ||P|
- By Cauchy's Theorem, $\exists y \in P$ s.t. |y| = q
- This is impossible since $y \in P \Rightarrow y^{p^m} = 1 \Rightarrow q | p^m$
- Thus $p^m = |P|$

Fundamental Theorem of Finite Abelian Groups

Monday, April 9, 2018 10:26 PM

Lemma 58: Prime Decomposition of Abelian *p*-Group

- Statement
 - If *G* is an abelian group of order p^n , where *p* is a prime
 - Let $a \in G$ has maximal order among all the elements of G
 - Then $G \cong A \times Q$, where $A = \langle a \rangle, Q \leq G$
- Proof
 - \circ We argue by induction on n
 - If n = 1, then G = A, so we may take $Q = \{1\}$
 - Now suppose n > 1
 - Case 1: $\exists b \in G$ s.t. $b \notin A$ and $b^p = 1$
 - Let $B \coloneqq \langle b \rangle \trianglelefteq G$
 - $A \cap B = \{1\}$
 - \Box |*b*| is prime, since $b^p = 1$
 - $\Box \quad \text{Recall: If } (x, n) = 1 \text{, then } \mathbb{Z}/n\mathbb{Z} = \langle \bar{x} \rangle$
 - \Box So every non-identity element of *B* is a generator
 - $\Box \quad \text{Thus, if } x \in A \cap B \text{, and } x \neq 1 \text{, then } B = \langle x \rangle \subset A \cap B \subset A$
 - □ Then $b \in A$, which contradicts the assumption
 - $\Box \quad \text{Therefore } A \cap B = \{1\}$
 - Let $\overline{G} \coloneqq G/B$, then $|\overline{G}| < |G|$ since $B \neq \{1\}$
 - *aB* is an element of maximal order in \overline{G}
 - $\square |aB|||a|$
 - $a^{|a|} = 1$
 - $\bullet \ \Rightarrow a^{|a|} \in B$
 - $\bullet \quad \Rightarrow (aB)^{|a|} = \mathbf{1}_{\bar{G}}$
 - $\bullet \Rightarrow |aB|||a|$
 - \Box |a|||aB|
 - $\bullet \quad (aB)^{|aB|} = \mathbf{1}_{\bar{G}}$
 - $\bullet \ \Rightarrow a^{|aB|}B = B$
 - $\bullet \ \Rightarrow a^{|aB|} \in B$
 - $\bullet \Rightarrow a^{|aB|} \in A \cap B = \{1\}$
 - $\Rightarrow a^{|aB|} = 1$
 - $\bullet \Rightarrow |a| ||aB|$

- $\Box \quad \text{So} |aB| = |a|$
- \Box Therefore *aB* is an element of maximal order in \overline{G}
- By induction, $\exists \overline{Q} \leq \overline{G} \text{ s.t. } \overline{G} \cong \langle aB \rangle \times \overline{Q}$
- Apply the Correspondence Theorem, choose $Q \le G$ s.t. $\overline{Q} = Q/B$
- Claim: $G \cong A \times Q$
 - □ By Lemma 55, we need only show $A \cap Q = \{1\}$ and AQ = G
 - $\Box \quad A \cap Q = \{1\}$
 - Let $g \in A \cap Q$, then $g = a^i$ for some *i*
 - Thus, $a^i B \in \langle aB \rangle \cap \overline{Q} \leq \overline{G}$
 - Since $\overline{G} \cong \langle aB \rangle \times \overline{Q}, \langle aB \rangle \cap \overline{Q} = \{1\}$
 - Therefore $a^i B = 1_{\bar{G}}$
 - $\bullet \quad \Rightarrow |a| = |aB||i$
 - $\Rightarrow a^i = 1$
 - $\bullet \quad \Rightarrow A \cap Q = \{1\}$
 - $\Box \ AQ = G$
 - Let $g \in G$
 - Since $\overline{G} = \langle aB \rangle \times \overline{Q}$,
 - $gB = a^i B y B$ for some $a^i B \in \langle aB \rangle$ and $yB \in \overline{Q}$,
 - Thus $gB = a^i yB \Leftrightarrow g(a^i y)^{-1} \in B$
 - Choose $b \in B$ s.t. $ga^{-i}y^{-1} = b$
 - Then $g = \underset{\in A}{a^i} \underset{\in Q}{yb}$
 - Therefore AQ = G
- Case 2: $\exists b \in G$ s.t. $b \notin A$ and |b| = p
 - In this case, we need to prove *G* = *A*
 - By way of contradiction, suppose otherwise
 - Choose $x \in G \setminus A$ with the smallest order
 - Recall: If $H = \langle z \rangle$, then $|\langle z^m \rangle| = \frac{|z|}{(|z|, m)}$
 - $|x^p| < |x|$, so $x^p \in A$
 - Choose *i* s.t. $x^p = a^i$
 - Say $|a| = p^s$
 - Since *a* has maximal order, $x^{p^s} = 1$
 - $\Rightarrow 1 = x^{p^s} = (x^p)^{p^{s-1}} = (a^i)^{p^{s-1}} = a^{ip^{s-1}}$
 - It follows that p|i
 - So $x^p = a^i$, where p|i
 - Set $y \coloneqq a^{-i/p} x$, then $y^p = a^{-i} x^p = 1$

- But $y \notin A$, since $ya^{i/p} = x \notin A$
- This contradicts the assumption that $\nexists b \in G$ s.t. $b \notin A$ and |b| = p
- So $G \setminus A = \emptyset$
- Therefore $G = A = \langle a \rangle$, and $Q = \{1\}$

Theorem 59: Fundamental Theorem of Finite Abelian Groups

- Statement
 - Every **finite abelian group** *G* is a **product of cyclic groups**
- Proof
 - Say $|G| = p_1^{m_1} \cdots p_n^{m_n}$, where p_i are distinct primes
 - By Corollary 57, and induction $G \cong P_1 \times \cdots \times P_n$ where
 - $P_i = \{x \in G \mid x^{p_i^{m_i}} = 1\}$ and $|P_i| = p_i^{m_i}$
 - $\circ~$ So, it suffices to show each P_i is a product of cyclic groups
 - By Lemma 58, $P_i \cong A_i \times Q_i$, where A_i is cyclic
 - $\circ~$ The result immediately follows by induction on m_i
- Example
 - $\circ~$ How may abelian groups of order 8 are there up to isomorphism
 - There are 3 abelian groups of order 8: $\mathbb{Z}_{8\mathbb{Z}}, \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{4\mathbb{Z}}, \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}}$

Partition

- A **partition** of $n \in \mathbb{Z}_{>0}$ is a way of writing *n* as a sum of positive integers
- Example: 3 has 3 partitions: 3, 2 + 1, 1 + 1 + 1

Corollary 60: Number of Finite Abelian Groups of Order n

- Statement
 - If $n = p_1^{e_1} \cdots p_n^{e_m}$, where p_i are distinct primes
 - $\circ~$ Then the **number of finite abelian groups** of order n is

•
$$\prod_{i=1}^{m}$$
 number of partitions of e_i

- Note
 - If $(\lambda^1, ..., \lambda^m)$ are partitions of $e_1, ..., e_m$, where $\lambda_i = \{\lambda_i^1, ..., \lambda_i^{s_i}\}$
 - $\circ~$ Then this list of partitions corresponds to the abelian group

$$\circ \left(\mathbb{Z}/p_1^{\lambda_1^1} \mathbb{Z} \times \cdots \times \mathbb{Z}/p_1^{\lambda_1^{s_1}} \mathbb{Z} \right) \times \cdots \times \left(\mathbb{Z}/p_1^{\lambda_m^1} \mathbb{Z} \times \cdots \times \mathbb{Z}/p_1^{\lambda_m^{s_m}} \mathbb{Z} \right)$$

• Example

• When
$$n = 72 = 2^3 \cdot 3^2$$

• $\mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{3\mathbb{Z}} \times \mathbb{Z}_{3\mathbb{Z}} \times \mathbb{Z}_{3\mathbb{Z}} \cong \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{6\mathbb{Z}} \times \mathbb{Z}_{6\mathbb{Z}} \times \mathbb{Z}_{6\mathbb{Z}}$
• $\mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{9\mathbb{Z}}$

 $\begin{array}{l} \circ \quad \mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}} \\ \circ \quad \mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{9\mathbb{Z}} \\ \circ \quad \mathbb{Z}/_{8\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}} \\ \circ \quad \mathbb{Z}/_{8\mathbb{Z}} \times \mathbb{Z}/_{9\mathbb{Z}} \end{array}$

Definition of Ring

Wednesday, April 11, 2018 9:58 AM

Ring

- Definition
 - A **ring** is a set *R* equipped with two operations + and \cdot s.t.
 - (R, +) is an abelian group
 - \circ \cdot is associative
 - $\circ \quad \exists 1 \in R \text{ s.t. } 1 \cdot r = r = r \cdot 1$
 - Distributive property:
 - $\forall a, b, c \in R$
 - $a \cdot (b+c) = a \cdot b + a \cdot c$
 - $(a+b) \cdot c = a \cdot c + b \cdot c$
- Note
 - 1 is called the **multiplicative identity**
 - Dummit-Foote don't require the multiplicative identity
 - \circ \cdot is not necessarily commutative
 - R is not a group under \cdot , because inverses may not exist
 - We will typically denote multiplication of $r, s \in R$ by rs
 - Typically 1 will denote the multiplicative identity
 - And 0 will denote the identity of (R, +)

Properties of Ring, Zero-Divisor, Unit

Monday, April 16, 2018 9:57 AM

Examples of Ring

- Example 1
 - The trivial group, equipped with the trivial multiplication, is a ring
 - $\circ~$ It's called the trivial ring
- Example 2
 - $\circ \ \ \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings with usual addition and multiplication
- Example 3
 - For n > 0, $\mathbb{Z}/n\mathbb{Z}$ is a ring with modular addition and multiplication
- Example 4
 - For n > 0, define $Mat_{n \times n}(\mathbb{R}) \coloneqq \{n \times n \text{ matrices with entries in } \mathbb{R}\}\$
 - Then $Mat_{n \times n}(\mathbb{R})$ is a ring with matrix addition and multiplication
 - Note: when n > 1, $Mat_{n \times n}(\mathbb{R})$ is not commutative
- Example 5
 - $GL_n(\mathbb{R})$ is not a ring under the usual matrix addition and multiplication
 - Because $GL_n(\mathbb{R})$ is not a group under addition: $0 \notin GL_n(\mathbb{R})$

Proposition 61: Properties of Ring

- Let *R* be a ring, then
- $0a = 0 = a0, \forall a \in R$
 - $\circ \quad 0a = (0+0)a = 0a + 0a \Rightarrow 0a = 0$
 - $\circ a0 = a(0+0) = a0 + a0 \Rightarrow a0 = 0$
- $(-a)b = a(-b) = -(ab), \forall a, b \in R$
 - $(-a)b + ab = (-a + a)b = 0b = 0 \Rightarrow (-a)b = -(ab)$
 - $\circ \quad a(-b) + ab = a(-b+b) = a0 = 0 \Rightarrow a(-b) = -(ab)$
- $(-a)(-b) = ab, \forall a, b \in R$
 - (-a)(-b) = -(a(-b)) = -(-ab) = ab
- The multiplicative identity 1 is unique
 - Suppose $1,1' \in R$ satisfy 1r = r = r1 and 1'r = r = r1', $\forall r \in R$
 - Then $1 = 1 \cdot 1' = 1'$
- $-a = (-1)a, \forall a \in R$
 - $(-1)a + a = (-1)a + 1 \cdot a = (-1+1)a = 0a = a \Rightarrow -a = (-1)a$

Proposition 62: Criterion for Trivial Ring

• Statement

- A ring *R* is **trivial** (i.e. have only one element) iff $\mathbf{1} = \mathbf{0}$
- Proof
 - $\circ (\Rightarrow)$ Clear
 - (⇐) Let $r \in R$, then $r = 1 \cdot r = 0 \cdot r = 0$
- Note
 - Often, instead of saying "*R* is nontrivial", one says " $1 \neq 0$ "

Zero-Divisor and Unit

- Definition
 - Let R be a ring
 - A nonzero element $r \in R$ is called a **zero-divisor** if
 - $\exists s \in R \setminus \{0\}$ s.t. rs = 0 or sr = 0
 - Assume $1 \neq 0$, then $u \in R$ is called a **unit** if
 - $\exists v \in R \text{ s.t. } uv = 1 = vu$
- Note
 - If *R* is a ring, and $1 \neq 0$, then 0 and zero-divisors are not units
 - Let $z \in R$ be a zero-divisor
 - By way of contradiction
 - Choose $v \in R$ s.t. zv = 1 = vz
 - Choose $s \in R \setminus \{0\}$ s.t. zs = 0
 - Then s = (vz)s = v(0) = 0, contradiction
- Example 1
 - What are the units in $\mathbb{Z}/6\mathbb{Z}$?
 - $\overline{1}, \overline{5}$, since $\overline{1} \cdot \overline{1} = \overline{1}$ and $\overline{5} \cdot \overline{5} = \overline{25} = \overline{1}$
 - What are the zero-divisors in $\mathbb{Z}/6\mathbb{Z}$?
 - $\overline{2}, \overline{3}, \overline{4}$, since $\overline{2} \cdot \overline{3} = \overline{3} \cdot \overline{4} = \overline{0}$
- Example 2
 - If r, s are elements of a ring, and rs = 0, we can't conclude sr = 0

 $\circ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\circ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Proposition 63: One-Sided Zero Divisor and Unit

- Statement
 - Let R be a ring, then
 - $r \in R$, $s \in R \setminus \{0\}$, and $sr = 0 \Rightarrow \exists t \in R \setminus \{0\}$ s.t. rt = 0
 - $u \in R$, and $\exists v \in R$ s.t. $uv = 1 \Rightarrow \exists w \in R$ s.t. wu = 1
- Proof

- Let *V* be a vector space over \mathbb{R} with countably infinite dimension
- Fix a basis $\{e_1, e_2, \dots\}$ of V
- Let $R \coloneqq \{\text{linear transformation } V \rightarrow V\}$ is a ring given by
 - $(f+g)(v) = f(v) + g(v), \forall f, g \in \mathbb{R}$
 - $(fg)(v) = f(g(v)), \forall f, g \in R$
- Check *R* is a ring
 - $id_V \in R$, so $R \neq \emptyset$
 - (*R*, +) is an abelian group
 - $\hfill\square$ Addition is associative
 - □ The zero map is the additive identity
 - \Box Let $f, g \in R$ and $v \in V$
 - $\Box (-f)(v) = -f(v)$ is the additive inverse of *f*
 - $\Box (f+g)(v) = f(v) + g(v) = g(v) + f(v) = (g+f)(v)$
 - Multiplication
 - $\hfill\square$ Associativity of multiplication is clear
 - \Box *id*_V is the multiplicative identity
 - Distributive property
 - $\Box \quad \text{Let } f, g, h \in R \text{ and } v \in V$
 - $\Box (h \circ (f+g))(v) = h(f(v) + g(v)) = (hf)(v) + (hg)(v)$
 - $\Box ((f+g) \circ h)(v) = (f+g)(h(v)) = (fh)(v) + (gh)(v)$
 - \Box So h(f + g) = hf + hg and (f + g)h = fh + gh
- \circ Define
 - $\alpha: V \to V$ by $e_i \mapsto e_{i+1}, \forall i \ge 1$
 - $\beta: V \to V$ by $e_1 \mapsto 0$, and $e_i \mapsto e_{i-1}, \forall i \ge 2$
 - $\gamma: V \to V$ by $e_1 \mapsto e_1$, and $e_i \mapsto 0, \forall i \ge 2$
- $\circ \ \beta \alpha = id_V$
 - Since $e_i \stackrel{\alpha}{\mapsto} e_{i+1} \stackrel{\beta}{\mapsto} e_{(i+1)-1} = e_i, \forall i \ge 1$

 $\circ \ \alpha\beta \neq id_V$

- Suppose $\alpha\beta = id_V$, then $\gamma\alpha\beta = \gamma$
- But $(\gamma \alpha \beta)(e_1) = 0 \neq \gamma(e_1) = e_1$

$$\circ \gamma \alpha = 0$$

- Since $e_i \stackrel{\alpha}{\mapsto} e_{i+1} \stackrel{\gamma}{\mapsto} 0, \forall i \ge 1$
- Notice: neither α nor γ is 0

 $\circ \ \alpha \delta \neq 0, \forall \delta \in R \setminus \{0\}$

- If $\exists \delta \in R \setminus \{0\}$ s.t. $\alpha \delta = 0$, then
- $0 = \beta \alpha \delta = \delta \neq 0$, which is impossible

- \circ Note
 - If $V = \mathbb{P}(\mathbb{R})$, the set of all polynomials over \mathbb{R} , then
 - *α* is analogous to integration
 - *β* is analogous to differentiation
 - γ is analogous to evaluation at 0

Group of Unites

- Definition
 - $\circ \ R^{\times} \coloneqq \{u \in R | u \text{ is a unit}\}\$
- Note
 - $\circ R^{\times}$ is a group under multiplication
- Example
 - $\circ \quad (\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} | (a, n) = 1 \} = \{ \text{units in } \mathbb{Z}/n\mathbb{Z} \}$

Field, Product Ring, Integral Domain

Wednesday, April 18, 2018 10:42 AM

Proposition 64: Units and Zero-Divisors of $\mathbb{Z}/n\mathbb{Z}$

- Statement
 - Let n > 0
 - Every **nonzero element in** $\mathbb{Z}/n\mathbb{Z}$ is either a **unit** or a **zero-divisor**
- Note
 - $\circ~$ We don't have this property in $\mathbb Z$
 - $\circ~$ In Z, the units are ± 1 , there are no zero-divisor
 - $\circ~$ In particular, 2 $\in \mathbb{Z}$ is not 0 or unit or zero-divisor
- Proof
 - Suppose $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ is nonzero and not a unit
 - Let $d \coloneqq (a, n)$, then d > 1
 - Write cd = a, md = n, then
 - $\circ \ \bar{a}\bar{m} = \bar{c}\bar{d}\bar{m} = \bar{c}\bar{n} = \bar{0}$
 - Since md = n, where $1 \le m \le n$ and d > 1
 - *m* cannot be a multiple of *n*
 - So $\bar{a}\bar{m} = \bar{0}$ with $\bar{m} \neq \bar{0}$
 - Therefore \bar{a} is a zero-divisor

Field

- Definition
 - A communitive ring *R* is called a **field** if
 - Every **nonzero** element of *R* is a **unit**
 - i.e. Every nonzero element of *R* have a **multiplicative inverse**
- Example 1
 - **Q**, **R**, **C**
- Example 2
 - $\mathbb{Z}/p\mathbb{Z}$, where *p* is a prime
 - $\circ \quad 1 \leq a \leq p-1, (a,p) = 1 \Rightarrow \bar{a} \in \mathbb{Z}/p\mathbb{Z}$
 - Note: $\mathbb{Z}/n\mathbb{Z}$ is a field $\Leftrightarrow n$ is prime
- Example 3
 - \mathbb{R}^2 is not a field with multiplication defined as $(r_1, r_2)(r'_1, r'_2) = (r_1r'_1, r_2r'_2)$

Product Ring

• Let R_1 , R_2 be rings

- The product ring $R_1 \times R_2$ has the following ring structure
- For addition, it's just the **product as groups**
- For multiplication, $(r_1, r_2)(r_1', r_2') = (r_1r_1', r_2r_2')$ with identity $(1_{R_1}, 1_{R_2})$

Integral Domain

- Definition
 - A communicative ring *R* is an **integral domain** (or just **domain**) if
 - *R* contains no **zero-divisors**
- Example
 - Unites are not zero-divisors, so all fields are domains
 - $\circ~~\mathbb{Z}$ is a domain, but not a field
 - $\mathbb{Z}/n\mathbb{Z}$ is a domain \Leftrightarrow it is a field \Leftrightarrow *n* is prime
 - $R_1 \times R_2$ is a domain \Leftrightarrow one of them is trivial, and the other is a domain

Product Ring, Finite Domain and Field, Subring

Friday, April 20, 2018 10:08 AM

Proposition 65: Criterion for Product Ring to be a Domain

- Statement
 - If R_1 and R_2 are rings, then $R_1 \times R_2$ is a domain iff
 - One of the R_1 or R_2 is a **domain**, and the other is **trivial**
- Proof (⇐)
 - Without loss of generality, assume R_1 is a domain and R_2 is trivial
 - Let $(r_1, r_2), (r'_1, r'_2) \in R_1 \times R_2 \setminus \{(0,0)\}$
 - Then $r_1 \neq 0$ and $r'_1 \neq 0$
 - Since R_1 is a domain, $r_1r'_1 \neq 0$
 - Thus, $(r_1, r_2)(r_1', r_2') = (r_1r_1', r_2r_2') \neq 0$
- $Proof (\Rightarrow)$
 - $\circ (1_{R_1}, 0)(0, 1_{R_2}) = (0, 0)$
 - Since $R_1 \times R_2$ is a domain, either $(1_{R_1}, 0)$ or $(0, 1_{R_2})$ is (0, 0)
 - This means either 1_{R_1} or 1_{R_2} is 0, and thus R_1 or R_2 is trivial
 - Without loss of generality, suppose R_2 is trivial
 - We want to show that R_1 is a domain
 - Let $r_1, r_1' \in R_1 \setminus \{0\}$
 - Then $(r_1, 0), (r'_1, 0) \in R_1 \times R_2 \setminus \{(0, 0)\}$
 - So $(r_1, 0)(r'_1, 0) = (r_1r'_1, 0) \neq (0, 0)$ i.e. $r_1r'_1 \neq 0$

Proposition 66: Finite Domain is a Field

• Statement

• A finite domain *R* is a field

- Proof
 - Let $a \in R \setminus \{0\}$
 - \circ We want to show that *a* has a multiplicative inverse
 - Define a function $F: R \to R$ given by $r \mapsto ar$
 - \circ *F* is injective
 - Suppose $F(r_1) = F(r_2)$
 - Then $ar_1 = ar_2$
 - So $a(r_1 r_2) = 0$
 - Since *R* is a domain, $r_1 r_2 = 0$
 - Thus, $r_1 = r_2$

- *F* is surjective since *R* is finite
- Choose $b \in R$ s.t. F(b) = 1, then ab = 1
- So *b* is the inverse of *a*

Subring

- Definition
 - A **subring** of a ring *R* is a **additive subgroup** *S* of *R* s.t.
 - *S* is **closed under multiplication**
 - S contains 1
- Note
 - A subring of a ring is also a ring
- Example 1
 - A ring is always a subring of itself
- Example 2
 - $\{n \times n \text{ scalar matrix}\} \subseteq \{n \times n \text{ diagonal matrix}\} \subseteq Mat_{n \times n}(\mathbb{R})$
- Example 3
 - $\circ \quad \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- Example 4
 - Let $R := \{ \text{continuous function from } \mathbb{R}^n \text{ to } \mathbb{R} \text{ for some } n \ge 1 \}$
 - Define addition and multiplication as
 - (f+g)(v) = f(v) + g(v)
 - (fg)(v) = f(v)g(v)
 - *f* = 1 is the multiplicative identity
 - Then {polynomial functions with n variables} is a subring of R
- Example 5
 - If $f: R \to S$ is a **ring homomorphism** i.e.
 - *f* is a homomorphism of abelian groups under addition
 - $f(r_1r_2) = f(r_1)f(r_2), \forall r_1, r_2 \in R$
 - $f(1_R) = 1_S$
 - Then im(*f*) is a subring of *S*
 - Proof
 - By group theory, im(f) is an additive subgroup of S
 - $1 \in im(f)$ by assumption
 - If $f(r_1), f(r_2) \in im(f)$, then $f(r_1)f(r_2) = f(r_1r_2) \in im(f)$
- Example 6
 - By HW9 #1, ∃! Ring homomorphism $f: \mathbb{Z} \to R$ for any ring R
 - \circ im(f) is the smallest subring of R

- Also, $im(f) \cong \mathbb{Z}/n\mathbb{Z}$, where n = char(R)
- Note: A **ring isomorphism** is a ring homomorphism that is **bijective**
- Example 7
 - ${(r_1, 0)|r_1 \in R_1} \subseteq R_1 \times R_2$ is not a subring
 - Since it doesn't contain the identity (1,1)

Polynomial Ring, Ideal, Principal Ideal

Monday, April 23, 2018 9:57 AM

Polynomial Ring

- Polynomials over a ring
 - Let *R* be a **commutative ring**
 - A **polynomial over** *R* is the sum
 - $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where
 - *x* is a variable, and $a_i \in R$
- Degree
 - Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial over *R*
 - The **degree** of *f*, denoted as deg(g), is $sup\{n \ge 0 | a_n \neq 0\}$
 - Note: $deg(0) = -\infty$
- Leading term and leading coefficient
 - If $\deg(f) = n \ge 0$
 - The **leading term** of f is $a_n x^n$
 - The **leading coefficient** of f is a_n
- Polynomial ring
 - Let $R[x] \coloneqq \{$ Polynomials over a commutative ring $R\}$
 - Then R[x] is a **commutative ring** with
 - o ordinary addition and multiplication of polynomials
- *R* is a subring of *R*[*x*]
 - *R* is identified with the **constant polynomials**
 - There is a ring homomorphism $i: R \to R[x]$ defined as
 - mapping the ring element $r \in R$ to the constant polynomial r
 - The constant polynomials in R[x] form a subring
 - And *i* gives an isomorphism between *R* and the subring
- Polynomial ring with **multiple variables**
 - We define polynomial rings in several variables inductively
 - $\circ \ R[x_1, x_2] = (R[x_1])[x_2]$
 - :
 - $\circ \ R[x_1, ..., x_n] = (R[x_1, ..., x_{n-1}])[x_n]$

Proposition 67: Polynomial Rings over a Domain

- Statement
 - Let *R* be a **domain**

- Let $p, q \in R[x] \setminus \{0\}$, then
- 1. $\deg(pq) = \deg(p) + \deg(q)$
- 2. $(\mathbf{R}[\mathbf{x}])^{\times} = \mathbf{R}^{\times}$
- 3. R[x] is a domain
- Proof
 - Write
 - $p = a_n x^n + \dots + a_1 x + a_0$, where deg(p) = n
 - $q = b_m x^m + \dots + b_1 x + b_0$, where $\deg(q) = m$
 - Then $a_n \neq 0$ and $b_m \neq 0$
 - Since *R* is a domain, $a_n m_m \neq 0$
 - So, the leading term of pq is $a_n b_m x^{m+n}$, which verifies (1)
 - Also, $a_n b_m x^{m+n} \neq 0$. This proves (3)
 - For (2), suppose pq = 1, then
 - $\deg(p) + \deg(q) = \deg(pq) = 0$ by (1)
 - Thus, deg(p) = 0 = deg(q) i.e. $p, q \in R$
 - Since $pq = 1, p, q \in \mathbb{R}^{\times}$
 - Thus $(R[x])^{\times} \subseteq R^{\times}$
 - Also, $R^{\times} \subseteq (R[x])^{\times}$
 - Therefore $(R[x])^{\times} = R^{\times}$

Ideal

- Definition
 - Let *I* be a subset of ring *R*, and let $r \in R$
 - Define $rI \coloneqq \{rx | x \in I\}$
 - \circ *I* is a **left ideal** of *R* if
 - *I* is an **additive subgroup** of *R*
 - $rI = I, \forall r \in R$
 - Right ideal is defined similarly
 - *I* is an **ideal** if *I* is **both a left and right ideal**
- Intuition
 - Normal subgroups are to groups as ideals are to rings
- Example
 - If *R* is a ring, then *R* and $\{0\}$ are both ideals

Proposition 68: Ideal Containing 1 is the Whole Ring

- Statement
 - If $I \subseteq R$ is an ideal, then $I = R \Leftrightarrow 1 \in I$
- $Proof (\Rightarrow)$

- Trivial
- $Proof(\Leftarrow)$
 - By definition of ideal, $rI = I, \forall r \in R$
 - So $r = r \cdot 1 \in I$
 - Thus R = I
- Corollary
 - $\circ~$ Recall that subrings always contain 1 ~
 - If S is a subring of ring R, then
 - $S \subseteq R$ is an ideal $\Leftrightarrow S = R$
 - If $I \subseteq R$ is an ideal, then
 - *I* is a subring of $R \iff I = R$

Principal Ideal

- Definition
 - Let *R* is a **commutative ring**, and let r ∈ R, then
 - $(r) := \{ar | a \in R\}$ is called the **principal ideal generated by** r
- Proof: Principal ideals are ideals
 - $0 = 0 \cdot r \in (r)$, so (r) is not empty
 - Let $ar, br \in (r)$, then
 - $ar br = (a b)r \in (r)$
 - Therefore, (*r*) is an additive subgroup of *R*
 - Let $a \in R$, $br \in (r)$, then
 - $a(br) = abr \in (r)$
 - $(br)a = bra = abr \in (r)$
 - So $a(r) = (r)a, \forall a \in R$
- Example
 - If $n \in \mathbb{Z}$, then (*n*) is just the cyclic subgroup generated by *n*

Examples of Ideals, Quotient Ring

Wednesday, April 25, 2018 9:56 AM

Examples of Ideals

- $\{(n)|n \in \mathbb{Z}\}$ is all of the ideals in \mathbb{Z}
 - Let $I \subseteq \mathbb{Z}$ be a nonzero ideal
 - \circ Let *d* be the smallest positive integer in *I*
 - $\circ \ I \supseteq (d)$
 - This is clear
 - $\circ \ (d) \supseteq I$
 - Suppose $x \in I$
 - Write x = qd + r where $q, r \in \mathbb{Z}$, and $0 \le r < d$
 - Then we have r = x qd, where $x \in I$, $qd \in I$
 - So $r \in I$, and the minimality of d forces r = 0
 - Therefore $x \in (d)$
- If $f: R \to S$ is a ring homomorphism, then ker f is an ideal
 - ker *f* is an additive subgroup of *R* by group theory
 - Let $r \in R$, and $x \in \ker f$
 - Then f(rx) = f(r)f(x) = 0 = f(x)f(r) = f(xr)
 - Thus $xr, rx \in \ker f$
- There are left ideals that are not right ideals, and vice versa
 - Let $R = Mat_n(S)$, where S is any ring
 - Let $1 \le k \le n$
 - Let $C_k := \{ \text{matrices with 0 entries except in the } k^{\text{th}} \text{ column} \} \subseteq R$
 - $\circ C_k$ is a left ideal
 - Let $A \in Mat_n(S)$, and $B \in C_k$
 - The (*i*, *j*) entry of *AB* is the dot product of *i*-th row and *j*-th column
 - It's clear that the (i, j) entry of AB is 0 unless j = k
 - $\circ C_k$ is not a right ideal
 - $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in C_2 \subseteq \operatorname{Mat}_2(\mathbb{R})$
 - $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \notin C_2$
 - Similarly, $R_k := \{$ matrices with 0 entries except in the k^{th} row $\} ⊆ R$
 - Then R_k is a right ideal, but not left ideal

Proposition 69: Quotient Ring

- Statement
 - Let *R* be a ring
 - If $I \subseteq R$ is an ideal, then the **quotient group** R/I is a ring with multiplication

• (r+I)(r'+I) = rr' + I

- Conversely, if
 - $J \subseteq R$ is an additive subgroup
 - *R*/*J* is a ring with multiplication defined above
- Then *J* is an ideal
- Proof (\Longrightarrow)
 - Multiplication is well-defined
 - Let $r_1 + I = r_2 + I$, and $r'_1 + I = r'_2 + I$
 - We must show that $r_1r_1' + I = r_2r_2' + I$
 - $r_1r_1' r_2r_2' = r_1r_1' + r_1r_2' r_1r_2' r_2r_2' = r_1(r_1' r_2') + (r_1 r_2)r_2'$
 - $\begin{cases} r_1 + I = r_2 + I \\ r'_1 + I = r'_2 + I \end{cases} \Rightarrow \begin{cases} r_1 r_2 \in I \\ r'_1 r'_2 \in I \end{cases} \Rightarrow r_1 r'_1 r_2 r'_2 \in I \end{cases}$
 - Thus $r_1r_1' + I = r_2r_2' + I$
 - $\circ \quad \mathbf{1}_{R/I} = \mathbf{1} + I$
 - Associativity and distributivity of R/I follow from analogous properties of R
- Proof (\Leftarrow)
 - Suppose $J \subseteq R$ is an additive subgroup, and R/J is a ring with above operation
 - Then $f: R \to R/J$ given by $r \mapsto r + J$ is a ring homomorphism with ker f = J
 - Thus, *J* is an ideal

Isomorphism Theorems for Rings

Friday, April 27, 2018 10:08 AM

Theorem 70: The First Isomorphism Theorem for Rings

- Statement
 - If $f: R \rightarrow S$ is a **ring homomorphism**, then there is an induced **isomorphism**
 - \overline{f} : $R/\ker f \rightarrow \operatorname{im}(f)$, given by $r + \ker f \mapsto f(r)$
- Proof
 - We need only check $\bar{f}(\mathbf{1}_{R/\ker f}) = \mathbf{1}_{S}$, and \bar{f} preserves multiplication
 - $\bar{f}(1_{R/\ker f}) = \bar{f}(1 + \ker f) = f(1_R) = 1_S$

$$\circ \ \bar{f}((r_1+I)(r_2+I)) = \bar{f}(r_1r_2+I) = f(r_1r_2) = f(r_1)f(r_2) = \bar{f}(r_1+I)\bar{f}(r_2+I)$$

- Example: $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$
 - Let $F: \mathbb{R}[x] \to \mathbb{C}$ given by $p \mapsto p(i)$
 - *F* is a ring homomorphism
 - In fact, if *R* is a subring of some ring *S*, and $s \in S$, then
 - The function $R[x] \rightarrow S$ given by $p \mapsto p(s)$ is a **ring homomorphism**
 - \circ *F* is surjective
 - If $a + bi \in \mathbb{C}$, then F(a + bx) = a + bi
 - $\circ (x^2 + 1) \subseteq \ker f$
 - If $p(x^2 + 1) \in (x^2 + 1)$, then
 - $F(p(x^2+1)) = F(p)F(x^2+1) = p(i)p(i^2+1) = 0$
 - $\circ \ \ker f \subseteq (x^2 + 1)$
 - Let $p \in \ker f$
 - Using polynomial division, we can find $q, r \in \mathbb{R}[x]$ s.t.
 - $p = q(x^2 + 1) + r$ where deg $r < deg(x^2 + 1) = 2$
 - Write r = ax + b for some $a, b \in \mathbb{R}$
 - Since $p \in \ker f$, p(i) = 0
 - $0 = p(i) = q(i) \times (i^2 + 1) + r(i) = r(i) = ai + b$
 - So a = b = 0
 - Therefore $p = q(x^2 + 1)$, and $p \in (x^2 + 1)$
 - Therefore, ker $f = (x^2 + 1)$
 - By the First Isomorphism Theorem of Rings, $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$
- Example: $\mathbb{R}[x]/(x-a) \cong \mathbb{R}$, where $a \in \mathbb{R}$
 - Let $F: \mathbb{R}[x] \to \mathbb{R}$ given by $p \mapsto p(a)$
 - \circ *F* is surjective

- $F(b) = b, \forall b \in \mathbb{R}$
- *F* is a ring homomorphism
- $\circ (x-a) \subseteq \ker f$
 - If $p(x a) \in (x a)$, then
 - F(p(x-a)) = F(p)F(x-a) = p(a)p(a-a) = 0
- $\circ \ \ker f \subseteq (x-a)$
 - Let $p \in \ker f$
 - Divide x a into p to obtain $q, r \in \mathbb{R}[x]$ s.t.
 - p = q(x a) + r, where deg r < 1
 - Since $p \in \ker f$, 0 = p(a) = q(a)(a a) + r = r
 - Thus r = 0, so $p = q(x a) \in (x a)$
- Therefore, ker f = (x a)
- By the First Isomorphism Theorem of Rings, $\mathbb{R}[x]/(x-a) \cong \mathbb{R}$
- Example: $\mathbb{R}[x]/(x^2-1) \cong \mathbb{R} \times \mathbb{R}$
 - Recall: Chinese Remainder Theorem
 - If *I*, *J* are ideals in a **commutative ring** *R* s.t. *I* + *J* = *R*
 - Then $R/IJ \cong R/I \times R/J$, where
 - $I + J = \{x + y | x \in I, y \in J\}$
 - $IJ = \{x_1y_1 + \dots + x_ny_n | n \in \mathbb{Z}_{\geq 1}, x_i \in I, y_i \in J\}$

○ $(x^2 - 1) \subseteq (x + 1)(x - 1)$

• This is obvious, since $x^2 - 1 \in (x + 1)(x - 1)$

○ $(x+1)(x-1) \subseteq (x^2-1)$

- Let $p_1q_1 + \dots + p_nq_n \in (x-1)(x+1)$, where $p_i \in (x-1), q_i \in (x+1)$
- Each term $p_i q_i$ is of form

$$\Box f_i(x-1) \cdot g_i(x+1) = f_i g_i(x^2-1) \text{ for some } f_i, g_i \in \mathbb{R}$$

• Thus $p_i q_i \in (x^2 - 1) \Rightarrow p_1 q_1 + \dots + p_n q_n \in (x^2 - 1)$

• Thus $(x^2 - 1) = (x + 1)(x - 1)$

 $\circ \quad \mathbb{R}[x]/(x+1)(x-1) \cong \mathbb{R} \times \mathbb{R}$

- $\frac{1}{2}(x+1) \frac{1}{2}(x-1) = 1 \in \mathbb{R}[x]$
- \Rightarrow $(x+1) + (x-1) = \mathbb{R}[x]$
- $\Rightarrow 1 \in (x+1) + (x-1)$
- Chinese Remainder Theorem implies $\mathbb{R}[x]/(x+1)(x-1) \cong \mathbb{R} \times \mathbb{R}$
- Therefore, $\mathbb{R}[x]/(x^2-1) \cong \mathbb{R} \times \mathbb{R}$

Other Isomorphism Theorems for Rings

- The Second Isomorphism Theorem for Rings
 - If *I* is an ideal of a ring *R*, and *S* is a subring of *R*

- Then S + I is also a subring of R, where
- *I* is an ideal of S + I, and $(S + I)/I \cong S/(I \cap S)$
- The Third Isomorphism Theorem for Rings

• If
$$I \subseteq J$$
 are ideals of a ring R , then $\frac{R/I}{J/I} \cong R/J$

- Correspondence Theorem
 - If *R* is a ring, and *I* is an ideal of *R*
 - Then there is a bijection {ideals of R/I} \leftrightarrow {ideals of R containing I}

Ideal Generated by Subset, Maximal Ideal

Monday, April 30, 2018 10:00 AM

Ideal Generated by Subset

- Definition
 - Let *R* be a **commutative ring**
 - If *A* is a subset of *R*, then the **ideal generated by** *A* is
 - $\circ (A) \coloneqq \{r_1 a_1 + \dots + r_n a_n | n \in \mathbb{Z}_{\geq 1}, r_i \in R, a_i \in A\} \subseteq R$
 - If *A* is finite, then we write (*A*) as $(a_1, ..., a_n)$
- Note
 - When |A| = 1, (A) is a principal ideal
- Example: $(2, x) \subseteq \mathbb{Z}[x]$
 - Suppose, by way of contradiction, that (2, x) = (p) for some $p \in \mathbb{Z}[x]$
 - Since $2 \in (p)$
 - 2 = pq for some $q \in \mathbb{Z}[x]$
 - $0 = \deg 2 = \deg p + \deg q$
 - $\deg p = \deg q = 0$
 - Since $x \in (p)$
 - Choose $r \in \mathbb{R}[x]$ s.t. pr = x, then deg r = 1
 - Write r = ax + b, where $a, b \in \mathbb{Z}$
 - Then pr = p(ax + b) = x
 - So *pa* = 1, by comparing coefficients
 - Since $p \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}$, $p \in \{\pm 1\}$
 - Therefore $(2, x) = (p) = \mathbb{Z}[x]$
 - So, 1 = 2p' + xq', where $p', q' \in \mathbb{Z}[x]$
 - Evaluating both side at 0, we get 1 = 2p'(0) = 0
 - This is a contradiction, so $(2, x) \subseteq \mathbb{Z}[x]$
- Example: $\mathbb{Z}[x]/(2,x) \cong \mathbb{Z}/(2)$
 - Define $F: \mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z}$ given by $a_0 x^n + \dots + a_1 x + a_0 \mapsto \overline{a_0}$
 - *F* is a ring homomorphism
 - *F* factors as $\mathbb{Z}[x] \to \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$, where $p \mapsto p(0) \mapsto p(\overline{0})$
 - Composition of homomorphisms is still a homomorphism
 - \circ F is certainly surjective
 - $\circ (2, x) \subseteq \ker F$
 - Let $p \in (2, x)$
 - Then p = 2g + xh for some $g, h \in \mathbb{Z}[x]$

- Since *xh* has no constant term, and 2*g* has even constant term
- $F(p) = F(2g) = F(g) = \overline{0} \in \mathbb{Z}/2\mathbb{Z}$
- $\circ \ \ker F \subseteq (2, x)$
 - Let $p = a_n x^n + \dots + a_1 x + a_0 \in \ker F$
 - Write $a_0 = 2b$, where $b \in \mathbb{Z}$
 - Then $p = x(a_n x^{n-1} + \dots + a_1) + 2b \in (2, x)$
- Therefore, ker F = (2, x)
- By the First Isomorphism Theorem of , $\mathbb{Z}[x]/(2, x) \cong \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/(2)$
- Note: $\mathbb{Z}[x]/(x,n) \cong \mathbb{Z}/(n)$

Maximal Ideal

- An ideal *M* in a ring *R* is **maximal** if
- $M \neq R$, and the only ideals containing M are M and R

Proposition 71: Criterion for Maximal Ideal

- Statement
 - If *R* is a commutative ring, and $M \subseteq R$ is an ideal
 - Then *M* is maximal $\Leftrightarrow R/M$ is a field
- $Proof (\Rightarrow)$
 - $\circ~$ The only ideals containing M are R and M
 - Thus, R/M has exactly 2 idals, by the Correspondence Theorem
 - $\circ~$ Namely, the zero ideal, and the entire ring
 - Let $x + M \in R/M$ s.t. $x \notin M$
 - Suppose $x \notin M$ i.e. $x + M \neq 0_{R/M}$
 - Then (x + M) = R/M
 - So $1 + M \in (x + M)$
 - Choose $y + M \in R/M$ s.t. (x + M)(y + M) = 1 + M
 - This shows x + M is a unit
 - Therefore R/M is a field
- $Proof(\Leftarrow)$
 - Suppose R/M is a field
 - Then R/M has exactly two ideals, 0 and R/M
 - By the Correspondence Theorem,
 - There are exactly two ideals containing M, that is R and M
 - By definition of maximal ideal, *M* is maximal

Examples of Maximal Ideals

- What are the maximal ideals in Z?
 - $(n) \in \mathbb{Z}$ is maximal $\Leftrightarrow \mathbb{Z}/(n)$ is a field $\Leftrightarrow n$ is prime

- Is $(x) \subseteq \mathbb{Z}[x]$ maximal?
 - No, $(x) \subseteq (2, x) \neq \mathbb{Z}[x]$
 - Also, by First Isomorphism Theorem, $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$, but \mathbb{Z} is not a field
 - Define a ring map $\mathbb{Z}[x] \to \mathbb{Z}$ given by $p \to p(0)$
 - *F* is surjective, and ker F = (x)
- Is $(x^2 + 1) \subseteq \mathbb{R}[x]$ maximal?
 - $\circ \quad \mathbb{R}[x]/(x^2+1) \cong \mathbb{C} \text{ is a field}$
- Is $(x^2 1) \subseteq \mathbb{R}[x]$ maximal
 - $\mathbb{R}[x]/(x^2-1) \cong \mathbb{R} \times \mathbb{R}$ is not a field, since (1,0) is not a unit
 - Another way to see $(x^2 1)$ is not maximal
 - $(x^2 1) \subsetneq (x 1) \subsetneq \mathbb{R}[x]$
 - $(x^2 1) \subsetneq (x + 1) \subsetneq \mathbb{R}[x]$

Prime Ideal, Euclidean Domain

May 2, 2018 10:00 AM

Prime Ideal

- Let *R* be a commutative ring
- An ideal $P \subsetneq R$ is **prime** if
- $a, b \in R$, and $ab \in P \Rightarrow a \in P$ or $b \in P$

Proposition 72: Prime Ideas of $\mathbb Z$

- Statement
 - The prime ideals of \mathbb{Z} are ideals of the form (*n*), where *n* is prime or n = 0
- Proof (\Rightarrow)
 - Let $(n) \subseteq \mathbb{Z}$ be a prime ideal, and $n \neq 0$
 - We want to show that *n* is prime
 - Choose $a, b \in \mathbb{Z}$ s.t. n = ab
 - Then $ab \in (n)$, so either $a \in (n)$ or $b \in (n)$, by definiton of prime ideal
 - Without loss of generality, suppose $a \in (n)$, then n|a|
 - Choose $q \in \mathbb{Z}$ s.t. nq = a
 - $\circ \quad n = ab \Rightarrow n = nqb \Rightarrow 1 = qb \Rightarrow b \in \{\pm 1\}$
 - So *n* is a prime
- Proof (⇐)
 - \circ (0) is prime
 - Let $a, b \in \mathbb{Z}$, and $ab \in (0)$
 - Then ab = 0
 - $\Rightarrow a = 0 \text{ or } b = 0$
 - $\Rightarrow a \in (0) \text{ or } b \in (0)$
 - Therefore (0) is prime
 - (*p*) is prime for $p \in \mathbb{Z}$ prime
 - Let $a, b \in \mathbb{Z}$, and say $ab \in (p)$
 - Then p|ab
 - Since *p* is prime, this means *p*|*a* or *p*|*b*
 - $\Rightarrow a \in (p) \text{ or } b \in (p)$

Proposition 73: Criterion for Prime Ideal

- Statement
 - Let *R* be a commutative ring, $P \subseteq R$ an ideal, then
 - *P* is prime $\Leftrightarrow R/P$ is a domain

- In particular, *R* is a domain \Leftrightarrow zero ideal is prime
- $Proof (\Rightarrow)$
 - Let $a + P, b + P \in (R/P) \setminus \{P\}$
 - Then (a + P)(b + P) = ab + P = 0
 - So, $ab \in P$
 - Since *P* is prime, $a \in P$ or $b \in P$
 - Therefore a + P = 0 or b + P = 0
 - So R/P is a domain
- $Proof(\Leftarrow)$
 - Let $a, b \in R$, and suppose $ab \in P$, then
 - $\circ \quad 0 = ab + P = (a + P)(b + P)$
 - Since R/P is a domain, a + P = 0 or b + P = 0
 - So $a \in P$ or $b \in P$
 - Therefore *P* is prime
- Example
 - $(x^2 1) \subseteq \mathbb{R}[x]$ is not prime, since $\mathbb{R}[x]/(x^2 1) \cong \mathbb{R} \times \mathbb{R}$ is not a domain
 - Also, $x^2 1 \in (x^2 1)$, but $x 1, x + 1 \notin (x^2 1)$

Corollary 74: Maximal Ideal is Prime

• Statement

• If *R* is a commutative ring, and $M \subseteq R$ is maximal, then *M* is prime

- Proof
 - *M* is maximal \Rightarrow *R*/*M* is a field \Rightarrow *R*/*M* is a domain \Rightarrow *M* is prime

Euclidean Domain

- Definition
 - Let R be a domain
 - A **norm** on *R* is a function $N: R \to \mathbb{Z}_{\geq 0}$ s.t. N(0) = 0
 - *R* is called a **Euclidean domain** if *R* is equipped with a norm *N* s.t.
 - $\forall a, b \in R$ with $b \neq 0, \exists q, r \in R$ s.t.
 - a = qb + r, and
 - either r = 0 or N(r) < N(b)
- Example 1
 - \mathbb{Z} is a Euclidean domain, N(a) = |a|
- Example 2
 - If *F* is a field, then *F* is trivially a Euclidean domain
 - Take $N: F \to \mathbb{Z}_{\geq 0}$ to be any function s.t. N(0) = 0

- Then, if $a, b \in F$, where $b \neq 0$, take $q = \frac{a}{b}$, r = 0
- Example 3
 - If *F* is a field, then F[x] is a Euclidean domain, with $N(p) = \deg p$
 - The division algorithm is just polynomial division
 - Note
 - deg $0 = -\infty \notin \mathbb{Z}_{\geq 0}$, so this definition isn't quite right
 - To handle this problem, define a norm that sends values not in $\mathbb{Z}_{\geq 0}$, but
 - any total ordered set in order-preserving bijection with $\mathbb{Z}_{\geq 0}$
 - (For instance, $\mathbb{Z}_{\geq 0} \cup \{-\infty\}$)

Principal Ideal Domain

• A domain in which every ideal is principal is called a principal ideal domain

Proposition 75: Euclidean Domain is a Principal Ideal Domain

- Statement
 - Every ideal in a Euclidean domain *R* is principal
 - More precisely, if $I \subseteq R$ is an ideal, then I = (d), where
 - *d* is an element of *I* with minimum norm
- Proof
 - Let $I \subseteq R$ be an ideal
 - If I = (0), then I is principal, so assume $I \neq (0)$
 - ${N(a)|a \in I \setminus \{0\}}$ has a minimal element, by well-ordering principal
 - Choose $d \in I \setminus \{0\}$ s.t. N(d) is minimal
 - Certainly, $(d) \subseteq I$
 - Let $a \in I$, write a = qd + r, where
 - $q, r \in R$, and
 - either r = 0 or N(r) < N(d)
 - Since $r = a qd \in I$, N(r) can't be smaller than N(d)
 - So $r = 0 \Rightarrow a = qd \Rightarrow a \in (d)$
 - Therefore $I \subseteq (d)$
- Example 1
 - We haven't yet proven that F[x] is a Euclidean domain, where F is a field
 - Once we show this, then F[x] has the property that all of its ideals are principal
- Example 2
 - $\mathbb{Z}[x]$ cannot be a Euclidean domain, since $(2, x) \subseteq \mathbb{Z}[x]$ is not principal

Theorem 76: Polynomial Division

• Statement

- Let *F* be a field, then F[x] is a Euclidean domain
- More specifically, if $a, b \in F[x]$ where $b \neq 0$, then
- \exists ! $q, r \in F[x]$ s.t. a = bq + r and deg $r < \deg b$
- Proof (Existence)
 - We argue by induction on deg *a*
 - If a = 0, take q, r = 0, so assume $a \neq 0$
 - Set $n \coloneqq \deg a$, $m \coloneqq \deg b$
 - If n < m, then take q = 0, r = a
 - Assume $n \ge m$
 - \circ Write

•
$$a = a_n x^n + \dots + a_1 x + a_0$$

•
$$b = b_m x^m + \dots + b_1 x + b_0$$

• Set
$$a' = a - \frac{a_n}{b_m} x^{n-m} b$$

• Then deg $a' < \deg a$

• Since *a* and
$$\frac{a_n}{b_m} x^{n-m} b$$
 have the same leading coefficient

• By inductive hypothesis

•
$$\exists q', r \in F[x]$$
 with $a' = q'b + r$ and $\deg r < \deg b$

• Set
$$q = q' + \frac{a_n}{b_m} x^{n-m} b$$
, then

•
$$a = a' + \frac{a_n}{b_m} x^{n-m} b$$

$$\bullet = q'b + r + \frac{a_n}{b_m} x^{n-m}b$$

• =
$$\left(q' + \frac{\alpha_n}{a_m}x^{n-m}\right)b + r$$

- = qb + r
- Proof (Uniqueness)
 - Suppose bq' + r' = a = bq + r where deg $r < \deg b$, and deg $r' < \deg b$
 - Then $\deg(a bq) < \deg b$ and $\deg(a bq') < \deg b$

$$\circ \Rightarrow \deg((a - bq) - (a - bq')) = \deg(bq' - bq) = \deg b + \deg(q' - q) < \deg b$$

$$\circ \ \Rightarrow \deg(q'-q) < 0 \Rightarrow q' = q$$

• It follows immediately that r' = r