
ℙ(𝑋 = 𝑥 |𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) = ℙ(𝑋 = 𝑥 |𝑋 = 𝑥 )○

Markov Property•

𝑝 (𝑖, 𝑗) = 𝑝 (𝑖, 𝑙)𝑝 (𝑙, 𝑗)

 

∈

○

Chapman-Kolmogorov Equation•

{𝑇 = 𝑛} can be expressed using the variables 𝑋 , 𝑋 , … , 𝑋○

Stopping Time•

ℙ(𝑋 = 𝑗|𝑋 = 𝑖, 𝑇 = 𝑛) = 𝑝(𝑖, 𝑗)○

Strong Markov Property•

𝑇 = min{𝑛 ≥ 1|𝑋 = 𝑦} is the time of first return○

𝑇 = min 𝑛 > 𝑇 𝑋 = 𝑦 is the time of 𝑘-th return○

𝜌 = ℙ 𝑇 < ∞ is the probability of reaching 𝑦 from 𝑥 for 𝑘 times○

Return Time/Probability•

𝑁(𝑦): Number of visits to 𝑦 after time 0○

𝑁 (𝑦):Number of visits to 𝑦 up to time 𝑛○

Number of Visits•

ℙ (𝐴) = (𝐴|𝑋 = 𝑥)○

ℙ (𝑋 = 𝑥 , 𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) = 𝜇(𝑥 ) 𝑝(𝑥 , 𝑥 )○

Initial Distribution•

𝑦 is transient ⇔ 𝜌 = ℙ 𝑇 < ∞ < 1 ⇔ 1 − 𝜌 = ℙ 𝑇 = ∞ > 0○

𝑦 is recurrent ⇔ 𝜌 = ℙ 𝑇 < ∞ = 1 ⇔ 1 − 𝜌 = ℙ 𝑇 = ∞ = 0○

Transient and Recurrent•

Communication: 𝑥 ⇒ 𝑦 iff 𝑝 (𝑥, 𝑦) > 0 for some 𝑛 ≥ 0•

Closed (impossible to get out of): If 𝑖 ∈ 𝐶 and 𝑝(𝑖, 𝑗) > 0, then 𝑗 ∈ 𝐶•

Irreducible (freely moved about):  𝑖 ⇔ 𝑗 , ∀𝑖, 𝑗 ∈ 𝐶•

Tail − Sum Formula:  𝔼𝑁 = ℙ(𝑁 ≥ 𝑘)•

𝔼 𝑁(𝑦) =
𝜌

1 − 𝜌
⎯⎯⎯⎯⎯⎯⎯○

𝔼 𝑁 𝑦 = 𝑝 𝑥, 𝑦

Theorems Related to Recurrence•

Markov Chain

Sunday, October 7, 2018 10:30 PM
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𝔼 𝑁(𝑦) = 𝑝 (𝑥, 𝑦)○

𝑦 is recurrent ⇔ 𝑝 (𝑦, 𝑦)

 

= 𝐸 𝑁(𝑦) = +∞○

If 𝑥 ⇒ 𝑦 and 𝑦 ⇒ 𝑧, then 𝑥 ⇒ 𝑧○

If 𝑥 ⇒ 𝑦 and 𝜌 < 1, then 𝑥 is transient○

If 𝑥 is recurrent and 𝑥 ⇒ 𝑦, then 𝜌 = 1○

If 𝑥 is recurrent and 𝑥 ⇒ 𝑦, then 𝑦 is recurrent ○

In a finite closed set of states, there is at least one recurrent state○

Finite, Closed, Irreducible ⇒ Recurrent○

|𝑆| < ∞ ⇒ 𝑆 = 𝑇 ∪ 𝑅 ∪ ⋯ ∪ 𝑅  for 𝑇, 𝑅  disjoint, 𝑅  irreducible○

𝜇 is a stationary measure ⇔ 𝜇 = 𝜇𝒫 ⇔ 𝜇(𝑗) = 𝜇(𝑖)𝑝(𝑖, 𝑗)

 

∈

○

𝜋 is a stationary distribution ⇔ 𝜋 is a stationary measure and 𝜋(𝑗)

 

∈

= 1○

Normalize 𝜇 to get 𝜋:  𝜋(𝑘) =
𝜇(𝑘)

∑ 𝜇(𝑙) 
∈

⎯⎯⎯⎯⎯⎯⎯⎯○

Stationary Distribution/Measure•

𝑥 is positive recurrent if 𝔼 𝑇 < ∞○

𝑥 is null recurrent if 𝔼 𝑇 = ∞○

Positive vs Null Recurrent•

If a MC is irreducible, aperiodic, and 𝜋 exists, then lim
→

𝑝 (𝑥, 𝑦) = 𝜋(𝑦)○

Convergence Theorem•

If a MC is irreducible and recurrent, then 
𝑁 (𝑦)

𝑛
⎯⎯⎯⎯⎯⎯→

1

𝔼 𝑇
⎯⎯⎯⎯⎯ =

 
𝜋(𝑦)○

Asymptotic Frequency •

Suppose a MC is irreducible and 𝜋 exists○

If |𝑓(𝑥)|𝜋(𝑥)

 

∈

< ∞, then 
1

𝑛
⎯⎯ 𝑓(𝑋 ) → 𝑓(𝑥)𝜋(𝑥)

 

∈

= 𝔼 𝑓(𝑥 )○

Law of Large Numbers for MC•

A stochastic matrix is doubly stochastic if its column sum to 1 𝑖. 𝑒. 𝑝(𝑥, 𝑦)

 

∈

= 1○

𝜋(𝑥) =
1

𝑁
⎯⎯, ∀𝑥 ∈ 𝑆 is a stationary distribution ⇔ the MC is doubly stochastic○

Doubly Stochastic•

𝜋(𝑥)𝑝(𝑥, 𝑦) = 𝜋(𝑦)𝑝(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝑆○

All distributions satisfying the detailed balance equations are stationary

Detailed Balance•
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All distributions satisfying the detailed balance equations are stationary○

All random walks' graphs satisfy DBE's○

⎩
⎨

⎧ ℎ(𝑎) = 1, ℎ(𝑏) = 0

ℎ(𝑥) = 𝑝(𝑥, 𝑦)ℎ(𝑦)

 

∈

, ∀𝑥 ∈ 𝐶 ≔ 𝑆 ∖ {𝑎, 𝑏} ⇒ ℎ(𝑥) = ℙ (𝑉 < 𝑉 )○

Exit Distribution•

Define 𝑉 ≔ inf{𝑛 ≥ 0|𝑋 ∈ 𝐴} and 𝐶 ≔ 𝑆 ∖ 𝐴. Suppose ℙ (𝑉 < ∞) > 0, ∀𝑥 ∈ 𝐶○

⎩
⎨

⎧ 𝑔(𝑎) = 0, ∀𝑎 ∈ 𝐴

𝑔(𝑥) = 1 + 𝑔(𝑦)𝑝(𝑥, 𝑦)

 

∈

⇒ 𝑔(𝑥) = 𝔼 [𝑉 ]○

Exit Time•

𝑋~Exp(𝜆) ⇔ 𝑓 (𝑡) = 𝜆𝑒 𝑡 ≥ 0
0 𝑡 < 0

⇔ 𝐹 (𝑥) = 1 − 𝑒 𝑥 ≥ 0
0 𝑥 < 0

○

𝔼[𝑋] =
1

𝜆
⎯⎯, Var[𝑋] =

1

𝜆
⎯⎯○

ℙ(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑠) = ℙ(𝑋 > 𝑡)○

Exponential Distribution•

𝑇~Gamma(𝑛, 𝜆) ⇔ 𝑇 = Sum of 𝑛 Exp(𝜆) ⇔ 𝑓 (𝑡) = 𝜆𝑒 ⋅
(𝜆𝑡)

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ 𝑡 ≥ 0

0 𝑡 < 0

○

𝔼[𝑇] =
𝑛

𝜆
⎯⎯, Var[𝑇] =

𝑛

𝜆
⎯⎯○

Gamma Distribution•

𝑋~Poisson(𝜆) ⇔ 𝑝 (𝑛) = 𝑒
𝜆

𝑛!
⎯⎯⎯⇒ 𝔼[𝑋] = Var[𝑋] = 𝜆○

Poisson Distribution•

Interarrival time: 𝜏 ~ Exp(𝜆)○

Arrival time: 𝑇 = 𝜏 + ⋯ + 𝜏 ~Gamma(𝑛, 𝜆)○

Number of arrivals up to time 𝑠: 𝑁(𝑠)~Poisson(𝜆𝑠)○

Poisson Process•

𝑁(0) = 0 (with probability 1)○

𝑁(𝑡 + 𝑠) − 𝑁(𝑠)~Poisson(𝜆𝑡)○

𝑁(𝑡) has independent increments○

Equivalent Definition of Poisson Process•

𝑆(𝑡) = 𝑌 + 𝑌 + ⋯ + 𝑌 ( ) = 𝑌

( )

○

𝑆 𝑡 = 0 when 𝑁 𝑡 = 0

Compound Poisson Process•

Poisson Process
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𝑆(𝑡) = 0 when 𝑁(𝑡) = 0○

𝐸[𝑆] = 𝐸[𝑁]𝐸[𝑌 ]○

Var[𝑆] = 𝔼[𝑁]Var[𝑌 ] + Var[𝑁](𝔼[𝑌 ])○

Mean and Variance of Random Sum•

Var(𝑆) = 𝜆𝔼 𝑌○

𝔼[𝑆(𝑡)] = 𝜆𝑡𝔼[𝑌 ]○

Var[𝑆(𝑡)] = 𝜆𝑡𝔼 𝑌○

Mean and Variance of Compound Poisson Process•

Define 𝑁 (𝑡) = 𝟙{𝑌 = 𝑗}

( )

 be the number of arrivales up to time 𝑡 of type 𝑗○

Then 𝑁 (𝑡), 𝑁 (𝑡), … are independent Poisson process with rate 𝜆 = 𝜆ℙ(𝑌 = 𝑗)○

Thinning a Poisson Process•

Suppose 𝑁 (𝑡), … , 𝑁 (𝑡) are independent Poisson process with rates 𝜆 , … , 𝜆○

Then 𝑁(𝑡) = 𝑁 (𝑡) + ⋯ + 𝑁 (𝑡) is a Poisson process with rate 𝜆 = 𝜆 + ⋯ + 𝜆○

Superposition of Poisson Processes•

(𝑇 , … , 𝑇 |𝑁(𝑡) = 𝑛) = 𝑈( ), … , 𝑈( )○

𝑓(𝑡 , … , 𝑡 ) =
𝑛!

𝑡
⎯⎯ 0 ≤ 𝑡 ≤ ⋯ ≤ 𝑡 ≤ 𝑡

0 otherwise

○

Conditioning of Poisson Processes•

ℙ(𝑁(𝑠) = 𝑘|𝑁(𝑡) = 𝑛) =
𝑛
𝑘

𝑠

𝑡
⎯ 1 −

𝑠

𝑡
⎯  for 𝑠 < 𝑡 and 0 ≤ 𝑘 ≤ 𝑛○

Binomial and Conditioning of Poisson Processes•

Renewal process: Like a Poisson process, but waiting time 𝑡 do not have to be Exp(𝜆)•

Arrival LLN:   lim
→

𝑁(𝑡)

𝑡
⎯⎯⎯⎯ =

1

𝜇
⎯⎯, where 𝜇 = 𝔼[𝑡 ]•

Let 𝑟 = reward/cost of 𝑖-th renewal, and 𝑅(𝑡) = 𝑟

( )

, then, lim
→

𝑅(𝑡)

𝑡
⎯⎯⎯⎯ =

𝔼[𝑟 ]

𝔼[𝑡 ]
⎯⎯⎯⎯○

Reward LLN•

Let 𝑠 , 𝑠 , … be the times in state 1, and 𝑢 , 𝑢 , … be times in state 2○

Then the limiting fraction of time spent in state 1 is 
𝔼[𝑠 ]

𝔼[𝑠 ] + 𝔼[𝑢 ]
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯○

Alternating LLN•

𝐴(𝑡) = age = time since last renewal = 𝑡 − 𝑇 ( )○

𝑍(𝑡) = residual life = time until next renewal = 𝑇 ( ) − 𝑡○

lim
→

ℙ 𝐴 𝑡 > 𝑥, 𝑍 𝑡 > 𝑦 =
1

𝔼 𝑡
ℙ 𝑡 > 𝑧 𝑑𝑧

Age and Residual Life•

Renewal Process
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lim
→

ℙ(𝐴(𝑡) > 𝑥, 𝑍(𝑡) > 𝑦) =
1

𝔼[𝑡 ]
⎯⎯⎯⎯ ℙ(𝑡 > 𝑧)𝑑𝑧○

Limiting PDF of 𝑍(𝑡) is 𝑔(𝑧) =
ℙ(𝑡 > 𝑧)

𝔼[𝑡 ]
⎯⎯⎯⎯⎯⎯⎯⎯ for 𝑧 ≥ 0, and same for 𝐴(𝑡)○

Limiting expected value of 𝐴(𝑡) and 𝑍(𝑡) is 
𝔼 𝑡

2𝔼[𝑡 ]
⎯⎯⎯⎯⎯⎯○

If 𝑡 ~𝑓 then the limiting joint PDF of 𝐴(𝑡) and 𝑍(𝑡) is 
𝑓(𝑎 + 𝑧)

𝔼[𝑡 ]
⎯⎯⎯⎯⎯⎯⎯⎯○

For any time 0 ≤ 𝑠 < ⋯ < 𝑠 < 𝑠, and any states 𝑗, 𝑖, 𝑖 , … , 𝑖 , we have○

ℙ 𝑋 = 𝑗 𝑋 = 𝑖, 𝑋 = 𝑖 , … , 𝑋 = 𝑖 = ℙ(𝑋 = 𝑗|𝑋 = 𝑖) = ℙ(𝑋 = 𝑗|𝑋 = 𝑖)○

Markov Property•

𝑝 (𝑖, 𝑗) = 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

∈

○

Chapman–Kolmogorov Equation•

Jump Rates:  For any states 𝑖 ≠ 𝑗, 𝑞 ≔ lim
→

𝑝 (𝑖, 𝑗)

ℎ
⎯⎯⎯⎯⎯⎯•

Define 𝜆 = 𝑞

 

 to be the rate out of state 𝑖○

Define 𝑄 =
𝑞 if 𝑖 ≠ 𝑗

−𝜆 if 𝑖 = 𝑗
⇔ 𝑄 =

⎣
⎢
⎢
⎡

−𝜆 𝑞(1,2) 𝑞(1,3) ⋯

𝑞(2,1) −𝜆 𝑞(2,3) ⋯

𝑞(3,1) 𝑞(3,2) −𝜆 ⋯
⋮ ⋮ ⋮ ⋱ ⎦

⎥
⎥
⎤
 ○

Backward: 
𝑑

𝑑𝑡
⎯⎯ [𝑝 (𝑖, 𝑗)] = 𝑞(𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

− 𝜆 𝑝 (𝑖, 𝑗) ⇔  
𝑑

𝑑𝑡
⎯⎯ [𝑝 ] = 𝑄𝑝○

Forward:
𝑑

𝑑𝑡
⎯⎯ [𝑝 (𝑖, 𝑗)] = 𝑝 (𝑖, 𝑘)𝑞(𝑘, 𝑗)

 

− 𝑝 (𝑖, 𝑗)𝜆 ⇔
𝑑

𝑑𝑡
⎯⎯ [𝑝 ] = 𝑝 𝑄○

Kolmogorov Equations•

ℙ (𝑋(𝑡) = 𝑗) = 𝜋(𝑗), ∀𝑡 > 0, 𝑗 ∈ 𝑆 ⇔ 𝜋𝑝 = 𝜋○

𝜋 is stationary if and only if 𝜋𝑄 = 0○

Stationary Distributions•

A CTMC 𝑋(𝑡) is irreducible if for any 𝑖, 𝑗 ∈ 𝑆, there exists states 𝑘 , … , 𝑘 s.t.○

𝑞(𝑖, 𝑘 )𝑞(𝑘 , 𝑘 ) ⋯ 𝑞(𝑘 , 𝑗) > 0 i.e. "It is possible to go from 𝑖 to 𝑗"○

Irreducibility•

If 𝑋(𝑡) is a CTMC s.t. 𝑋(𝑡) is irreducible, and has a stationary distribution○

Then, lim
→

𝑝 (𝑖, 𝑗) = 𝜋(𝑗), ∀𝑖, 𝑗 ∈ 𝑆○

Convergence Theorem•

𝜋(𝑖)𝑞(𝑖, 𝑗) = 𝜋(𝑗)𝑞(𝑗, 𝑖), ∀𝑗 ≠ 𝑖○

Detailed Balance•

Continuous Time Markov Processes
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Sample space, Ω: set of all elementary outcomes in a random experiment•

Events, ℱ: set of subsets of the sample space•

Probability measure ℙ: function on the events that assigns probabilities to them•

(Ω, ℱ, ℙ) form a probability space•

Probability Space

For any event 𝐴 ∈ ℱ, we must have 0 ≤ ℙ(𝐴) ≤ 11.

ℙ(Ω) = 12.

For disjoint events 𝐴 , 𝐴 , 𝐴 … , ℙ 𝐴 = 𝐴

Countable additivity of ℙ3.

Axioms of Probability Measure

ℙ(𝐴 ) = 1 − ℙ(𝐴)•

If 𝐴 ⊆ 𝐵, then ℙ(𝐴) ≤ ℙ(𝐵)•

ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵)•

Properties of Probability Measure

A random variable 𝑋 is a function with domain 𝛀 and codomain 𝑹○

A discrete RV is a RV where range is a finite set, or a countably infinite set○

Definitions•

Classic examples: Bernoulli, Binomial, Geometric•

Random Variables

A collection of random variables organized by an index set•

More formally, {𝑋(𝑡)|𝑡 ∈ ℒ} is a stochastic process, and ℒ the index set•

We often classify and study the stochastic processes by properties of the index set•

What is Stochastic Processes

This gives us a sequence of RVs called discrete time stochastic process○

Example: Pick a stock. Check its price each morning. ○

Usual notation: 𝑋(𝑡) = 𝑋 , often use 𝑛 instead of 𝑡○

ℤ = ℕ = {0,1,2,3 … }1.

This is called a continuous time stochastic process○

Example: Suppose you want to check the stock's price at ANY time. 

ℝ = [0, +∞)2.

Common Choices for the Index Set

Thursday, September 6, 2018 9:31 AM
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Example: Suppose you want to check the stock's price at ANY time. ○

Notation: 𝑋(𝑡) = 𝑋○

Sometimes called a point process○

𝑈 = All stocks on S&P500

ℒ = Powerset of 𝑈(All subsets of 𝑈)

For all 𝐴 ∈ ℒ, 𝑋(𝐴) = #Stocks in 𝐴 that increase in value over 2018

Example○

ℒ is a set of subsets of some larger universe 𝑈3.

The set of values of RVs can take is called the state space, denoted by 𝑆○

Definition•

Suppose you are playing Monopoly○

𝑋 = Your position on Monopoly board after 𝑛 rounds of play○

This is a DTSP with 𝑆 = {All positions on the board}○

Example•

State Space

What is the value of ℙ(𝑋 = 𝑥 , 𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) for any 𝑥 , 𝑥 , … , 𝑥 ?•

Idea: apply the chain rule / multiplication rule for conditional probability•

ℙ(𝐴|𝐵) =
ℙ(𝐴𝐵)

ℙ(𝐵)
⎯⎯⎯⎯⎯⎯⟹ ℙ(𝐴𝐵) = ℙ(𝐵)ℙ(𝐴|𝐵)○

Conditional probability•

ℙ(𝐸 𝐸 ⋯ 𝐸 ) = ℙ(𝐸 ) ℙ(𝐸 |𝐸 ⋯ 𝐸 )○

Generalized conditional probability•

ℙ(𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) = ℙ(𝑋 = 𝑥 ) ℙ(𝑋 = 𝑥 |𝑋 = 𝑥 , … , 𝑋 = 𝑥 )○

Formula for DTSPs in general•

Basic Question for DTSPs
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Your next step only depends on where you are, not where you've been○

Markov assumption•

ℙ(𝑿𝒏 𝟏 = 𝒙𝒏 𝟏|𝑿𝟎 = 𝒙𝟎, … , 𝑿𝒏 = 𝒙𝒏) = ℙ(𝑿𝒏 𝟏 = 𝒙𝒏 𝟏|𝑿𝒏 = 𝒙𝒏), ∀𝒙𝒊○

Markov property•

ℙ(𝑋 = 𝑗|𝑋 = 𝑖) = ℙ(𝑋 = 𝑗|𝑋 = 𝑖), ∀𝑚, 𝑛○

Further assumption in this course: temporally homogeneous•

𝑝(𝑖, 𝑗) ≔ ℙ(𝑋 = 𝑗|𝑋 = 𝑖)

Since the subscript doesn't matter, we will use ○

to denote the transition probability from state 𝑖 to state 𝑗

ℙ(𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) = ℙ(𝑋 = 𝑥 ) 𝑝(𝑥 , 𝑥 )

Therefore, for Markov chain○

Transition probability•

Markov Chain

Then ℙ(𝑋 = 𝑖) = 1, for some 𝑖 ∈ 𝑆○

We may write ℙ (𝑋 = 𝑗) ≔ ℙ(𝑋 = 𝑗|𝑋 = 𝑖)○

If we know the exact starting position from the MC•

We need to assign an initial distribution/measure on 𝑆○

Our usual notion for the initial distribution is 𝜇○

𝜇(𝑖) ≔ ℙ(𝑋 = 𝑖), where 

0 ≤ 𝜇(𝑖) ≤ 1

𝜇(𝑖)

 

∈

= 1○

We may write ℙ (𝑋 = 𝑥 , 𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) ≔ 𝜇(𝑥 ) 𝑝(𝑥 , 𝑥 )○

If the starting position is random•

Initial distribution 

We randomly choose a US voter•

Start with 2012 (𝑛 = 0), then 2016 (𝑛 = 1), 2020 (𝑛 = 2), and so on•

In 2012, voters were split by D: 51%, R: 46%, T: 2%•

D votes D, R, T with probability 0.3, 0.5, 0.2○

R votes D, R, T with probability 0.3, 0.3, 0.4

From one election to the next,•

Example: Highly Simplified Voter Model

Tuesday, September 11, 2018 9:21 AM
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R votes D, R, T with probability 0.3, 0.3, 0.4○

T votes D, R, T with probability 0.6, 0, 0.4○

Coordinate form: 𝜇(𝐷) = 0.51, 𝜇(𝑅) = 0.46, 𝜇(𝑇) = 0.02○

Vector form: 𝜇 = [0.51 0.47 0.02]○

What is the initial distribution for this model?•

How can we visualize this MC?•

𝒫 =
0.3 0.5 0.2
0.3 0.3 0.4
0.6 0 0.4

○

𝒫 is called the transition matrix for the MC○

Note: Rows sums to 1, columns do not have to sum to 1○

How should we organize the transition probability?•

ℙ (𝑋 = 𝑇, 𝑋 = 𝐷) = 𝑝(𝑅, 𝑇) ⋅ 𝑝(𝑇, 𝐷) = 0.4 × 0.6 = 0.24○

What is the probability that someone who votes R in 2012 votes T in 2016 and D in 2020?•

= ℙ (𝑋 = 𝐷, 𝑋 = 𝐷) + ℙ (𝑋 = 𝑅, 𝑋 = 𝐷) + ℙ (𝑋 = 𝑇, 𝑋 = 𝐷)

= 𝑝(𝑅, 𝐷) ⋅ 𝑝(𝐷, 𝐷) + 𝑝(𝑅, 𝑅) ⋅ 𝑝(𝑅, 𝐷) + 𝑝(𝑅, 𝑇) ⋅ 𝑝(𝑇, 𝐷)

= 0.3 × 0.3 + 0.3 × 0.3 + 0.4 × 0.6

= 0.42

ℙ (𝑋 = 𝐷) = ℙ (𝑋 = 𝑠, 𝑋 = 𝐷)

 

∈

○

What is the probability a 2012 R voter will vote D in 2020?•
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Let {𝑌 } be iid with distribution 𝑌 =
+1 with probability 𝑝
−1 with probability 1 − 𝑝 = 𝑞

•

Let {𝑋 } be defined as 𝑋 =
0 for 𝑛 = 0

∑ 𝑌 for 𝑛 ≥ 1
•

Question: Is 𝑋 , 𝑋 , 𝑋 , … a Markov chain?•

ℙ(𝑋 = 𝑥 |𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) = ℙ(𝑋 = 𝑥 |𝑋 = 𝑥 )○

We need to check whether the Markov property is satisfied•

=
ℙ(𝑋 = 𝑥 , … , 𝑋 = 𝑥 , 𝑋 = 𝑖, 𝑋 = 𝑗)

ℙ(𝑋 = 𝑥 , … , 𝑋 = 𝑥 , 𝑋 = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯, by Bayes' law

=
ℙ(𝑋 = 𝑥 , … , 𝑋 = 𝑥 , 𝑋 = 𝑖, 𝑋 = 𝑗)

ℙ(𝑋 = 𝑥 , … , 𝑋 = 𝑥 , 𝑋 = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯, since 𝑋 = 0

=
ℙ(𝑌 = 𝑥 , 𝑌 = 𝑥 − 𝑥 … , 𝑌 = 𝑖 − 𝑥 , 𝑌 = 𝑗 − 𝑖)

ℙ(𝑌 = 𝑥 , 𝑌 = 𝑥 − 𝑥 … , 𝑌 = 𝑖 − 𝑥 )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯, since 𝑌 = 𝑋 − 𝑋

=
ℙ(𝑌 = 𝑥 )ℙ(𝑌 = 𝑥 − 𝑥 ) ⋯ ℙ(𝑌 = 𝑖 − 𝑥 )ℙ(𝑌 = 𝑗 − 𝑖)

ℙ(𝑌 = 𝑥 )ℙ(𝑌 = 𝑥 − 𝑥 ) ⋯ ℙ(𝑌 = 𝑖 − 𝑥 )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= ℙ(𝑌 = 𝑗 − 𝑖)

ℙ(𝑋 = 𝑗|𝑋 = 𝑥 , … , 𝑋 = 𝑥 , 𝑋 = 𝑖)○

Compute ℙ(𝑋 = 𝑗|𝑋 = 𝑥 , … , 𝑋 = 𝑖)•

=
ℙ(𝑋 = 𝑖, 𝑌  = 𝑗 − 𝑖)

ℙ(𝑋 = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯, since 𝑋 = 𝑋 + 𝑌 ⇔ 𝑌 = 𝑋 − 𝑋

=
ℙ(𝑋 = 𝑖)ℙ(𝑌  = 𝑗 − 𝑖)

ℙ(𝑋 = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯, since 𝑋 = 𝑌 + ⋯ + 𝑌  is independent with 𝑌

= ℙ(𝑌  = 𝑗 − 𝑖)

ℙ(𝑋 = 𝑗|𝑋 = 𝑖) =
ℙ(𝑋 = 𝑖, 𝑋 = 𝑗)

ℙ(𝑋 = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯○

Compute ℙ(𝑋 = 𝑗|𝑋 = 𝑖)•

Therefore 𝑋 , 𝑋 , 𝑋 , … is a Markov chain•

Example: Simple Random Walk

Compute ℙ(𝑋 = 𝑗|𝑋 = 𝑖), given the transition probabilities 𝑝(𝑙, 𝑘) for the MC○

Motivation•

Let 𝒫 = 𝑝(𝑙, 𝑘) be the probability transition matrix, then ℙ(𝑿𝒏 = 𝒋|𝑿𝟎 = 𝒊) = [𝓟𝒏]𝒊𝒋○

Statement•

For 𝑛 = 1: True by definition of 𝒫○

Proof•

𝑛-Step Transition Probabilities

Thursday, September 13, 2018 10:13 AM
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ℙ(𝑋 = 𝑗|𝑋 = 𝑖) = ℙ(𝑋 = 𝑗, 𝑋 = 𝑙|𝑋 = 𝑖)

 

∈



=
ℙ(𝑋 = 𝑗, 𝑋 = 𝑙, 𝑋 = 𝑖)

ℙ(𝑋 = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 

∈



=
𝜇(𝑖)𝑝(𝑖, 𝑙)𝑝(𝑙, 𝑗)

𝜇(𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 

∈

= 𝑝(𝑖, 𝑙)𝑝(𝑙, 𝑗)

 

∈

= 𝒫 𝒫

 

∈

= [𝑃 ]

For 𝑛 = 2○

The general case is proven via strong mathematical induction○

𝒑𝒎 𝒏(𝒊, 𝒋) = 𝒑𝒎(𝒊, 𝒍)𝒑𝒏(𝒍, 𝒋)

 

𝒍∈𝑺

○

Corollary: Chapman-Kolmogorov Equation•

𝑝 (𝑖, 𝑗) = [𝒫 ] = [𝒫 ] [𝒫 ]

 

∈

= 𝑝 (𝑖, 𝑙)𝑝 (𝑙, 𝑗)

 

∈

○

Proof for Corollary•

You have $7. You need $10. There is a casino game where you either win or lose $1.○

The win probability is 0.45. You play the game until you have lost or met your goal.○

Background•

𝑠 = 0.45, 𝑓 = 0.55, 𝜇(7) = 1○

Model this problem with a Markov chain•

Example: Gambler's Ruin

𝒫 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0         

𝑓 0 𝑠        

 𝑓 0 𝑠       

  𝑓 0 𝑠      

   𝑓 0 𝑠     

    𝑓 0 𝑠    

     𝑓 0 𝑠   

      𝑓 0 𝑠  

       𝑓 0 𝑠
        0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

○

 ℙ(𝑋 = 10|𝑋 = 7) = 𝑝 (7,10) = [𝒫 ] , ≈ 0.248, note that the index starts with 1○

Find the probability that you have met your goal by the 10th round•

𝑝 (7,0) = [𝒫 ] , ≈ 0.042○

Find the probability you lost it all by round 10•
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In the setting of Gambler’s ruin○

𝑇 = The first time you have $𝑁○

We can think of stopping time as a criteria to quit running the Markov chain○

Motivation•

Let 𝑇 be a random variable taking values in {0,1,2, … , ∞}○

The event {𝑇 = 𝑛} can be expressed using the variables 𝑿𝟎, 𝑿𝟏, … , 𝑿𝒏

i.e. You can tell if you stop at time 𝑛 based on the states of the MC through time 𝑛

𝑇 is a stopping time for a Markov chain 𝑋 , 𝑋 , … if○

Definition•

{𝑇 = 𝑛} = {𝑋 = 5, 𝑋 ≠ 5, … , 𝑋 ≠ 5}

Therefore 𝑇 is a stopping time

Note: We do not include 𝑿𝟎, since 𝑛 ≥ 1

𝑇 = min{𝑛 ≥ 1|𝑋 = 5} = time of first visit to state 5○

{𝑇 = 𝑛} =
. .

{𝑋 = 2, 𝑋 = 3}

𝑇 is not a stopping time, since we need to know {𝑿𝒏 𝟏 = 𝟑} in the future

𝑇 = max{𝑛 ≥ 1|𝑋 = 2} = time of final visit to state 2○

{𝑇 = 𝑛} = 𝑋 = 2, 𝟙{𝑋 = 2} = 2 , where 𝟙 is a indicator function 

Since {𝑇 = 𝑛} could be expressed using 𝑋 , … , 𝑋 , it is a stopping time

𝑇 = Time of the third visit to state 2○

{𝑇 = 𝑛} = ∅ for 𝑛 ≠ 0

So 𝑇 is a stopping time for the MC

𝑇 = Time of final visit to state 2 after visiting state 5○

Example: Determine if the following RVs are stopping times•

Stopping Time

Strong Markov Property

Tuesday, September 18, 2018 9:33 AM
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Let 𝑇 be a stopping time for the Markov chain 𝑋 , 𝑋 , …○

Given that 𝑇 = 𝑛 and 𝑋 = 𝑦. Then○

Any other information about 𝑋 , … , 𝑋 is irrelevant for future predictions○

And 𝑋  (𝑘 ≠ 0) behaves like a Markov chain with initial state 𝑦○

Definition•

Durret proves ℙ(𝑿𝑻 𝟏 = 𝒋|𝑿𝑻 = 𝒊, 𝑻 = 𝒏) = 𝒑(𝒊, 𝒋)○

Justification•

Suppose 𝑇 = min{𝑛 ≥ 0|𝑋 = 𝑦}○

𝑇 is not a stopping time, since 𝑇 = 𝑛 = {𝑋 = 𝑦}○

ℙ 𝑋 = 𝑗 𝑋 = 𝑖, 𝑇 = 𝑛 =
1 if 𝑗 = 𝑦
0 if 𝑗 ≠ 𝑦

○

Why stopping times? Why no any random variables?•

Strong Markov Property

𝑻𝒚 = 𝐦𝐢𝐧{𝒏 ≥ 𝟏|𝑿𝒏 = 𝒚} is called the hitting time of 𝑦 or time of first return to 𝑦•

𝝆𝒚𝒚 = ℙ𝒚 𝑻𝒚 < ∞ is called the return probability•

𝑻𝒚
𝒌 = 𝐦𝐢𝐧 𝒏 ≥ 𝑻𝒚

𝒌 𝟏 𝑿𝒏 = 𝒚 is called the time of 𝒌-th return•

Proof: Use strong Markov property and mathematical induction○

𝝆𝒚𝒚
𝒌 = ℙ𝒚 𝑻𝒚

𝒌 < ∞ is called the 𝒌-th return probability•

Note: 𝑘 is label on 𝑇 , but exponent on 𝜌•

Return Time and Return Probability

Motivation•

Recurrent and Transient States

In the example above, it's less likely to return to state 1 and 2 as the time increase○

While for state 3, 4 and 5, the chain returns to those states for infinitely many times○

If 𝜌 < 1, we say 𝑦 is transient (not guaranteed to keep returning to 𝑦)○

If 𝜌 = 1, we say 𝑦 is recurrent (guaranteed to return to 𝑦 forever)○

Definition•
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𝑻𝒚 = 𝐦𝐢𝐧{𝒏 ≥ 𝟏|𝑿𝒏 = 𝒚} is the time of first return to 𝒚•

𝝆𝒚𝒚 = ℙ𝒚 𝑻𝒚 < ∞ is called the return probability of y•

It's easier to calculate the return probability rather than finding the PMF, 𝔼𝑇 , etc•

𝑦 is transient if 𝜌 < 1○

𝑦 is recurrent if 𝜌 = 1○

But it's still difficult, so we try to classify states categorically•

It is possible to classify all states as transient or recurrent once at a time•

But we want to find a more efficient way to classify the states in groups•

Introduction

Classify the states of the gambler's ruin MC for a prize goal of $5 as transient or recurrent•

Example: Transient or Recurrent

𝜌 = ℙ (𝑇 < ∞) = 𝑝(0,0) = 1○

𝜌 = ℙ (𝑇 < ∞) = 𝜌(5,5) = 1○

So state 0 and state 5 is recurrent○

Recurrent•

𝜌 < 1 ⇔ 1 − 𝜌 > 0 ⇔ ℙ 𝑇 = ∞ > 0○

ℙ (𝑇 = ∞) ≥ ℙ (𝑋 = 1, 𝑋 = 0) = 𝑝(2,1)𝑝(1,0) > 0○

So state 2 is transient, similar for state 1, 3, and 4 ○

Transient•

We say that 𝒙 communicates with 𝒚 if 𝒑𝒏(𝒙, 𝒚) > 𝟎 for some 𝒏 ≥ 𝟎, denoted by 𝑥 ⇒ 𝑦○

Definition•

This single arrow is used in graphs to denote 𝑝(𝑥, 𝑦) > 0

But since communication is more general than 1-step, we use double arrows

Textbook uses 𝑥 → 𝑦 for communication○

It is possible for 𝑥 ⇏ 𝑥

But the usual convention is to ensure 𝑥 ⇒ 𝑥, which is guaranteed for our definition 

Textbook defines communication as ℙ 𝑇 < ∞ = 1○

Remark: Different from Textbook•

Example•

Communication (Accessibility)

Thursday, September 20, 2018 9:31 AM

   Page 14    



𝑝 (1,4) ≥ 𝑝(1,2)𝑝(2,3)𝑝(3,4) > 0

Why 1 ⇒ 4○

Only 𝑝(3,4), 𝑝(4,5) > 0 for 𝑝(4, 𝑗), so 4 cannot get to 3, 5 in one step

Thus 𝑝(5,4)𝑝(3,3)𝑝(3,4) > 0 are the only possible transitions from 3, 5

So for all 𝑝 (4,1) = 0 i.e. 4 ⇏ 1

Why 4 ⇏ 1○

A set of states 𝐶 is closed if the following condition is satisfied○

If 𝑖 ∈ 𝐶 and 𝑝(𝑖, 𝑗) > 0, then 𝑗 ∈ 𝐶○

A closed set of states is impossible to get out of •

A set of states 𝐶 is irreducible if  𝑖 ⇔ 𝑗 , ∀𝑖, 𝑗 ∈ 𝐶○

A irreducible set of states can be freely moved about (you can go anywhere)•

{1,2}, {3,4,5}, {4,5}, {2} are irreducible sets○

{3,4,5}, {1,2,3,4,5} are closed sets○

Example (in the graph above)•

Closed and Irreducible Sets

If the state space 𝑆 is finite, then 𝑆 can be written as a disjoint union○

𝑇 is a set of transient states, and

𝑅 are closed irreducible sets of recurrent states.

𝑻 ∪ 𝑹𝟏 ∪ ⋯ ∪ 𝑹𝒌 for 𝑘 ≥ 1 (at least one recurrent state), where○

Statement•

Classify all states of the Markov chain with○

𝒫 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0.5 0 0 0.5
0 0 0 0 0.5 0.5 0
0 0.5 0 0 0 0.5 0

0.5 0 0 0 0 0 0.5
0 0 0.5 0 0 0.5 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

○

𝑇 = {2, 3, 5, 6} is a set of transient states○

𝑅 = {1, 4, 7} is a closed irreducible set of recurrent states○

Example•

Decomposition of Finite State Space (Theorem 1.8)

𝑁(𝑦) = Number of times the Markov chain visit state 𝑦•

Number of Visits
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𝑇 = min{𝑛 ≥ 1|𝑋 = 𝑦}•

𝑇 = min 𝑛 > 𝑇 𝑋 = 𝑦•

𝑁(𝑦) = Number of times MC visits state 𝑦 after time 0•

𝜌 = ℙ 𝑇 < ∞•

𝑦 is transient ⇔ 𝜌 < 1•

𝑦 is recurrent ⇔ 𝜌 = 1•

𝑥 ⇒ 𝑦 iff 𝑝 (𝑥, 𝑦) > 0 for some 𝑛 ≥ 0•

Some Notation Reminders

If 𝑁 is a RV taking values in {0,1,2, … }, then 𝔼𝑵 = ℙ(𝑵 ≥ 𝒌)

𝒌 𝟏

○

𝑁 = 𝟙{ } + 𝟙{ } + ⋯ = 𝟙{ }

Define the indicator 𝟙 =
1 𝐴 occurs
0 𝐴 does not occur

. Then○

𝔼𝑁 = 𝔼𝟙{ } + 𝔼𝟙{ } + ⋯ = ℙ(𝑁 ≥ 1) + ℙ(𝑁 ≥ 2) + ⋯ = ℙ(𝑁 ≥ 𝑘)

Taking 𝔼 on both side, we obtain○

Lemma: tail-sum formula•

= ℙ 𝑇 < ∞ , since {𝑁(𝑦) ≥ 𝑘} is the same as the 𝑘th return occurs

= ℙ 𝑇 < ∞, 𝑇 < ∞ , since 𝑇 < ∞  includes 𝑇 < ∞

=  ℙ 𝑇 < ∞ 𝑇 < ∞  ℙ 𝑇 < ∞

= 𝜌 𝜌 = 𝜌 𝜌 =

𝜌

1 − 𝜌
if 𝜌 < 1

𝔼 𝑁(𝑦) = ℙ (𝑁(𝑦) ≥ 𝑘) , by the tail-sum formula○

Lemma 1.11: 𝔼𝒙𝑵(𝒚) =
𝝆𝒙𝒚

𝟏 − 𝝆𝒚𝒚
⎯⎯⎯⎯⎯⎯⎯•

Theorems Related to 𝑁(𝑦)

Monday, September 24, 2018 9:21 PM
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= 𝜌 𝜌 = 𝜌 𝜌 =

𝜌

1 − 𝜌
⎯⎯⎯⎯⎯⎯⎯ if 𝜌 < 1

+∞ if 𝜌 = 1

Use an indicator function to express 𝑁(𝑦):  𝑁(𝑦) = 𝟙{ }○

Then, 𝔼 𝑁(𝑦) = 𝔼𝟙{ } = ℙ (𝑋 = 𝑦) = 𝑝 (𝑥, 𝑦)○

Lemma 1.12: 𝔼𝒙𝑵(𝒚) = 𝒑𝒏(𝒙, 𝒚)

𝒏 𝟏

•

𝑦 is recurrent ⇒ 𝜌 = 1 ⇒ 𝔼 𝑁(𝑦) = 𝜌 1 = +∞○

𝔼 𝑁(𝑦) = 𝜌 = +∞ ⇒ 𝜌 = 1 ⇒ 𝑦 is recurrent○

Theorem 1.13:  𝒚 𝐢𝐬 𝐫𝐞𝐜𝐮𝐫𝐫𝐞𝐧𝐭 ⇔ 𝒑𝒏(𝒚, 𝒚)

 

𝒏 𝟏

= 𝑬𝒚𝑵(𝒚) = +∞•

𝑝 (𝑥, 𝑦) > 0 and 𝑝 (𝑦, 𝑧) > 0 for some 𝑛 , 𝑛 ≥ 0○

𝑝 (𝑥, 𝑧) ≥ 𝑝 (𝑥, 𝑦)𝑝 (𝑦, 𝑧) > 0○

Therefore 𝑥 ⇒ 𝑧○

Lemma 1.9: If 𝒙 ⇒ 𝒚 and 𝒚 ⇒ 𝒛, then 𝒙 ⇒ 𝒛•

Let 𝑛 ∈ ℕ s.t. 𝑝 (𝑥, 𝑦) > 0○

=  ℙ (𝑇 = ∞|𝑋 = 𝑦)
ℙ ( )

 ℙ (𝑋 = 𝑦)
( , )

= 1 − 𝜌 𝑝 (𝑥, 𝑦) > 0

ℙ (𝑇 = ∞) ≥ ℙ (𝑇 = ∞, 𝑋 = 𝑦)○

So 𝜌 = ℙ (𝑇 < ∞) = 1 − ℙ (𝑇 = ∞) < 1○

Therefore 𝑥 is transient○

Theorem 1.5: If 𝒙 ⇒ 𝒚 and 𝝆𝒚𝒙 < 𝟏, then 𝒙 is transient•

Use the contrapositive from the previous theorem○

If 𝑥 is recurrent, then 𝑥 ⇏ 𝑦 or 𝜌 = 1○

By assumption 𝑥 ⇒ 𝑦, so 𝜌 = 1○

Lemma 1.6: If 𝒙 is recurrent and 𝒙 ⇒ 𝒚, then 𝝆𝒚𝒙 = 𝟏•

By the previous lemma, we have 𝑦 ⇒ 𝑥○

So there exists 𝑙, 𝑘 s.t. 𝑝 (𝑦, 𝑥) > 0 and 𝑝 (𝑥, 𝑦) > 0○

𝐸 𝑁 𝑦 = 𝑝 𝑦, 𝑦

 

We want to show that 𝐸 𝑁(𝑦) = +∞○

Lemma 1.9: If 𝒙 is recurrent and 𝒙 ⇒ 𝒚, then 𝒚 is recurrent •

Theorems Related to Communication
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𝐸 𝑁(𝑦) = 𝑝 (𝑦, 𝑦)

 



≥ 𝑝 (𝑦, 𝑦)

 

, the inequality holds since this is just one possible path

= 𝑝 (𝑦, 𝑥)𝑝 (𝑥, 𝑥)𝑝 (𝑥, 𝑦)

 

, by Chapman– Kolmogorov equation

≥ 𝑝 (𝑥, 𝑦)𝑝 (𝑦, 𝑥) 𝑝 (𝑥, 𝑥)

 

𝔼 ( )

, since only 𝑝 (𝑥, 𝑥) depends on 𝑛

= 𝑝 (𝑥, 𝑦)𝑝 (𝑦, 𝑥) 𝔼 𝑁(𝑥) = +∞

Therefore 𝑦 is recurrent○

In a finite closed set of states, there is at least one recurrent state○

Statement•

Let 𝐶 be a closed finite set of states○

Suppose that there is no recurrent state in 𝐶 (i.e. 𝔼 𝑁(𝑦) < ∞, ∀𝑥, 𝑦 ∈ 𝐶)○

Then, 𝔼 𝑁(𝑦)

 

∈

= 𝑝 (𝑥, 𝑦)

 

∈

=  𝑝 (𝑥, 𝑦)

 

∈

= +∞○

This contradicts 𝔼 𝑁(𝑦) < ∞○

So the assumption is wrong, there must be a recurrent state○

Proof•

Finite, Closed ⇒ ∃ Recurrent State (Lemma 1.9)

If 𝐶 is a finite closed and irreducible set, then all states in 𝐶 are recurrent○

Statement•

By the previous lemma, there is at least one recurrent state 𝑥○

Because 𝐶 is irreducible, 𝑥 ⇒ 𝑦 for all 𝑦 ∈ 𝐶○

So 𝑦 is also recurrent by Lemma 1.9○

Therefore all states in 𝐶 are recurrent○

Proof•

Finite, Closed, Irreducible ⇒ Recurrent (Theorem 1.7)
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Let 𝑋 , 𝑋 , … be a Markov chain, and 𝜇 be its initial distribution○

ℙ (𝑋 = 𝑗) = 𝜇(𝑖)𝑝 (𝑖, 𝑗)

 

∈

, ∀𝑗 ∈ 𝑆, or

𝑋  ~ 𝜇𝒫 (in matrix form)

Then the distribution of 𝑋 is ○

What conditions must be satisfied so that 𝑋 , 𝑋 , … follow the same distribution○

Motivation•

𝝁(𝒋) = 𝝁(𝒊)𝒑(𝒊, 𝒋)

 

𝒊∈𝑺

 (coordinate form), or○

𝝁 = 𝝁𝓟 (matrix form), or○

𝜇 is a left eigenvector of 𝒫 with eigenvalue 1○

We say that 𝜇: 𝑆 → ℝ is a stationary/invariant measure for a MC if•

𝜋 is a stationary measure and 𝝅(𝒋)

 

𝒋∈𝑺

= 𝟏○

We say 𝜋: 𝑆 → ℝ is a stationary/invariant distribution for a MC if•

Given 𝜇 = [1,2,4,3], we can take 𝜋 =
1

∑ 𝜇(𝑖) 
∈

⎯⎯⎯⎯⎯⎯⎯⎯𝜇○

But this may not work when 𝜇(𝑖)

 

∈

 is not finite○

How can we convert stationary measures into stationary distributions?•

Given 𝒫 =
0.7 0.2 0.1
0.3 0.5 0.2
0.2 0.4 0.4

○

Find the stationary distribution for this MC○

[𝜋 , 𝜋 , 𝜋 ]
0.7 0.2 0.1
0.3 0.5 0.2
0.2 0.4 0.4

= [𝜋 , 𝜋 , 𝜋 ]○

⇒

0.7𝜋 + 0.3𝜋 + 0.2𝜋 = 𝜋
0.2𝜋 + 0.5𝜋 + 0.4𝜋 = 𝜋
0.1𝜋 + 0.2𝜋 + 0.4𝜋 = 𝜋

⇒

𝜋 = 22 47⁄

𝜋 = 16 47⁄

𝜋 = 9 47⁄
○

Example: Social Mobility (Example 1.18)•

If a Markov chain is irreducible and finite, then○

There is a unique stationary distribution 𝜋, and 𝜋(𝑗) > 0, ∀𝑗 ∈ 𝑆○

Proof: Linear algebra○

How can we guarantee a stationary distribution exists•

Stationary Distribution and Stationary Measure

Example: Renewal Chain (Countably Infinite State Space)

Thursday, September 27, 2018 9:32 AM
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𝑆 = ℤ = {0,1,2, … }•

Let {𝑓 } be a distribution on 𝑆•

𝑝(0, 𝑘) = 𝑓○

𝑝(𝑘, 𝑘 − 1) = 1○

Define the transition probability 𝑝 as•

Let 𝑓 =
6

𝜋
⎯⎯⎯⋅

1

(𝑘 + 1)
⎯⎯⎯⎯⎯⎯⎯⎯•

Obviously, 0 is recurrent ⇔ ℙ (𝑇 < ∞) = 1•

𝔼 𝑇 = 𝑘ℙ (𝑇 = 𝑘) = 𝑘𝑓 = 𝑘
6

𝜋
⎯⎯⎯⋅

1

𝑘
⎯⎯⎯=

6

𝜋
⎯⎯⎯

1

𝑘
⎯⎯= +∞○

What is 𝔼 𝑇 ?•

Let 𝜇 be an invariant measure, then○

= 𝜇(0) 𝑝(0, 𝑘) + 𝜇(𝑘 + 1) 𝑝(𝑘 + 1, 𝑘) , since we can only get 𝑘 from 0 or 𝑘 + 1

= 𝜇(0)𝑓 + 𝜇(𝑘 + 1)

𝜇(𝑘) = 𝜇(𝑙)𝑝(𝑙, 𝑘)○

Thus, 𝜇(𝑘 + 1) = 𝜇(𝑘) − 𝜇(0)𝑓○

Solving the recursion, we have 𝜇(𝑘) = 𝜇(0) 1 − 𝑓○

Set 𝜇(0) = 1 (since we can freely scale the invariant measure by a positive number)○

Then for 𝑘 ≥ 1, 𝜇(𝑘) = 1 − 𝑓 = 𝑓 = ℙ (𝑇 = 𝑙 + 1) = ℙ (𝑇 ≥ 𝑘 + 1)○

Note: 𝑓 = ℙ (𝑇 = 𝑙 + 1) since we need 1 step to get 𝑙, and 𝑙 steps to return to 0○

Find an invariant measure for this MC•

𝜇(𝑘) = ℙ (𝑇 ≥ 𝑘 + 1) =
 

𝔼 𝑇 = +∞○

So we cannot normalize 𝜇 into distribution○

Can we make 𝜇 into a distribution?•

Repeat this problem with 𝑓 =
1

2
⎯⎯⎯⎯ (see next lecture)•

Example: Renewal Chain (Countably Infinite State Space)
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𝜇: 𝑆 → ℝ  𝑠. 𝑡. 𝝁(𝒌) = 𝝁(𝒍)𝒑(𝒍, 𝒌)

 

𝒍∈𝑺

○

Stationary measure•

A stationary measure 𝜋 with 𝝅(𝒍)

 

𝒍∈𝑺

= 𝟏○

Given 𝜇(𝑙)

 

∈

≠ ∞, we can normalize 𝜇 by setting 𝝅(𝒌) =
𝝁(𝒌)

∑ 𝝁(𝒍) 
𝒍∈𝑺

⎯⎯⎯⎯⎯⎯⎯⎯○

In finite case, we can solve for 𝝅 = 𝝅𝓟 with 𝜋(𝑙)

 

∈

= 1○

Stationary distribution•

If 𝜋 is the initial distribution, then 𝑋 , 𝑋 , … all have the same distribution○

ℙ𝝅 𝑿𝒋 = 𝒙 = ℙ𝝅(𝑿𝒌 = 𝒙), ∀𝑗, 𝑘 ≥ 0, ∀𝑥 ∈ 𝑆○

Motivation•

Stationary Distribution and Stationary Measure

𝑆 = ℤ = {0,1,2, … }•

Let {𝑓 } be a distribution on 𝑆•

𝑝(0, 𝑘) = 𝑓○

𝑝(𝑘, 𝑘 − 1) = 1○

Define the transition probability 𝑝 as•

Example: Renewal Chain (Cont.)

𝔼 𝑇 = +∞○

𝜇(𝑘) = 𝑓 = ℙ (𝑇 ≥ 𝑘 + 1)○

𝜇(𝑘) = +∞ ⇒ 𝜋 does not exist○

In the previous lecture, we set 𝑓 =
6

𝜋
⎯⎯⎯⋅

1

(𝑘 + 1)
⎯⎯⎯⎯⎯⎯⎯⎯, and found•

If we set 𝑓 =
1

2
, then

Tuesday, October 2, 2018 9:31 AM
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𝔼 T = 𝑘ℙ (𝑇 = 𝑘) = 𝑘𝑓 =
𝑘

2
⎯⎯⎯ =

⎯⎯

2○

ℙ (𝑇 = 𝑘) = 𝑓 =
1

2
⎯⎯ , so 𝑇 ~Geo

1

2
⎯⎯○

𝜇(𝑙) = ℙ (𝑇 ≥ 𝑘 + 1) = ℙ (𝑇 ≥ 𝑘) =
 

𝔼 𝑇 = 2○

𝜋(𝑘) =
𝜇(𝑘)

2
⎯⎯⎯⎯ = 2○

If we set 𝑓 =
1

2
⎯⎯⎯⎯ , then•

In the previous example, even for recurrent states, it is possible to have 𝔼𝒙𝑻𝒙 = ∞ ○

Motivation•

Suppose 𝑥 is recurrent, we say that ○

𝑥 is positive recurrent if 𝔼 𝑇 < ∞○

𝑥 is null recurrent if 𝔼 𝑇 = ∞○

Definition•

Positive vs Null Recurrent

Suppose we have a MC with irreducible state space (finite or countably infinite)•

The MC has a unique stationary measure 𝜇 up to multiplicative constants○

𝝁(𝒙) > 𝟎, ∀𝑥 ∈ 𝑆○

The stationary distribution 𝜋(𝑥) =
1

𝔼 𝑇
⎯⎯⎯⎯  exists iff all states are 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝐜𝐮𝐫𝐫𝐞𝐧𝐭○

If all states are recurrent, then•

Note: If 𝑥 ⇔ 𝑦, then 𝑥 and 𝑦 are both transient, positive recurrent, or null recurrent•

Theorem Related to Recurrence and Stationary Measure/Distribution

Example: Limit Behavior of Two State MC

ℙ (𝑋 = 0) = ℙ (𝑋 = 0)(1 − 𝑎) + ℙ (𝑋 = 1)𝑏

Solving the recurrence, we have ℙ (𝑋 = 0) = (1 − 𝑎 − 𝑏)ℙ (𝑋 = 0) + 𝑏

Compute ℙ (𝑋 = 0)○

𝑥 = (1 − 𝑎 − 𝑏)𝑥 + 𝑏

𝑥 −
𝑏

𝑎 + 𝑏
= 1 − 𝑎 − 𝑏 𝑥 −

𝑏

𝑎 + 𝑏

Set 𝑥 = ℙ (𝑋 = 0). Then○

Find the 𝑛-step transitions•
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𝑥 −
𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯= (1 − 𝑎 − 𝑏) 𝑥 −

𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯

𝑦 = (1 − 𝑎 − 𝑏)𝑦

𝑦 = (1 − 𝑎 − 𝑏) 𝑦

Set 𝑦 = 𝑥 −
𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯. Then○

Therefore ℙ (𝑋 = 0) −
𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯= (1 − 𝑎 − 𝑏) ℙ (𝑋 = 0) −

𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯○

𝑝 (0,0) = (1 − 𝑎 − 𝑏) 1 −
𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯ +

𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯=

𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯+ (1 − 𝑎 − 𝑏)

𝑎

𝑎 + 𝑏
⎯⎯⎯⎯⎯○

𝑝 (0,1) = 1 − 𝑝 (0,0) = (1 − (1 − 𝑎 − 𝑏) )
𝑎

𝑎 + 𝑏
⎯⎯⎯⎯⎯○

lim
→

𝑝 (0,0) = lim
→

𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯+ (1 − 𝑎 − 𝑏)

𝑎

𝑎 + 𝑏
⎯⎯⎯⎯⎯ =

𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯○

lim
→

𝑝 (0,1) = lim
→

(1 − (1 − 𝑎 − 𝑏) )
𝑎

𝑎 + 𝑏
⎯⎯⎯⎯⎯ =

𝑎

𝑎 + 𝑏
⎯⎯⎯⎯⎯○

Evaluate lim
→

𝑝 (𝑥, 𝑦)•

𝝅(𝟎) =
𝑏

𝑎 + 𝑏
⎯⎯⎯⎯⎯= 𝐥𝐢𝐦

𝒏→
𝒑𝒏(𝟎, 𝟎)○

𝝅(𝟏) =
𝑎

𝑎 + 𝑏
⎯⎯⎯⎯⎯= 𝐥𝐢𝐦

𝒏→
𝒑𝒏(𝟎, 𝟏)○

Remark•

𝑝(0,0) = 0○

𝑝 (0,0) = 0○

𝑝 (0,0) = 1○

For the MC on the right•

We observe a period of 3 for the 𝑛-th return probability of state 0•

We say a state is aperiodic if the state has a period of 1•

(The definition of periodicity will be formalized in the next lecture)•

Periodicity
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For 0 < 𝑎, 𝑏 < 1, we showed that lim
→

𝑝 (𝑥, 𝑦) = 𝜋(𝑦)•

This is very difficult to compute the limit explicitly•

We will prove theorem to show this often is true•

One minor issue that can prevent convergence is periodicity•

When 𝛼 = 𝛽 = 1, 𝑝(0,1) = 1; 𝑝 (0,1) = 0; 𝑝 (0,1) = 1, 𝑝 (0,1) = 0, ⋯•

Example: Two State MC (Cont.)

Period represents the minimal length of gaps between visits to that state○

Intuition•

The period of a state 𝑥 is 𝐠𝐜𝐝 {𝒏 ≥ 𝟏|𝒑𝒏(𝒙, 𝒙) > 𝟎}
𝑰𝒙

○

Definition•

𝐼 = {𝑛 ≥ 1|𝑝 (0,0) > 0} = {2,4,6,8, ⋯ } ⇒ gcd(𝐼 ) = 2○

So state 0 has period 2, and same for state 1○

Example 1: Two state chain with 𝑎 = 𝑏 = 1•

𝑝 (0,0) > 0 and 𝑝 (0,0) > 0○

So 𝑝 > 0○

𝐼 = {3𝑘 + 5𝑙|𝑘, 𝑙 ≥ 0 not both equal to 0}○

gcd(𝐼 ) = gcd(3,5) = 1○

So 0 has period 1 (it is aperiodic)○

𝐼 = {3,5,6,8,9,10,11,12, ⋯ }○

Example 2: Find the period of 0•

𝐼 = {2𝑘 + 4𝑙|𝑘 > 0 or 𝑙 > 0}○

     = {2(𝑘 + 2𝑙)|𝑘 > 0 or 𝑙 > 0}

⇒ gcd(𝐼 ) = 2○

So 0 has period 2○

Example 3: Find the period of 0•

𝐼 = {2,4,5,6,7 ⋯ }○

So 0 is aperiodic○

Example 4: Find the period of 0•

Periodicity

Lemma 1.15: If 𝒑𝒋(𝒙, 𝒙) > 𝟎 and 𝒑𝒌(𝒙, 𝒙) > 𝟎, then 𝒑𝒋 𝒌(𝒙, 𝒙) > 𝟎•

Lemma 1.17: If 𝒑 𝒙, 𝒙 > 𝟎, then 𝑥 has period 1 (is aperiodic)•

Theorems Related to Periodicity

Thursday, October 4, 2018 9:35 AM
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Lemma 1.17: If 𝒑(𝒙, 𝒙) > 𝟎, then 𝑥 has period 1 (is aperiodic)•

Lemma 1.16: If 𝒙 has period 1, then ∃𝒏𝟎 ∈ ℕ s.t. 𝒑𝒏(𝒙, 𝒙) > 𝟎, ∀𝒏 ≥ 𝒏𝟎•

Lemma 1.18: If 𝒙 ⇔ 𝒚, then 𝑥 and 𝑦 have the same period•

Suppose a MC is irreducible, aperiodic, and has a stationary distribution 𝜋○

Then 𝐥𝐢𝐦
𝒏→

𝒑𝒏(𝒙, 𝒚) = 𝝅(𝒚)○

Note that the choice of 𝑥 is arbitrary ○

Convergence Theorem (Theorem 1.19)•

Suppose a MC is irreducible and recurrent. Then○

𝑵𝒏(𝒚)

𝒏
⎯⎯⎯⎯⎯⎯→

𝟏

𝔼𝒚𝑻𝒚
⎯⎯⎯⎯⎯ where 𝑁 (𝑦) is the number of visits to 𝑦 up to time 𝑛○

Asymptotic Frequency  (Theorem 1.21)•

Suppose a MC is irreducible and has a stationary distribution 𝜋. Let 𝑓: 𝑆 → ℝ○

If |𝑓(𝑥)|𝜋(𝑥)

 

∈

< ∞, then 
𝟏

𝒏
⎯⎯ 𝒇(𝑿𝒍)

𝒏

𝒍 𝟏

→ 𝒇(𝒙)𝝅(𝒙)

 

𝒙∈𝑺

= 𝔼 𝑓(𝑥 )○

Law of Large Numbers for MC (Theorem 1.23)•

Theorems Related to Limiting Behavior

A store may sell 0, 1, 2, 3 items with probabilities 0.3, 0.4, 0.2, 0.1•

Let 𝑋 be number of units in store at end of the day•

We want to find the optimal inventory policy given the profit 𝑔(𝑋 ) = 12(3 − 𝑋 ) − 2𝑋•

We can compare average daily profit for restocking when 𝑋 = 0 or 1 or 2•

𝒫 =

0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3

⇒ 𝜋 =

0.1
0.2
0.3
0.4

○

If we restock when 𝑋 ≤ 2, then•

1

𝑛
⎯⎯ 𝑔(𝑋 ) ≈

≫
𝑔(𝑠)𝜋(𝑠) = [12(3 − 𝑠) − 2𝑠]𝜋(𝑠) = 9.40○

Average profit after 𝑛 days is •

Repeat for restocking when 𝑋 ≤ 0 and 𝑋 ≤ 1•

We will find out that it is optimal to restock when 𝑋 ≤ 1•

Example 1.24: Inventory Chain
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If a MC is irreducible, aperiodic, and has a stationary distribution 𝝅•

Then 𝐥𝐢𝐦
𝒏→

𝒑𝒏(𝒙, 𝒚) = 𝝅(𝒚), ∀𝒙, 𝒚 ∈ 𝑺•

Review: Markov Chain Convergence Theorem

Consider two MCs with same transition probabilities, but different initial distributions○

Let 𝑥 ∈ 𝑆 be the fixed initial state for 𝑋 , 𝑋 , …○

Let 𝜋 be the initial distribution for 𝑌 , 𝑌 , …○

We will show that |ℙ𝒙(𝑿𝒏 = 𝒚) − ℙ𝝅(𝒀𝒏 = 𝒚)| → 𝟎 as 𝑛 → ∞○

Then |𝑝 (𝑥, 𝑦) − 𝜋(𝑦)| → 0  as 𝑛 → ∞○

Proof outline (using coupling method)•

Set 𝑆̅ = 𝑆 × 𝑆 as a new state space○

Set �̅� (𝑥 , 𝑦 ), (𝑥 , 𝑦 ) = 𝑝(𝑥 , 𝑥 )𝑝(𝑦 , 𝑦 )○

Use the initial distribution 𝜇 (𝑥 , 𝑦 ) = 𝟙{ }𝜋(𝑦 )○

We now have a single MC (𝑋 , 𝑌 ), (𝑋 , 𝑌 ), …○

Define a coupled MC•

Let (𝑥 , 𝑦 ), (𝑥 , 𝑦 ) ∈ 𝑆̅ = 𝑆 × 𝑆 be arbitrary. We will show that (𝑥 , 𝑦 ) ⇒ (𝑥 , 𝑦 )○

Note that this is non-trivial, consider the product MC of 𝒫 =
0 1
1 0

○

𝑝 (𝑥 , 𝑥 ) > 0 and 𝑝 (𝑦 , 𝑦 ) > 0

𝑝 is irreducible, so there exists 𝑘, 𝑙 s.t. ○

𝑝 (𝑥 , 𝑥 ) > 0 and 𝑝 (𝑥 , 𝑥 ) > 0 for 𝑛 > max 𝑛 , 𝑛

𝑝 is aperodic, so there exists 𝑛 , 𝑛 s.t. ○

= 𝑝 (𝑥 , 𝑥 )𝑝 (𝑦 , 𝑦 )

≥  𝑝 (𝑥 , 𝑥 ) 𝑝 (𝑥 , 𝑥 ) 𝑝 (𝑦 , 𝑦 ) 𝑝 (𝑦 , 𝑦 ) > 0 if 𝑛 > max 𝑛 , 𝑛

Then �̅� (𝑥 , 𝑦 ), (𝑥 , 𝑦 )○

Therefore �̅� is irreducible○

Show 𝒑 is irreducible•

Claim: 𝜋 (𝑥 , 𝑦 ) ≔ 𝜋(𝑥 )𝜋(𝑦 ) is a stationary distribution for �̅�○

= 𝑝 𝑢, 𝑥 𝑝 𝑣, 𝑦 𝜋 𝑥 𝜋 𝑦

  

𝜋 (𝑥 , 𝑦 ) = �̅� (𝑢, 𝑣), (𝑥 , 𝑦 ) 𝜋 (𝑥 , 𝑦 )

 

( , )∈ ×

○

Find stationary distribution for �̅�•

Proof for Markov Chain Convergence Theorem

Tuesday, October 9, 2018 9:32 AM
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= 𝑝(𝑢, 𝑥 )𝑝(𝑣, 𝑦 )𝜋(𝑥 )𝜋(𝑦 )

 

∈

 

∈

= 𝑝(𝑢, 𝑥 )𝜋(𝑥 )

 

∈

( )

𝑝(𝑣, 𝑦 )𝜋(𝑦 )

 

∈

( )

= 𝜋(𝑥 )𝜋(𝑦 )

𝜋 (𝑢, 𝑣)

 

( , )∈ ×

= 𝜋(𝑢)𝜋(𝑣)

 

∈

 

∈

= 𝜋(𝑢)

 

∈

𝜋(𝑣)

 

∈

= 1○

Therefore 𝜋 (𝑥 , 𝑦 ) is a stationary distribution for �̅�○

Set 𝑉( , ) ≔ min{𝑛 ≥ 0|𝑋 = 𝑌 = 𝑥} and 𝑇 ≔ min{𝑛 ≥ 0|𝑋 = 𝑌 }○

Since �̅� is irrducible and has a stationary distribution, all states are recurrent○

Thus, ℙ 𝑉( , ) < ∞ = 1 ⟹ ℙ (𝑇 < ∞) = 1, since 𝑇 ≤ 𝑉( , )○

Show that 𝑿𝒏, 𝒀𝒏 must eventually meet•

ℙ (𝑋 = 𝑦, 𝑛 ≥ 𝑇) = ℙ (𝑋 = 𝑧, 𝑇 = 𝑘, 𝑋 = 𝑦)

 

∈

○

= ℙ (𝑋 = 𝑦|𝑋 = 𝑧, 𝑇 = 𝑘)ℙ (𝑋 = 𝑧, 𝑇 = 𝑘)

 

∈

○

= 𝑝 (𝑧, 𝑦)ℙ (𝑋 = 𝑧, 𝑇 = 𝑘)

 

∈

, by strong Markov property○

= 𝑝 (𝑧, 𝑦)ℙ (𝑌 = 𝑧, 𝑇 = 𝑘)

 

∈

○

= ℙ (𝑌 = 𝑦|𝑌 = 𝑧, 𝑇 = 𝑘)ℙ (𝑌 = 𝑧, 𝑇 = 𝑘)

 

∈

○

= ℙ (𝑌 = 𝑧, 𝑇 = 𝑘, 𝑌 = 𝑦)

 

∈

= ℙ (𝑌 = 𝑦, 𝑛 ≥ 𝑇)○

Show 𝑿𝒏, 𝒀𝒏 have same distribution after meeting•

≤ ℙ (𝑋 = 𝑦, 𝑇 > 𝑛) − ℙ (𝑌 = 𝑦, 𝑇 > 𝑛)

ℙ (𝑋 = 𝑦) − ℙ (𝑌 = 𝑦) =
ℙ (𝑋 = 𝑦, 𝑇 > 𝑛) + ℙ (𝑋 = 𝑦, 𝑇 ≤ 𝑛)

−ℙ (𝑌 = 𝑦, 𝑇 > 𝑛) − ℙ (𝑌 = 𝑦, 𝑇 ≤ 𝑛)
○

≤ ℙ (𝑋 = 𝑦, 𝑇 > 𝑛)

 

∈

+ ℙ (𝑌 = 𝑦, 𝑇 > 𝑛)

 

∈

≤ 2 ℙ (𝑇 > 𝑛)

 

∈

→ 0 as 𝑛 → ∞, since 𝑇 is finite

ℙ (𝑋 = 𝑦) − ℙ (𝑌 = 𝑦)

 

∈

≤ ℙ (𝑋 = 𝑦, 𝑇 > 𝑛) − ℙ (𝑌 = 𝑦, 𝑇 > 𝑛)

 

∈

○

Show ℙ𝝁(𝑿𝒏 = 𝒚) − ℙ𝝁(𝒀𝒏 = 𝒚) → 𝟎 as 𝑛 → ∞•

Example: Convergence Theorem
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𝒫 =

⎣
⎢
⎢
⎢
⎡
0 𝛼 1 − 𝛼 0 0
0 0 𝛽 0 1 − 𝛽
0 0 1/2 1/2 0
0 0 1/6 5/6 0
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤

 for 𝛼, 𝛽 ∈ (0,1)○

Let MC 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 be defined as •

Draw the transition graph•

𝑅 = {3,4}, 𝑅 = {5} are recurrent because they are closed, irreducible, finite ○

𝑇 = {1,2} are transient○

Classify states as transient or recurrent•

𝑝(3,3), 𝑝(4,4), 𝑝(5,5) > 0, so state 3, 4, 5 have period 1 (aperiodic)○

Find the periods of recurrent states•

𝜋(1) = 𝜋(2) = 0 because state 1, 2 are transient○

𝜋 =
1 6⁄

1 6⁄ + 1 2⁄
⎯⎯⎯⎯⎯⎯⎯⎯⎯

1 2⁄

1 6⁄ + 1 2⁄
⎯⎯⎯⎯⎯⎯⎯⎯⎯ =

1

4
⎯⎯

3

4
⎯⎯

The MC restricted to 𝑅 = {3,4} has stationary distribution○

𝜋 = [1], since there is only one state

The MC restricted to 𝑅 = {5} has stationary distribution○

Therefore 𝜋 = 0 0 𝑠 ⋅
1

4
⎯⎯ 𝑠 ⋅

3

4
⎯⎯ (1 − 𝑠) ⋅ 1  for some constant 0 ≤ 𝑠 ≤ 1○

Find all stationary distributions•

= (1 − 𝛼) lim
→

𝑝 (3,3) + 𝛼𝛽 lim
→

𝑝 (3,3)

= (1 − 𝛼 + 𝛼𝛽) lim
→

𝑝 (3,3) = (1 − 𝛼 + 𝛼𝛽) ⋅
1

4
⎯⎯

lim
→

𝑝 (1,3) = lim
→

[𝑝(1,3)𝑝 (3,3) + 𝑝(1,2)𝑝(2,3)𝑝 (3,3)]○

Compute lim
→

𝑝 (1,3)•

Example: Convergence Theorem
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The row of a MC s transition matrix 𝐬𝐮𝐦𝐬 𝐮𝐩 𝐭𝐨 𝟏 𝑖. 𝑒. 𝑝(𝑥, 𝑦)

 

∈

= 1○

Any matrix with non-negative values, and row sum to 1 is called a stochastic matrix○

Every stochastic matrix gives the transition probabilities for some MC○

Stochastic matrix•

A stochastic matrix is 𝐝𝐨𝐮𝐛𝐥𝐲 𝐬𝐭𝐨𝐜𝐡𝐚𝐬𝐭𝐢𝐜 if its 𝐜𝐨𝐥𝐮𝐦𝐧 𝐬𝐮𝐦 𝐭𝐨 𝟏 𝑖. 𝑒. 𝑝(𝑥, 𝑦)

 

∈

= 1○

We say that a MC is doubly stochastic if its transition matrix is○

Doubly stochastic•

Suppose we have a finite state space MC, where |𝑆| = 𝑁

𝝅(𝒙) =
𝟏

𝑵
⎯⎯, ∀𝑥 ∈ 𝑆 is a 𝐬𝐭𝐚𝐭𝐢𝐨𝐧𝐚𝐫𝐲 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 ⇔ the MC is 𝐝𝐨𝐮𝐛𝐥𝐲 𝐬𝐭𝐨𝐜𝐡𝐚𝐬𝐭𝐢𝐜

Statement○

𝜋(𝑦) = 𝜋(𝑥)𝑝(𝑥, 𝑦)

 

∈

⇔
1

𝑁
⎯⎯=

1

𝑁
⎯⎯ 𝑝(𝑥, 𝑦)

 

∈

⇔ 𝑝(𝑥, 𝑦)

 

∈

= 1

So the MC is doubly stochastic

(⟹) Assume 𝜋 is a stationary distribution○

𝜋(𝑥)𝑝(𝑥, 𝑦)

 

∈

=
1

𝑁
⎯⎯ 𝑝(𝑥, 𝑦)

 

∈

=
1

𝑁
⎯⎯= 𝜋(𝑦), ∀𝑦 ∈ 𝑆

Therefore 𝜋(𝑥) =
1

𝑁
⎯⎯ is a stationary distribution for this MC

(⟸) Assume the MC is doubly stochastic○

Stationary distribution of doubly stochastic MC•

Doubly Stochastic Chains

We say a distribution satisfy the detailed balance condition/equations if○

𝝅(𝒙)𝒑(𝒙, 𝒚) = 𝝅(𝒚)𝒑(𝒚, 𝒙), ∀𝒙, 𝒚 ∈ 𝑺○

Definition•

All distributions satisfying the detailed balance equations are stationary 

Statement○

Suppose 𝜋 satisify the dtailed balance euqations i.e. 𝜋(𝑥)𝑝(𝑥, 𝑦) = 𝜋(𝑦)𝑝(𝑦, 𝑥)

𝜋 𝑥 𝑝 𝑥, 𝑦

 

= 𝜋 𝑦 𝑝 𝑦, 𝑥

 

= 𝜋 𝑦 𝑝 𝑦, 𝑥

 

= 𝜋 𝑦 ⇒ 𝜋 is stationary

Proof○

Detailed balance condition and stationary distribution•

Detailed Balance Condition

Tuesday, October 16, 2018 9:33 AM
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𝜋(𝑥)𝑝(𝑥, 𝑦)

 

∈

= 𝜋(𝑦)𝑝(𝑦, 𝑥)

 

∈

= 𝜋(𝑦) 𝑝(𝑦, 𝑥)

 

∈

= 𝜋(𝑦) ⇒ 𝜋 is stationary

𝒫 =
0.5 0.5 0
0.3 0.1 0.6
0.2 0.4 0.4

○

𝜋(1)𝑝(1,2) = 𝜋(2)𝑝(2,1)

𝜋(1)𝑝(1,3) = 𝜋(3)𝑝(3,1)

𝜋(2)𝑝(2,3) = 𝜋(3)𝑝(3,2)
⇒

0.5 ⋅ 𝜋(1) = 0.3 ⋅ 𝜋(2)

0 ⋅ 𝜋(1) = 0.2 ⋅ 𝜋(3)

0.6 ⋅ 𝜋(2) = 0.4 ⋅ 𝜋(3)
⇒

𝜋(1) = 0
𝜋(2) = 0
𝜋(3) = 0



This is not a distribution, so none that satisfy DBE exists

Can 𝒫 have a stationary distribution that satisfies DBE?○

Since 𝒫 is doubly stochastic, so 𝜋 =
1

3
⎯⎯

1

3
⎯⎯

1

3
⎯⎯ is a stationary distribution

This is the only stationary distribution, as the MC is irreducible and finite

Can it have any other stationary distributions?○

Example 1.29•

Undirected graph is a set of vertices and edges, 𝐺 = (𝑉, 𝐸)○

𝑉 = {1,2,3,4,5}○

𝐸 = {1,2}, {1,3}, {2,3}, {2,4}, {3,4}, {3,5}, {4,5}○

𝐴 =

⎣
⎢
⎢
⎢
⎡
0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 1 1 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤

 is called the 𝐚𝐝𝐣𝐚𝐜𝐞𝐧𝐜𝐲 𝐦𝐚𝐭𝐫𝐢𝐱○

The neighbor of a vertex are those vertices is share an edge with.○

The degree of a vertex is the number of neighbors if has○

Undirected Graph•

Set 𝑆 = 𝑉. If in state 𝑉, you choose a neighbor of 𝑣 uniformaly as the next state○

Then 𝑝(𝑢, 𝑣) =
𝐴(𝑢, 𝑣)

deg(𝑢)
⎯⎯⎯⎯⎯⎯, ∀𝑢, 𝑣 ∈ 𝑉○

Random Walk on 𝐺•

All random walks' graphs satisfy DBE's

Statement○

𝜋(𝑢)𝑝(𝑢, 𝑣) = 𝜋(𝑣)𝑝(𝑣, 𝑢)

⇒ 𝜋(𝑢) ⋅
𝐴(𝑢, 𝑣)

deg 𝑢
⎯⎯⎯⎯⎯⎯ = 𝜋(𝑣) ⋅

𝐴(𝑢, 𝑣)

deg 𝑣
⎯⎯⎯⎯⎯⎯

⇒
𝜋(𝑢)

deg 𝑢
⎯⎯⎯⎯⎯=

𝜋(𝑣)

deg 𝑣
⎯⎯⎯⎯⎯

If we set 𝜋(𝑥) = 𝑐 ⋅ deg 𝑥 , ∀𝑥 ∈ 𝑉, then DBE is satisfied

Proof○

Random walk and DBE•

Random Markov on Graphs
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We just need to choose 𝑐 so that 𝜋 is a distribution

𝜋(𝑣)

 

∈

= 𝑐 ⋅ deg 𝑥

 

∈

= 1 ⇒ 𝑐 ≔
1

∑ deg 𝑥 
∈

⎯⎯⎯⎯⎯⎯⎯⎯⎯

Then 𝜋(𝑥) =
deg 𝑥

∑ deg 𝑥 
∈

⎯⎯⎯⎯⎯⎯⎯⎯⎯=
deg 𝑥

2|𝐸|
⎯⎯⎯⎯⎯

Let 𝑋 , 𝑋 , … be a MC with transition probabilities 𝑝, stationary and initial distribution 𝜋•

Fix 𝑛 and set 𝒀𝒎 = 𝑿𝒏 𝒎, ∀𝑚 ∈ {0,1,2, … , 𝑛} (i.e. 𝑌 , … , 𝑌 is a a time reversal for 𝑋 , … , 𝑋 )•

Then 𝑌  is a MC with transition probability 𝒑(𝒊, 𝒋) =
𝝅(𝒋)𝒑(𝒋, 𝒊)

𝒑(𝒊)
⎯⎯⎯⎯⎯⎯⎯⎯⎯•

𝒑(𝒊, 𝒋) =
𝝅(𝒋)𝒑(𝒋, 𝒊)

𝝅(𝒊)
⎯⎯⎯⎯⎯⎯⎯⎯⎯ =

𝝅(𝒊)𝒑(𝒊, 𝒋)

𝝅(𝒊)
⎯⎯⎯⎯⎯⎯⎯⎯⎯ = 𝒑(𝒊, 𝒋)○

Moreover, if DBE's are satisfied, then �̂� = 𝑝•

Reversibility

   Page 31    



Exit Distribution Motivative Example: Community College

Set 𝑉 ≔ inf{𝑛 ≥ 0|𝑋 = 𝑥}, and we want to compute ℙ (𝑉 < 𝑉 )•

First step analysis: if 𝑋 = 𝐹, then 𝑋 = 𝐷, 𝐹, or 𝑆•

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

ℙ (𝑉 < 𝑉 ) =

⎝

⎜
⎜
⎛

ℙ (𝑋 = 𝐷) ℙ (𝑉 < 𝑉 |𝑋 = 𝐷)

+ℙ (𝑋 = 𝐹) ℙ (𝑉 < 𝑉 |𝑋 = 𝐹)
ℙ ( )

+ℙ (𝑋 = 𝑆) ℙ (𝑉 < 𝑉 |𝑋 = 𝑆)
ℙ ( ) ⎠

⎟
⎟
⎞

ℙ (𝑉 < 𝑉 ) =

⎝

⎜
⎜
⎛

ℙ (𝑋 = 𝐷) ℙ (𝑉 < 𝑉 |𝑋 = 𝐷)

+ℙ (𝑋 = 𝐹) ℙ (𝑉 < 𝑉 |𝑋 = 𝐹)
ℙ ( )

+ℙ (𝑋 = 𝑆) ℙ (𝑉 < 𝑉 |𝑋 = 𝑆)
⎠

⎟
⎟
⎞

•

ℙ (𝑉 < 𝑉 )  = 0.25 ⋅ ℙ (𝑉 < 𝑉 ) + 0.6 ⋅ ℙ (𝑉 < 𝑉 )

ℙ (𝑉 < 𝑉 )  = 0.2 ⋅ ℙ (𝑉 < 𝑉 ) + 0.7
⇒

ℙ (𝑉 < 𝑉 )  = 0.7

ℙ (𝑉 < 𝑉 )  = 0.875
•

Find ℙ (𝑉 < 𝑉 ) for some 𝑥, 𝑎, 𝑏 ∈ 𝑆○

ℙ (𝑉 < 𝑉 ) = ℙ (𝑋 = 𝑦)ℙ (𝑉 < 𝑉 |𝑋 = 𝑦)

 

∈

=  𝑝(𝑥, 𝑦) ℙ (𝑉 < 𝑉 )

 

∈

○

So to find ℙ (𝑉 < 𝑉 ), we need to find ℙ (𝑉 < 𝑉 ), ∀𝑦 ∈ 𝑆○

Brainstorming•

ℙ (𝑉 < 𝑉 ) = 1○

ℙ (𝑉 < 𝑉 ) = 0○

There are |𝑆| linear equations in |𝑆| variables○

ℎ(𝑥) = 𝑝(𝑥, 𝑦)ℎ(𝑦)

 

∈



ℎ(𝑎) = 1, ℎ(𝑏) = 0

Define ℎ(𝑥) ≔ ℙ (𝑉 < 𝑉 ), then we need to find ℎ: 𝑆 → ℝ that satisfies ○

Observations (informal)•

Theorem•

Exit Distribution (Theorem 1.27)

Thursday, October 18, 2018 9:31 AM
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Consider a MC with |𝑆| < ∞○

Let 𝑎, 𝑏 ∈ 𝑆, and set 𝐶 ≔ 𝑆 ∖ {𝑎, 𝑏}○

ℎ(𝑎) = 1, ℎ(𝑏) = 0

ℎ(𝑥) = 𝑝(𝑥, 𝑦)ℎ(𝑦)

 

∈

, ∀𝑥 ∈ 𝐶

Suppose ℎ: 𝑆 → ℝ satisfies ○

If ℙ𝒙(𝐦𝐢𝐧{𝑽𝒂, 𝑽𝒃} < ∞) > 𝟎, ∀𝑥 ∈ 𝐶, then 𝒉(𝒙) = ℙ𝒙(𝑽𝒂 < 𝑽𝒃), ∀𝑥 ∈ 𝑆○

Theorem•

Exit Distribution Example: Gambler's Ruin

Assume 𝑝 <
1

2
⎯⎯, and we want to compute ℙ (𝑉 < 𝑉 )•

ℎ(0) = 0, ℎ(𝑁) = 1○

= 𝑝 ⋅ ℎ(𝑥 − 1) + 𝑞 ⋅ (𝑥 + 1), for 𝑥 ∈ {1, … , 𝑁 − 1}

ℎ(𝑥) = 𝑝(𝑥, 𝑦)ℎ(𝑦)

 

∈

= 𝑝(𝑥, 𝑥 − 1)ℎ(𝑥 − 1) + 𝑝(𝑥, 𝑥 + 1)ℎ(𝑥 + 1)○

⇒  𝑝 ⋅ ℎ(𝑥) + 𝑞 ⋅ ℎ(𝑥)
( )

= 𝑝 ⋅ ℎ(𝑥 − 1) + 𝑞 ⋅ (𝑥 + 1)○

⇒ 𝑝 ℎ(𝑥 + 1) − ℎ(𝑥) = 𝑞 ℎ(𝑥) − ℎ(𝑥 − 1)○

Construct ℎ•

Set 𝑢 ≔ ℎ(𝑥 + 1) − ℎ(𝑥), ∀𝑥 ∈ {1, … , 𝑁 − 1}○

𝑢 =
𝑞

𝑝
⎯⎯ 𝑢 ⟹ 𝑢 =

𝑞

𝑝
⎯⎯ 𝜇○

= 𝑢 = 𝑢
𝑞

𝑝
⎯⎯ = 𝑢

1 − (𝑞 𝑝⁄ )

1 − 𝑞 𝑝⁄
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

ℎ(𝑥) =  ℎ(𝑥) − ℎ(𝑥 − 1) +  ℎ(𝑥 − 1) − ℎ(𝑥 − 2) + ⋯ − ℎ(1) +  ℎ(1) − ℎ(0)○

1 = ℎ(𝑁) = ℎ(𝑁) − ℎ(0) = 𝑢
1 − (𝑞 𝑝⁄ )

1 − 𝑞 𝑝⁄
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⟹ 𝑢 =

1 − 𝑞 𝑝⁄

1 − (𝑞 𝑝⁄ )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯○

Solve the recurrence equation•

Therefore ℎ(𝑥) =
1 − (𝑞 𝑝⁄ )

1 − (𝑞 𝑝⁄ )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯•
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For irreducible, aperiodic MCs with 𝝅, we have the Convergence Theorem•

If there are transient states in the MC, they will ultimately travel between recurrent states•

Which closed set of recurrent states do you end up in? ℙ𝒙(𝑽𝒂 < 𝑽𝒃)○

How long should we expect the MC to travel between transient states before ending 
up in a recurrent state? 𝔼𝒙[𝑽𝒂]

○

Two basic questions•

Long Run Behavior of Markov Chains

Exit Time Motivating Example: Community College

How long will the average student remain at this community college?•

Define 𝐿 = {𝐷, 𝐺} and 𝑉 = inf{𝑛 ≥ 0|𝑋 ∈ 𝐿}. Then we need to find 𝔼 [𝑉 ]•

= (1 + 𝔼 [𝑉 ])

 

∈

𝑝(𝐹, 𝑙), since we need 1 step to get from 𝐹 to 𝑙

= 1 ⋅ 𝑝(𝐹, 𝐷) + (1 + 𝔼 [𝑉 ])𝑝(𝐹, 𝐹) + (1 + 𝔼 [𝑉 ])𝑝(𝐹, 𝑆) 

=  𝑝(𝐹, 𝐷) + 𝑝(𝐹, 𝐹) + 𝑝(𝐹, 𝑆) + 𝔼 [𝑉 ]𝑝(𝐹, 𝐹) + 𝔼 [𝑉 ]𝑝(𝐹, 𝑆)

= 1 + 𝔼 [𝑉 ]𝑝(𝐹, 𝐹) + 𝔼 [𝑉 ]𝑝(𝐹, 𝑆)

= 1 + 𝔼 [𝑉 ] ⋅ 0.25 + 𝔼 [𝑉 ] ⋅ 0.6

𝔼 [𝑉 ] = 𝐸 [𝑉 |𝑋 = 𝑙]
𝔼 [ ]

ℙ (𝑋 = 𝑙)
( , )

 

∈

, using firat step analysis•

Similarly, we have 𝔼 [𝑉 ] = 1 + 𝔼 [𝑉 ]𝑝(𝑆, 𝑆) = 1 + 𝔼 [𝑉 ] ⋅ 0.2•

𝔼 [𝑉 ]  = 1 + 𝔼 [𝑉 ] ⋅ 0.25 + 𝔼 [𝑉 ] ⋅ 0.6

𝔼 [𝑉 ]  = 1 + 𝐸 [𝑉 ] ⋅ 0.2
⟹

𝔼 [𝑉 ] = 7/3

𝔼 [𝑉 ] = 5/4
•

Consider a MC with finite state space 𝑆•

Let 𝐴 ⊆ 𝑆. Define 𝑉 ≔ inf{𝑛 ≥ 0|𝑋 ∈ 𝐴} and 𝐶 ≔ 𝑆 ∖ 𝐴•

𝒈(𝒂) = 𝟎, ∀𝒂 ∈ 𝑨○

𝒈 𝒙 = 𝟏 + 𝒈 𝒚 𝒑 𝒙, 𝒚

 

If ℙ (𝑉 < ∞) > 0, ∀𝑥 ∈ 𝐶, and 𝑔: 𝑆 → ℝ satisfies•

Exit Time (Theorem 1.28)

Tuesday, October 23, 2018 9:30 AM
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𝒈(𝒙) = 𝟏 + 𝒈(𝒚)𝒑(𝒙, 𝒚)

 

𝒚∈𝑪

○

Then 𝒈(𝒙) = 𝔼𝒙[𝑽𝑨] for all 𝑥 ∈ 𝑆•

Assume 𝑝 = 𝑞 = 0.5, how long should you expect to play the game?•

Set 𝐴 = {0, 𝑁}, then we want to find 𝔼 [𝑉 ], ∀𝑥 ∈ {1, … , 𝑁 − 1}•

Claim: 𝔼 [𝑉 ] = 𝑥(𝑁 − 𝑥)○

Set 𝑔(𝑥) = 𝑥(𝑁 − 𝑥), then obviously 𝑔(0) = 𝑔(𝑁) = 0○

= 1 + (𝑥 − 1) 𝑁 − (𝑥 − 1) ⋅
1

2
⎯⎯+ (𝑥 + 1) 𝑁 − (𝑥 + 1) ⋅

1

2
⎯⎯

= 𝑁𝑥 − 𝑥 = 𝑥(𝑁 − 𝑥) = 𝑔(𝑥)

1 + 𝑔(𝑦)𝑝(𝑥, 𝑦) = 1 + 𝑔(𝑥 − 1)𝑝(𝑥, 𝑥 − 1) + 𝑔(𝑥 + 1)𝑝(𝑥, 𝑥 + 1)

For 1 ≤ 𝑥 ≤ 𝑁 − 1○

Therefore 𝑔(𝑥) = 𝔼 [𝑇 ]○

Approach 1: Use the theorem to verify/disprove a conjecture•

𝑔(0) = 𝑔(𝑁) = 0

𝑔(𝑥) = 1 +
1

2
⎯⎯𝑔(𝑥 − 1) +

1

2
⎯⎯𝑔(𝑥 + 1), ∀𝑥 ∈ {1, … , 𝑁 − 1}

By the theorem, we can define 𝑔 as○

Solve as recurrence equations (or as a linear system)○

𝑔(𝑥 + 1) − 𝑔(𝑥) = −2 + 𝑔(𝑥) − 𝑔(𝑥 − 1)○

Set 𝑢 = 𝑔(𝑥 + 1) − 𝑔(𝑥), then 𝑢 = −2 + 𝑢 ⇔ 𝑢 = 𝑢 − 2𝑥, ∀𝑥 ∈ {1, … , 𝑁 − 1}○

= 𝑢 = 𝑢 − 2(𝑙 − 1) = 𝑢 𝑥 − 2
(𝑥 − 1)𝑥

2
⎯⎯⎯⎯⎯⎯⎯⎯= 𝑢 𝑥 − (𝑥 − 1)𝑥

𝑔(𝑥) = 𝑔(𝑥) − 𝑔(0) =  𝑔(𝑥) − 𝑔(𝑥 − 1) + 𝑔(𝑥 + 1) + ⋯ + 𝑔(1) − 𝑔(0)○

𝑔(𝑁) = 𝑢 𝑁 − (𝑁 − 1)𝑁 = 0 ⟹ 𝑢 = 𝑁 − 1○

Therefore 𝑔(𝑥) = (𝑁 − 1)𝑥 − (𝑥 − 1)𝑥 = 𝑥(𝑁 − 𝑥)○

Approach 2: Use the theorem to derive a solution•

Exit Time Example: Fair Gambler's Ruin

   Page 35    



𝜏 = interarrival time•

𝑇 = arrival/renewal time•

𝑁(𝑠) = number of renewals up to time 𝒔•

Renewal Process

Let 𝜏 , 𝜏 … ~Exp(𝜆) be independent•

Set 𝑇 = 0, 𝑇 = 𝑇 + 𝜏 = 𝜏 + ⋯ + 𝜏•

Define 𝑵(𝒔) = 𝐦𝐚𝐱{𝒏 ≥ 𝟎|𝑻𝒏 ≤ 𝒔}•

Then we call {𝑁(𝑠)} a Poisson process with rate 𝝀•

Definition of Poisson Process

We write that 𝑿~𝐄𝐱𝐩(𝝀) for 𝜆 > 0 if ○

𝒇𝑿(𝒕) = 𝝀𝒆 𝝀𝒕 𝒕 ≥ 𝟎
𝟎 𝒕 < 𝟎

, 𝐨𝐫○

𝑭𝑿(𝒙) = 𝟏 − 𝒆 𝝀𝒙 𝒙 ≥ 𝟎
𝟎 𝒙 < 𝟎

○

Definition•

𝐺(𝑥) = ℙ(𝑋 > 𝑥) = 1 − 𝐹 (𝑥) = 𝑒 𝑥 ≥ 0
1 𝑥 < 0

○

Survival function•

𝔼[𝑋] = 𝑥𝑓 (𝑥)𝑑𝑥 = 𝑥𝜆𝑒 𝑑𝑥 =
1

𝜆
⎯⎯○

Expected value•

ℙ(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑠) =
ℙ(𝑋 > 𝑠 + 𝑡)

ℙ(𝑋 > 𝑠)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ =

𝑒 ( )

𝑒
⎯⎯⎯⎯⎯⎯⎯= 𝑒 = ℙ(𝑋 > 𝑡)○

𝐄𝐱𝐩(𝝀) is memoryless•

Exponential Distribution

We say that 𝑻~𝐆𝐚𝐦𝐦𝐚(𝒏, 𝝀) if 𝒇𝑻(𝒕) = 𝝀𝒆 𝝀𝒕 ⋅
(𝝀𝒕)𝒏 𝟏

(𝒏 − 𝟏)!
⎯⎯⎯⎯⎯⎯⎯ 𝒕 ≥ 𝟎

𝟎 𝒕 < 𝟎

○

Definition•

Gamma Distribution

Thursday, October 25, 2018 9:32 AM
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Let 𝝉𝟏, 𝝉𝟐 … ~𝐄𝐱𝐩(𝝀) be independent○

Set 𝑻𝟎 = 𝟎, 𝑻𝒌 = 𝑻𝒌 𝟏 + 𝝉𝒌 = 𝝉𝟏 + ⋯ + 𝝉𝒌, then 𝑻𝒏~𝐆𝐚𝐦𝐦𝐚(𝒏, 𝝀)○

Proof by induction, the base case is trivial○

For 𝑛 ≥ 1, 𝑇 = 𝑇 + 𝜏 , where 𝑇 and 𝜏 are independent○

= 𝜆𝑒
(𝜆𝑠)

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯𝜆𝑒 ( )𝑑𝑠 = 𝜆𝑒 ⋅

(𝜆𝑡)

𝑛!
⎯⎯⎯⎯⎯ for 𝑡 ≥ 0

𝑓 (𝑡) = 𝑓 ∗ 𝑓 (𝑡) = 𝑓 (𝑠)𝑓 (𝑡 − 𝑠)𝑑𝑠○

So 𝑇 ~Gamma(𝑛 + 1, 𝜆), which completes the proof○

Relation with exponential distribution•

We say that 𝑿~𝐏𝐨𝐢𝐬𝐬𝐨𝐧(𝝀) if 𝒑𝑿(𝒏) = 𝒆 𝝀
𝝀𝒏

𝒏!
⎯⎯⎯ for 𝑛 = 0,1,2, …•

𝔼[𝑋] = 𝑛 ⋅ 𝑒 ⋅
𝜆

𝑛!
⎯⎯⎯= 𝜆𝑒

𝜆

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ = 𝜆𝑒  

𝜆

𝑛!
⎯⎯⎯= 𝜆 ⟹ 𝔼[𝑿] = 𝝀•

𝔼[𝑋(𝑋 − 1)] = 𝑛(𝑛 − 1) ⋅ 𝑒 ⋅
𝜆

𝑛!
⎯⎯⎯= 𝜆 ⟹ 𝐕𝐚𝐫[𝑿] = 𝝀•

Poisson Distribution
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𝜏 = interarrival time○

𝑇 = arrival/renewal time○

𝑁(𝑠) = number of arrivals up to time 𝒔○

In the graph above, •

𝝉𝒌 ~
𝒊𝒊𝒅

𝐄𝐱𝐩(𝝀)○

𝑻𝒏 = 𝝉𝟏 + ⋯ + 𝝉𝒏~𝐆𝐚𝐦𝐦𝐚(𝒏, 𝝀)○

𝑵(𝒔)~𝐏𝐨𝐢𝐬𝐬𝐨𝐧(𝝀𝒔)○

For Poisson process, we have•

Poisson Process

𝑵(𝟎) = 𝟎 (with probability 1)○

𝑵(𝒕 + 𝒔) − 𝑵(𝒔)~𝐏𝐨𝐢𝐬𝐬𝐨𝐧(𝝀𝒕)○

𝑁(𝑡) has independent increments○

{𝑁(𝑠)|𝑠 ≥ 0} is a Poisson process with rate 𝜆 if and only if•

We say that 𝑁(𝑡) has independent increments if for any 𝑡 < ⋯ < 𝑡 ,○

the random variables 𝑁(𝑡 ) − 𝑁(𝑡 ), … , 𝑁(𝑡 ) − 𝑁(𝑡 ) are independent

The number of arrivals between any two intervals has no effect to each other○

Independent increment•

= 𝑓 , (𝑡, 𝑢) 𝑑𝑢 𝑑𝑡 = 𝑓 (𝑡) 𝑓 (𝑢) 𝑑𝑢 𝑑𝑡

= 𝜆𝑒
(𝜆𝑡)

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ 𝜆𝑒 𝑑𝑢 𝑑𝑡 = 𝜆𝑒

(𝜆𝑡)

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ 𝑒 ( ) 𝑑𝑡

=
𝜆

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ 𝑒 𝑡 𝑑𝑡 =

𝜆

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ 𝑒

𝑠

𝑛
⎯⎯⎯ =

(𝜆𝑠)

𝑛!
⎯⎯⎯⎯⎯

ℙ(𝑁(𝑠) = 𝑛) = ℙ(𝑇 ≤ 𝑠, 𝑇 > 𝑠) = ℙ(𝑇 ≤ 𝑠, 𝜏 > 𝑠 − 𝑇 )○

Proof (⟸)•

Equivalent Definition of Poisson Process

Patients arrive at a rate of 1 every 10 minutes (on average)•

This doctor does not see patient until at least 3 are waiting•

Poisson Process Example: Arrival of Patients

Tuesday, October 30, 2018 9:31 AM
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Let 𝜆 =
1 patient arrival

10 minutes
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=

1

10
⎯⎯⎯○

𝔼[𝑇 ] = 𝔼[𝜏 + 𝜏 + 𝜏 ] = 3𝔼[𝜏 ] = 3 ⋅
1

𝜆
⎯⎯= 30○

What is the expected waiting time until the first patient is seen•

ℙ(𝑁(60) < 3) = ℙ(𝑁(60) = 𝑡) = 𝑒 ⋅
6

𝑡!
⎯⎯ ≈ 0.062○

What is the probability that no patient is seen in the first hour?•

Suppose customers arrive at a rate of 5 per hour, following a Poisson process•

Your store is open from 9am to 6pm•

ℙ(𝑁(1) = 0) = 𝑒 ⋅ ⋅
(𝜆 ⋅ 1)

0!
⎯⎯⎯⎯⎯⎯⎯= 𝑒○

What is the probability that no customer arrives within 1 hour of opening?•

Use the notation 𝑁(𝑡 , 𝑡 ] ≔ 𝑁(𝑡 ) − 𝑁(𝑡 )○

= ℙ(𝑁(0,1] = 2)ℙ(𝑁(1,1.5] = 3)ℙ(𝑁(5,6.5] = 5)

= 𝑒 ⋅
𝜆

2!
⎯⎯ 𝑒 . ⋅

(0.5𝜆)

3!
⎯⎯⎯⎯⎯⎯⎯ 𝑒 . ⋅

(1.5𝜆)

5!
⎯⎯⎯⎯⎯⎯⎯ ≈ 0.00197

ℙ(𝑁(0,1] = 2, 𝑁(1,1.5] = 3, 𝑁(5,6.5] = 5)○

What is the probability that we have 2 customers from 9-10am, 3 customers from 
10-10:30am and 5 customers from 2-3:30pm?

•

=
ℙ(𝑁(1,1.5] = 3, 𝑁(1,3] = 12)

ℙ(𝑁(1,3] = 12)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=

ℙ(𝑁(1,1.5] = 3, 𝑁(1.5,3] = 9)

ℙ(𝑁(1,3] = 12)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

=

𝑒 ⋅ . (5 ⋅ 0.5)
3!

⎯⎯⎯⎯⎯⎯⎯⎯ 𝑒 ⋅ . (5 ⋅ 1.5)
9!

⎯⎯⎯⎯⎯⎯⎯⎯

𝑒 ⋅ (5 ⋅ 2)
12!

⎯⎯⎯⎯⎯⎯⎯
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=

12
3

1

4
⎯⎯

3

4
⎯⎯

ℙ(𝑁(1,1.5] = 3|𝑁(1,3] = 12)○

Note this is a binomial distribution○

What is the probability that we have 3 customers from 10-10:30am, given 12 customers 
from 10am-12pm?

•

Poisson Process Example: Arrival of Customers

𝑁(0) = 0 with probability 1○

𝑁(𝑡) has independent increment○

𝑵(𝒕) − 𝑵(𝒔) 𝐢𝐬 𝐏𝐨𝐢𝐬𝐬𝐨𝐧 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐝 𝐰𝐢𝐭𝐡 𝐦𝐞𝐚𝐧 𝝀(𝒓)𝒅𝒓
𝒕

𝒔

○

{𝑁(𝑠)|𝑠 ≥ 0} is an inhomogeneous Poisson process with rate 𝝀(𝒓) if it satisfies•

Inhomogeneous Poisson Process

   Page 39    



Inhomogeneous Poisson Process•

Compound Poisson Process•

Thinning a Poisson Process•

Superposition of Poisson Process•

Conditioning for Poisson Process•

Variations on Poisson Process

Suppose claims arrive as a Poisson process 𝑁(𝑡) with rate 𝜆○

How much money must the company pay out over time○

Let 𝑌 be the amount of money company pays for 𝑘 claim○

Let 𝑆(𝑡) be the amount of money company paid out up to time 𝑡○

Then 𝑆(𝑡) = 𝑌 + 𝑌 + ⋯ + 𝑌 ( ) = 𝑌

( )

○

Motivating example: Risk Theory•

Suppose a stock price has changes occurs as a Poisson Process 𝑁(𝑡) with rate 𝜆○

Let 𝑌 be the 𝑘 change in stock price○

Let 𝑆(𝑡) be the total price change up to time 𝑡○

Then 𝑆(𝑡) = 𝑌

( )

○

Motivating example: Stock Prices•

Let {𝑁(𝑡)|𝑡 ≥ 0} be a Poisson process with rate 𝜆, and 𝑌 , … , 𝑌 be iid RVs○

𝑺(𝒕) = 𝒀𝟏 + 𝒀𝟐 + ⋯ + 𝒀𝑵(𝒕) = 𝒀𝒌

𝑵(𝒕)

𝒌 𝟏



𝑺(𝒕) = 𝟎 when 𝑵(𝒕) = 𝟎

A Compound Poisson Process is defined by○

Note: 𝑆(𝑡) is a sum of random length○

Definition•

Compound Poisson Process

Let 𝑌 , … , 𝑌 be iid RVs, and 𝑁 be an independent non-negative discrete RV•

Note:  𝔼 𝑆 = 𝔼 𝑌 ≠ 𝑁𝔼 𝑌 , since 𝑁 is a random variable

𝔼[𝑺] = 𝔼[𝑵]𝑬[𝒀𝟏]○

Define 𝑆 = 𝑌 + 𝑌 + ⋯ + 𝑌 , and 𝑆 = 0 if 𝑁 = 0. Then•

Random Sum (Theorem 2.10)

Thursday, November 1, 2018 5:30 PM
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Note:  𝔼[𝑆] = 𝔼 𝑌 ≠ 𝑁𝔼[𝑌 ], since 𝑁 is a random variable

𝔼[𝑆|𝑁 = 𝑛] = 𝔼 𝑌 𝑁 = 𝑛 = 𝔼[𝑌 |𝑁 = 𝑛] = 𝔼[𝑌 ] = 𝑛𝔼[𝑌 ]

Therefore 𝔼[𝑆|𝑁] = 𝑁 ⋅ 𝔼[𝑌 ]

𝔼[𝑆] = 𝔼 𝔼[𝑆|𝑁] = 𝔼 𝑁 ⋅ 𝔼[𝑌 ]

×

= 𝔼[𝑁] ⋅ 𝔼[𝑌 ]

= Var[𝑌 + ⋯ + 𝑌 ] + (𝔼[𝑌 + ⋯ + 𝑌 ]) , since 𝐸[𝑋 ] = 𝐸[𝑋] + Var[𝑋]

= Var[𝑌 ] + ⋯ + Var[𝑌 ] + (𝔼[𝑌 ] + ⋯ + 𝔼[𝑌 ]) , since 𝑌 , … , 𝑌 are iid

= 𝑛 ⋅ Var[𝑌 ] + 𝑛 (𝔼[𝑌 ])

𝔼[𝑆 𝑁 = 𝑛] = 𝔼[(𝑌 + ⋯ + 𝑌 ) ]

Therefore 𝔼[𝑆 𝑁] = 𝑁 ⋅ Var[𝑌 ] + 𝑁 (𝔼[𝑌 ])

= 𝔼[𝑁 ⋅ Var[𝑌 ] + 𝑁 (𝔼[𝑌 ]) ]

= 𝔼 𝑁 ⋅ Var[𝑌 ]

×

+ 𝔼 [𝑁 (𝔼[𝑌 ]) ]

×

= 𝔼[𝑁] ⋅ Var[𝑌 ] + 𝔼[𝑁 ](𝔼[𝑌 ])

𝔼[𝑆 ] = 𝔼 𝔼[𝑆 𝑁]

= 𝔼[𝑁] ⋅ Var[𝑌 ] + 𝔼[𝑁 ](𝔼[𝑌 ]) − (𝔼[𝑁] ⋅ 𝔼[𝑌 ])

= 𝔼[𝑁] ⋅ Var[𝑌 ] + 𝔼[𝑁 ] − (𝔼[𝑁])

[ ]

(𝔼[𝑌 ])

= 𝔼[𝑁] ⋅ Var[𝑌 ] + Var[𝑁](𝔼[𝑌 ])

Var[𝑆] = 𝔼[𝑆 ] − (𝔼[𝑆])

𝐕𝐚𝐫[𝑺] = 𝔼[𝑵]𝐕𝐚𝐫[𝒀𝟏] + 𝐕𝐚𝐫[𝑵](𝔼[𝒀𝟏])𝟐○

𝐕𝐚𝐫(𝑺) = 𝔼[𝑁] ⋅ Var[𝑌 ] + Var[𝑁](𝔼[𝑌 ]) = 𝜆Var[𝑌 ] + 𝜆(𝔼[𝑌 ]) = 𝝀𝔼 𝒀𝟏
𝟐○

𝔼[𝑺(𝒕)] = 𝔼[𝑁(𝑡)] ⋅ 𝔼[𝑌 ] = 𝝀𝒕𝔼[𝒀𝟏]○

𝐕𝐚𝐫[𝑺(𝒕)] = 𝔼[𝑁(𝑡)] ⋅ Var[𝑌 ] + Var[𝑁(𝑡)](𝔼[𝑌 ]) = 𝜆𝑡Var[𝑌 ] + 𝜆𝑡(𝔼[𝑌 ]) = 𝝀𝒕𝔼 𝒀𝟏
𝟐○

In particular, if 𝑁~Poisson(𝜆), then •

An insurance company pays claim at rate of 4 per week as a Poisson process•

The average payment for a claim is $10,000. The standard deviation is $6,000•

Find the mean and standard deviation of total payments for 4 weeks•

Given 𝐸[𝑌 ] = 10000, Var[𝑌 ] = 6000 = 36000000, 𝜆 = 4•

𝔼[𝑆(4)] = 𝜆 ⋅ 4 ⋅ 𝔼[𝑌 ] = 4 ⋅ 4 ⋅ 10000 = 160000•

= 4 ⋅ 4 ⋅ 36000000 + (10000) = 2.176 × 10

Var[𝑆(4)] = 𝜆 ⋅ 4 ⋅ 𝔼 𝑌 = 𝜆 ⋅ 4 ⋅ Var[𝑌 ] + (𝔼[𝑌  ])•

SD[𝑆(4)] = Var[𝑆(4)]
⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

= 46647.6•

Compound Poisson Process Example 
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You have a Poisson process for arrivals, which are filtered or categorized upon arrival•

Not-so-surprising: The arrivals for a specific category form a Poisson process•

Surprising: The process for each category are independent of each other •

General Idea for Thinning

Suppose vehicles pass a weigh station as a Poisson process with rate 𝜆•

Let 𝑌 denote the type of the 𝑘 vehicle that passes•

Assume that ℙ(𝑌 = 1) = 0.85 , ℙ(𝑌 = 2) = 0.10 , ℙ(𝑌 = 3) = 0.05•

Thinning Motivating Example: Highway Traffic

General Idea: 𝑁 (𝑡), 𝑁 (𝑡), 𝑁 (𝑡) will be independent Poisson processes•

Suppose 𝑁(𝑡) is a Poisson process with rate 𝜆○

Also, 𝑌 , 𝑌 , … are iid (and non-negative integer-valued) random variables○

Define 𝑁 (𝑡) = 𝟙{𝑌 = 𝑗}

( )

 be the 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐚𝐫𝐫𝐢𝐯𝐚𝐥𝐞𝐬 𝐮𝐩 𝐭𝐨 𝐭𝐢𝐦𝐞 𝒕 𝐨𝐟 𝐭𝐲𝐩𝐞 𝒋○

Then 𝑁 (𝑡), 𝑁 (𝑡), … are independent Poisson process with rate 𝝀𝒋 = 𝝀ℙ(𝒀𝟏 = 𝒋)○

Statement•

Define 𝑝 = ℙ(𝑌 = 1) and 𝑞 = 1 − 𝑝 = ℙ(𝑌 = 2)○

ℙ 𝑁 𝑡 = 𝑗 = ℙ 𝑁 𝑡 = 𝑗, 𝑁 𝑡 = 𝑛

Claim: 𝑁 (𝑡)~Poisson(𝑝𝜆𝑡) and 𝑁 (𝑡)~Poisson(𝑞𝜆𝑡)○

Proof (Binary Case)•

Thinning a Poisson Process (Theorem 2.11)

Tuesday, November 6, 2018 9:32 AM
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= ℙ(𝑁 (𝑡) = 𝑗|𝑁(𝑡) = 𝑛)
~ ( , )

ℙ(𝑁(𝑡) = 𝑛)
~ ( )

=
𝑛
𝑗 𝑝 (1 − 𝑝) 𝑒

(𝜆𝑡)

𝑛!
⎯⎯⎯⎯⎯

= 𝑒
𝑝

𝑗!
⎯⎯

(𝜆𝑡) (1 − 𝑝)

(𝑛 − 𝑗)!
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= 𝑒
𝑝

𝑗!
⎯⎯

𝜆𝑡(1 − 𝑝)

𝑛!
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

( )

(𝜆𝑡)

= 𝑒
(𝑝𝜆𝑡)

𝑗!
⎯⎯⎯⎯⎯⎯

ℙ(𝑁 (𝑡) = 𝑗) = ℙ(𝑁 (𝑡) = 𝑗, 𝑁(𝑡) = 𝑛)

Therefore 𝑁 (𝑡)~Poisson(𝑝𝜆𝑡), and similarly 𝑁 (𝑡)~Poisson(𝑞𝜆𝑡)

= ℙ(𝑁 (𝑡) = 𝑗|𝑁(𝑡) = 𝑗 + 𝑘)
~ ( , )

ℙ(𝑁(𝑡) = 𝑗 + 𝑘)
~ ( )

=
𝑗 + 𝑘

𝑗
𝑝 𝑞 𝑒

(𝜆𝑡)

(𝑗 + 𝑘)!
⎯⎯⎯⎯⎯⎯⎯

=
(𝑝𝜆𝑡)

𝑗!
⎯⎯⎯⎯⎯⎯𝑒

(𝑞𝜆𝑡)

𝑘!
⎯⎯⎯⎯⎯⎯𝑒

= ℙ(𝑁 (𝑡) = 𝑗)ℙ(𝑁 (𝑡) = 𝑘)

ℙ(𝑁 (𝑡) = 𝑗, 𝑁 (𝑡) = 𝑘) = ℙ(𝑁 (𝑡) = 𝑗, 𝑁(𝑡) = 𝑗 + 𝑘)

Claim: 𝑁 (𝑡) and 𝑁 (𝑡) are independent○

Since 𝑁 (𝑡) ≤ 𝑁(𝑡), we have ℙ(𝑁 (0) = 0) = 1

In independence proof, we showed 𝑁 (𝑡)~Poisson(𝑝𝜆𝑡)

𝑁 𝑡 , 𝑡 = 𝟙{𝑌 = 1}□

𝑁 (𝑡 , 𝑡 ], … , 𝑁 (𝑡 , 𝑡 ] are sums independent random variables 𝑌□

Thus, the 𝑁 𝑡 , 𝑡 will be independent for nonoverlapping intervals □

𝑁 has independet increment 

Therefore 𝑁 (𝑡) is a Poisson process with rate 𝜆

Claim: 𝑁 (𝑡) is a Poisson Process (same for 𝑁 (𝑡))○

Suppose 𝑁 (𝑡), … , 𝑁 (𝑡) are independent Poisson process with rates 𝜆 , … , 𝜆•

Then 𝑵(𝒕) = 𝑵𝟏(𝒕) + ⋯ + 𝑵𝒌(𝒕) is a Poisson process with rate 𝝀 = 𝝀𝟏 + ⋯ + 𝝀𝒌•

The proof is like thinning theorem proof, but a little easier. Proceed by mathematical induction•

Superposition of Poisson Processes (Theorem 2.13)

Order Statistics
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Let 𝑋 , … , 𝑋 be iid random variables○

𝑋( ) = min{𝑋 , … , 𝑋 }

𝑋( ) = min {𝑋 , … , 𝑋 } ∖ 𝑋( )

⋮

𝑋( ) = max{𝑋 , … , 𝑋 }

Define 𝑋( ) be the 𝑘-th smallest element in {𝑋 , … , 𝑋 }○

Then 𝑋( ), … , 𝑋( ) are the order statistics for 𝑋 , … , 𝑋○

Definition•

If 𝑈 , … , 𝑈 ~ Unif[0, 𝑡], then the joint PDF for 𝑈( ), … , 𝑈( ) is ○

𝑓(𝑢 , … , 𝑢 ) =
𝑛!

𝑡
⎯⎯ 0 ≤ 𝑢 ≤ ⋯ ≤ 𝑢 ≤ 𝑡

0 otherwise

○

Fact•

Order Statistics

(𝑻𝟏, … , 𝑻𝒏|𝑵(𝒕) = 𝒏) =
𝑫

𝑼(𝟏), … , 𝑼(𝒏)○

For a Poisson process, the conditional distribution of arrival times satisfies•

𝑓(𝑡 , … , 𝑡 ) =
𝑛!

𝑡
⎯⎯ 0 ≤ 𝑡 ≤ ⋯ ≤ 𝑡 ≤ 𝑡

0 otherwise

○

Specifically, the joint PDF given 𝑁(𝑡) = 𝑛 is •

Conditioning of Poisson Processes (Theorem 2.14)

Suppose 𝑠 < 𝑡 and 0 ≤ 𝑘 ≤ 𝑛. Then○

ℙ(𝑵(𝒔) = 𝒌|𝑵(𝒕) = 𝒏) =
𝒏
𝒌

𝒔

𝒕
⎯

𝒌

𝟏 −
𝒔

𝒕
⎯

𝒏 𝒌

○

In other words, (𝑁(𝑠)|𝑁(𝑡) = 𝑛)~Binomial(𝑛, 𝑠/𝑡)○

Statement•

Proof (using order statistics)•

Proof (proceed directly from definition of condition probability)•

Binomial and Conditioning of Poisson Processes (Theorem 2.15)
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𝑁 (𝑡) ≔ number of trucks that have passed up to time 𝑡○

𝑁 (𝑡) ≔ number of cars that have passed up to time 𝑡○

𝑁 and 𝑁 are Poisson process with rate 40 and 100 respectively○

1/8 of trucks and 1/10 of cars go to Bojangle's○

𝐵 (𝑡) ≔ number of trucks that have gone to Bojangle's up to time 𝑡○

𝐵 (𝑡) ≔ number of cars that have gone to Bojangle's up to time 𝑡○

Then 𝐵 and 𝐵 are Poisson process with rate 5 and 10 respectively○

Problem setup•

ℙ(𝐵 (1) = 6) = 𝑒
5

6!
⎯⎯○

Find the probability that exactly 6 trucks arrive at Bojangle's between noon and 1PM•

ℙ 𝐵
1
3
⎯⎯,

2
3
⎯⎯ = 2 𝐵 (1) = 6 =

6
2

2 3⁄ − 1 3⁄

1
⎯⎯⎯⎯⎯⎯⎯⎯⎯ 1 −

2 3⁄ − 1 3⁄

1
⎯⎯⎯⎯⎯⎯⎯⎯⎯ =

6
2

1

3
⎯⎯

2

3
⎯⎯○

Given that there were 6 truck arrivals at Bojangle's between noon and 1PM, what is the 
probability that exactly two arrived between 12:20 and 12:40?

•

𝑆 (𝑡) ≔ number of customers that arrive in trucks up to time 𝑡

𝑆 (𝑡) ≔ number of customers that arrive in cars up to time 𝑡

𝑌 , ≔ number of passengers in 𝑘 truck to arrive at Bojangle's

𝑌 , ≔ number of passengers in 𝑘 cars to arrive at Bojangle's

𝑆 (𝑡) ≔ 𝑌 ,

( )



𝑆(𝑡) ≔ 𝑆 (𝑡) + 𝑆 (𝑡) to be total customers up to time 𝑡

Define ○

𝔼[𝑆 (1)] = 𝔼[𝐵 (1)]𝔼 𝑌 , = (5 ⋅ 1) ⋅ 1 = 5

𝔼[𝑆 (1)] = 𝔼[𝐵 (1)]𝔼 𝑌 , = (10 ⋅ 1) ⋅ (1 × 0.3 + 2 × 0.5 + 4 × 0.2) = 21

⇒ 𝔼[𝑆(1)] = 𝔼[𝑆 (1)] + 𝔼[𝑆 (1)] = 26

Compute 𝔼[𝑆(1)] = 𝔼[𝑆 (1)] + 𝔼[𝑆 (1)]○

Var[𝑆 (1)] = 5𝔼 𝑌 , = 5

Var 𝑆 1 = 10𝔼 𝑌 , = 10 1 × 0.3 + 2 × 0.5 + 4 × 0.2 = 55

Compute Var[𝑆(1)] = Var[𝑆 (1)] + Var[𝑆 (1)] (by independence)○

Suppose that trucks always have 1 passenger; 30% of the cars have 1 passenger, 50% have 2, 
and 20% have 4. Find the 𝜇 and 𝜎 of the number of customers arrive at Bojangle's in one 
hour.

•

Exercise 2.47

Thursday, November 8, 2018 9:39 AM
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Var[𝑆 (1)] = 10𝔼 𝑌 , = 10 1 × 0.3 + 2 × 0.5 + 4 × 0.2 = 55

⇒ Var[𝑆(1)] = Var[𝑆 (1)] + Var[𝑆 (1)] = 60

The next bus arrival time is uniformly distributed over the next hour○

Cars pass at a rate of  6 per hour (following a Poisson process)○

1/3 of car will pick up a hitchhiker ○

Problem setup•

𝑇 ≔ time bus arrives, then 𝑇 ~Unif[0,1]○

𝑁(𝑡) ≔ the number of car passed up to time 𝑡, then 𝑁(𝑡) is a Poisson process with 𝜆 = 6○

𝐻(𝑡) ≔ the number of car pick up a hitchhiker up to time 𝑡, then 𝐻(𝑡) is a P.P. with 𝜆 = 2○

𝑇 ≔ arrival time for first car that will pick up a hitchhiker, then 𝑇 ~Exp(2)○

Define•

ℙ(𝑇 < 𝑇 ) = 𝑓 (𝑥)𝑓 (𝑦) 𝑑𝑥 𝑑𝑦 = 2𝑒 𝑑𝑥 𝑑𝑦 =
1

2
⎯⎯ 1 −

1

𝑒
⎯⎯○

What is the probability someone takes the bus rather than hitchhikes?•

Exercise 2.27

𝑁(𝑡) ≔ number of typos author has made in the first 𝒕 pages○

𝑁 (𝑡) ≔ number of typos found in the first 𝑡 pages○

Then 𝑁(𝑡), 𝑁 (𝑡) are Poisson processes with rate 𝜆 and 0.9𝜆 respectively○

𝑋 ≔ number of typos found in full manuscript, then 𝑋 = 𝑁 (200)○

Problem setup•

𝔼[𝑋] = 𝔼 𝑁 (200) = 200 ⋅ 0.9𝜆 = 180𝜆○

Compute the expected number of typos•

180𝜆 ≈ 108 ⇒ 𝜆 =
108

180
⎯⎯⎯ = 0.6○

Estimate 𝜆 if the total number of typos is 108•

Exercise 2.50
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Signals are sent as a Poisson process with rate 𝜆○

Each signal reaches its target with probability 𝑝 and fails with probability 𝑞 = 1 − 𝑝○

𝑁 (𝑡) ≔ # successful transimissions up to time 𝑡○

𝑁 (𝑡) ≔ # failed transimissions upto time 𝑡○

Problem setup•

This is asking for the joint PMF of 𝑁 (𝑡), 𝑁 (𝑡)○

𝑁 (𝑡) and 𝑁 (𝑡) are thinned versions of the general singal process○

So 𝑁 (𝑡) and 𝑁 (𝑡) are Poisson proecss with rates 𝑝𝜆 and (1 − 𝑝)𝜆, respectively○

Additionally, 𝑵𝟏(𝒕) and 𝑵𝟐(𝒕) are independent○

= 𝑒
(𝑝𝜆𝑡)

𝑗!
⎯⎯⎯⎯⎯⎯ 𝑒 ( )

(1 − 𝑝)𝜆𝑡

𝑘!
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = 𝑒

(𝑝𝜆𝑡) (1 − 𝑝)𝜆𝑡

𝑗! 𝑘!
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

ℙ(𝑁 (𝑡) = 𝑗, 𝑁 (𝑡) = 𝑘) = ℙ(𝑁 (𝑡) = 𝑗)ℙ(𝑁 (𝑡) = 𝑘)○

Find the distribution of 𝑁 (𝑡), 𝑁 (𝑡)•

We can compute ℙ(𝐿 ≥ 𝑘), then ℙ(𝐿 = 𝑘) = ℙ(𝐿 ≥ 𝑘) − ℙ(𝐿 ≥ 𝑘 + 1)○

𝐹 ≔ time of 𝑘 failed signal, 𝑆 ≔ time of 𝑘 successful signal ○

= 𝑞𝜆𝑒
(𝑞𝜆𝑡)

(𝑘 − 1)!
⎯⎯⎯⎯⎯⎯⎯⎯ 𝑝𝜆𝑒 𝑑𝑠 𝑑𝑡 = 𝑞𝜆𝑒

(𝑞𝜆𝑡)

(𝑘 − 1)!
⎯⎯⎯⎯⎯⎯⎯⎯𝑑𝑡

= 𝑞 𝜆𝑒
(𝜆𝑡)

(𝑘 − 1)!
⎯⎯⎯⎯⎯⎯⎯

 .

𝑑𝑡 = 𝑞

ℙ(𝐿 ≥ 𝑘) = ℙ(𝐹 < 𝑆 ) = 𝑓 (𝑡) 𝑓 (𝑠)𝑑𝑠 𝑑𝑡○

ℙ(𝐿 = 𝑘) = ℙ(𝐿 ≥ 𝑘) − ℙ(𝐿 ≥ 𝑘 + 1) = 𝑞 (1 − 𝑞) = (1 − 𝑝) 𝑝○

So 𝐿~Geometric(𝑝)○

Note: {𝑳 = 𝒌} = {𝐅𝐢𝐫𝐬𝐭 𝒌 𝐭𝐫𝐚𝐧𝐬𝐢𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐬 𝐟𝐚𝐢𝐥, 𝒌 + 𝟏 𝐭𝐫𝐚𝐧𝐬𝐢𝐦𝐢𝐬𝐬𝐢𝐨𝐧 𝐬𝐮𝐜𝐜𝐞𝐞𝐝𝐬}○

𝐿 ≔ # signals lost before the first success. Find the distribution of 𝐿•

Exercise 2.45

𝑁(𝑡) is a Poisson process with rate 𝜆•

Recall that the PDF of (𝑇 , … , 𝑇 |𝑁(𝑡) = 𝑛) is 𝑓(𝑡 , … , 𝑡 ) =
𝑛!

𝑡
⎯⎯ 0 ≤ 𝑡 ≤ ⋯ ≤ 𝑡 ≤ 𝑡

0 otherwise

•

𝔼 𝑇 𝑁 1 = 2 = 𝑡 ⋅
2!

1
𝑑𝑡 𝑑𝑡 = 𝑡 𝑑𝑡 =

1

3

Compute 𝔼[𝑇 |𝑁(1) = 2]•

Examples of Conditional Poisson Process

Tuesday, November 13, 2018 9:36 AM
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𝔼[𝑇 |𝑁(1) = 2] = 𝑡 ⋅
2!

1
⎯⎯ 𝑑𝑡 𝑑𝑡 = 𝑡 𝑑𝑡 =

1

3
⎯⎯○

𝔼[𝑇 𝑇 |𝑁(1) = 2] = 𝑡 𝑡 ⋅
2!

1
⎯⎯ 𝑑𝑡 𝑑𝑡 = 𝑡 𝑑𝑡 =

1

4
⎯⎯○

Compute 𝔼[𝑇 𝑇 |𝑁(1) = 2]•

𝔼[𝑇 |𝑁(4) = 3] = 𝑡 ⋅
3!

4
⎯⎯ 𝑑𝑡 𝑑𝑡 𝑑𝑡 = 𝑡 ⋅

3!

4
⎯⎯ 𝑑𝑡 𝑑𝑡 =

2!

4
⎯⎯ 𝑡 𝑑𝑡 = 2○

Compute 𝔼[𝑇 |𝑁(4) = 3]•

Let 𝑈 , … , 𝑈 ~ Unif([0,1]) and define 𝑇 = min{𝑈 , … , 𝑈 }, then 𝐸[𝑇 |𝑁(1) = 𝑛] = 𝔼[𝑇]○

𝐹 (𝑡) = 1 − ℙ(𝑇 > 𝑡) = 1 − ℙ(𝑈 > 𝑡, … , 𝑈 > 𝑡) = 1 − (1 − 𝑡) ⇒ 𝑓 (𝑡) = 𝑛(1 − 𝑡)○

𝐸[𝑇 |𝑁(1) = 𝑛] = 𝔼[𝑇] = 𝑡𝑛(1 − 𝑡) 𝑑𝑡 =
1

𝑛 + 1
⎯⎯⎯⎯⎯○

= ⋯
𝑛!

2!
⎯⎯𝑡 𝑑𝑡 ⋯ 𝑑𝑡 𝑑𝑡

= ⋯
𝑛!

3!
⎯⎯𝑡 𝑑𝑡 ⋯ 𝑑𝑡 𝑑𝑡 = ⋯

=
𝑛!

𝑛!
⎯⎯𝑡 𝑑𝑡 =

1

𝑛 + 1
⎯⎯⎯⎯⎯𝑡 =

1

𝑛 + 1
⎯⎯⎯⎯⎯

Alternatively, 𝔼[𝑇 |𝑁(1) = 𝑛] = ⋯ 𝑡
𝑛!

1
⎯⎯⎯𝑑𝑡 𝑑𝑡 ⋯ 𝑑𝑡 𝑑𝑡○

Compute 𝔼[𝑇 |𝑁(1) = 𝑛]•
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Renewal process is more general than Poisson process•

The structure is the same as a Poisson process, but we do not assume 𝝉𝒊~𝐄𝐱𝐩(𝝀)•

We use the notation 𝒕𝟏, 𝒕𝟐, … ~
𝒊𝒊𝒅

𝑭 where 𝐹 is a CDF for a non-negative distribution•

With very few assumptions, it is difficult to say much in general•

Renewal Process

Let 𝜇 = 𝔼[𝑡 ] be the mean interarrival○

𝐈𝐟 ℙ(𝒕𝒊 > 𝟎) > 𝟎 𝐭𝐡𝐞𝐧 
𝑵(𝒕)

𝒕
⎯⎯⎯⎯ →

𝟏

𝝁
⎯⎯ 𝐚𝐬 𝒕 → ∞○

Statement•

If 𝑋 , 𝑋 , … ~ 𝐹 with 𝔼[𝑋 ] = 𝜇 , then 
𝑋 + 𝑋 + ⋯ + 𝑋

𝑛
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ → 𝜇  as 𝑛 → ∞○

Recall Strong Law of Large Numbers•

Using the strong law of large numbers lim
→

𝑇 ( )

𝑁(𝑡)
⎯⎯⎯⎯ = lim

→

𝑡 + ⋯ + 𝑡 ( )

𝑁(𝑡)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ 𝜇○

Also, we know that 𝑇 ( ) ≤ 𝑡 < 𝑇 ( )○

Therefore,
T ( )

𝑁(𝑡)
⎯⎯⎯⎯

→

≤
𝑡

𝑁(𝑡)
⎯⎯⎯⎯ <

𝑇 ( )

𝑁(𝑡)
⎯⎯⎯⎯⎯⎯ =

𝑇 ( )

𝑁(𝑡) + 1
⎯⎯⎯⎯⎯⎯⎯⎯

→

⋅
𝑁(𝑡) + 1

𝑁(𝑡)
⎯⎯⎯⎯⎯⎯⎯⎯

→

○

As 𝑡 → ∞, 𝜇 ≤ lim
→

𝑡

𝑁(𝑡)
⎯⎯⎯⎯ ≤ 𝜇 ⋅ 1 = 𝜇○

Therefore lim
→

𝑁(𝑡)

𝑡
⎯⎯⎯⎯ =

1

𝜇
⎯⎯○

Proof•

Arrival Law of Large Numbers

With each arrival, there is an associated reward (or cost)○

Idea•

𝑟 = value/cost of 𝑘  arrival○

𝑁(𝑡) = number of arrivals up to time 𝑡○

𝑹(𝒕) = 𝒓𝒌

𝑵(𝒕)

𝒌 𝟏

= 𝐜𝐮𝐦𝐮𝐥𝐚𝐭𝐢𝐯𝐞 𝐫𝐞𝐰𝐚𝐫𝐝 𝐮𝐩 𝐭𝐨 𝐭𝐢𝐦𝐞 𝒕○

Notation•

(𝑟 , 𝑡 ), (𝑟 , 𝑡 ), … is an iid sequence of rewards and waiting times○

Key assumptions•

Reward/Cumulative Law of Large Number: 
𝑹 𝒕

𝒕
→

𝔼 𝒓𝒊

𝔼 𝒕
 𝐚𝐬 𝒕 → ∞

Renewal Reward Process

Tuesday, November 20, 2018 9:30 AM
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𝑅(𝑡)

𝑁(𝑡)
⎯⎯⎯⎯ =

1

𝑁(𝑡)
⎯⎯⎯⎯ 𝑟

( )

→ 𝔼[𝑟 ] as 𝑡 → ∞ by law of large numbers○

𝑅(𝑡)

𝑡
⎯⎯⎯⎯ =

𝑅(𝑡)

𝑁(𝑡)
⎯⎯⎯⎯ ⋅

𝑁(𝑡)

𝑡
⎯⎯⎯⎯ = 𝔼[𝑟 ] ⋅

1

𝔼[𝑇 ]
⎯⎯⎯⎯⎯=

𝔼[𝑟 ]

𝔼[𝑇 ]
⎯⎯⎯⎯⎯ as 𝑡 → ∞ by arrival LLN○

Reward/Cumulative Law of Large Number: 
𝑹(𝒕)

𝒕
⎯⎯⎯⎯ →

𝔼[𝒓𝒊]

𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯ 𝐚𝐬 𝒕 → ∞•

𝑠 time in state 1, 𝑢 time in state 2○

𝑠 time in state 3, 𝑢 time in state 4, and so on.○

𝑠 , 𝑠 , … ~ 𝐹 and 𝑢 , 𝑢 , … ~ 𝐺○

𝑠 , 𝑢 , 𝑠 , 𝑢 , …  are independent○

For the graph on the right, we have•

The 𝐥𝐨𝐧𝐠-𝐫𝐮𝐧 𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐢𝐦𝐞 𝐬𝐩𝐞𝐧𝐭 𝐢𝐧 𝐬𝐭𝐚𝐭𝐞 𝟏 𝐢𝐬 
𝝁𝑭

𝝁𝑭 + 𝝁𝑮
⎯⎯⎯⎯⎯⎯⎯○

Reframe as a renweal reward process with 𝑡 = 𝑠 + 𝑢 and 𝑟 = 𝑠○

Then 𝑅(𝑡) = 𝑟

( )

= 𝑠

( )

= total time spent in state 1 up to time 𝑡○

Therefore, lim
→

𝑅(𝑡)

𝑡
⎯⎯⎯⎯ =

𝔼[𝑟 ]

𝔼[𝑡 ]
⎯⎯⎯⎯ =

𝜇

𝜇 + 𝜇
⎯⎯⎯⎯⎯⎯⎯○

Alternating renewal LLN•

Alternating Renewal Process

Radioactive particles are emitted as a Poisson process with unknown rate 𝜆○

Geiger counter locks for a random amount of time when a particle registers○

Then it opens and waits for next particle○

Problem background•

Two processes: particle emission and particle observation•

How do we estimate actual emission rate 𝜆 from observed process?•

Application: Geiger Counter

𝑂 ~ Exp(𝜆) and independent of 𝐶 , 𝐶 , …○

Set 𝛾 =
𝑁(𝑡)

𝑡
⎯⎯⎯⎯, then for large values 𝑡, we can use arrival LLN○

𝛾 ≈
1

𝔼[𝑡 ]
⎯⎯⎯⎯⎯=

1

𝔼[𝐶 ] + 𝔼[𝑂 ]
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=

1

𝔼[𝐶 ] + 𝜆
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⇒ 𝝀 =

𝜸𝒕

𝟏 − 𝜸𝒕𝔼[𝑪𝟏]
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯○
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Renewal process: Like a Poisson process, but waiting time 𝒕𝒌 do not have to be 𝐄𝐱𝐩(𝝀)•

Arrival LLN:  𝐥𝐢𝐦
𝒕→

𝑵(𝒕)

𝒕
⎯⎯⎯⎯ =

𝟏

𝝁
⎯⎯, where 𝜇 = 𝔼[𝑡 ]•

Let 𝑟 = reward/cost of 𝑖-th renewal, and 𝑅(𝑡) = 𝑟

( )

, then, 𝐥𝐢𝐦
𝒕→

𝑹(𝒕)

𝒕
⎯⎯⎯⎯ =

𝔼[𝒓𝒊]

𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯○

Reward LLN•

Let 𝑠 , 𝑠 , … be the times in state 1, and 𝑢 , 𝑢 , … be times in state 2○

Then the limiting fraction of time spent in state 1 is 
𝔼[𝒔𝒊]

𝔼[𝒔𝒊] + 𝔼[𝒖𝒊]
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯○

Alternating LLN•

Review: LLN for Renewal Process

Let 𝐽 , 𝐽 , … be the length of jobs, and 𝑆 , 𝑆 , … be the time she spends between jobs•

Given that 𝔼[𝐽 ] = 11 and 𝑆 ~Exp[1/3], what fraction of Monica's life will be work?•

This is an alternating renewal process where state 1 is "Monica is employed"•

By the Alternating LLN, Monica will work 
𝔼[𝑱𝒌]

𝔼[𝑱𝒌] + 𝔼[𝑺𝒌]
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=

11

11 + 3
⎯⎯⎯⎯⎯⎯=

11

14
⎯⎯⎯ of the time•

Exercise 3.2: Alternating Renewal Process

Taxi customers arrive to the stand independently, with interarrival times 𝑡 ~𝐹•

The amount each customer pays 𝑟 follows a distribution 𝐺•

What is the long-run amount of money per unit time that taxis at the stand collect•

Let 𝑅(𝑡) = 𝑟

( )

= total fares collected up to time 𝑡, then we want to find lim
→

𝑅(𝑡)

𝑡
⎯⎯⎯⎯•

By the 𝐑𝐞𝐧𝐞𝐰𝐚𝐥 𝐑𝐞𝐰𝐚𝐫𝐝 𝐋𝐋𝐍, 𝐥𝐢𝐦
𝒕→

𝑹(𝒕)

𝒕
⎯⎯⎯⎯ =

𝔼[𝒓𝒊]

𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯=

𝜇

𝜇
⎯⎯⎯•

Exercise 3.4: Renewal Reward Process

The lifetime of a car follows some continuous distribution with density function ℎ•

If the car breaks, buy a new one for $A, and repair for $B○

If the car survives to time 𝑇, buy a new one for $A○

Mr. Brown's policy:•

What is the long-run average cost per unit time of this policy?•

This is a renewal process where the renewal is buying a new car•

Let 𝑡 be time between car purchases and 𝑟 be cost of buying 𝑖 car•

Example 3.4: Renewal Reward Process

Tuesday, November 27, 2018 9:32 AM
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Let 𝑡 be time between car purchases and 𝑟 be cost of buying 𝑖 car•

Then by the 𝐫𝐞𝐰𝐚𝐫𝐝 𝐋𝐋𝐍, the 𝐥𝐨𝐧𝐠-𝐫𝐮𝐧 𝐜𝐨𝐬𝐭 𝐩𝐞𝐫 𝐮𝐧𝐢𝐭 𝐭𝐢𝐦𝐞 𝐢𝐬 
𝔼[𝒓𝒊]

𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯•

Let 𝑠 ~ℎ be the lifetime of 𝑖 car, then 𝒕𝒊 = 𝐦𝐢𝐧{𝒔𝒊, 𝑻}•

𝔼[𝑡 ] = 𝔼[min{𝑠 , 𝑇}] = min{𝑠, 𝑇} ℎ(𝑠) 𝑑𝑠 = 𝑠 ⋅ ℎ(𝑠)𝑑𝑠 + 𝑇 ℎ(𝑠)𝑑𝑠•

𝔼[𝑟 ] = (𝐴 + 𝐵)ℙ(𝑠 < 𝑇) + 𝐴 ⋅ ℙ(𝑠 ≥ 𝑇) = 𝐴 + 𝐵 ⋅ ℙ(𝑠 < 𝑇) = 𝐴 + 𝐵 ℎ(𝑠)𝑑𝑠•

Therefore,
𝔼[𝑟 ]

𝔼[𝑡 ]
⎯⎯⎯⎯ =

𝐴 + 𝐵 ∫ ℎ(𝑠)𝑑𝑠

∫ 𝑠 ⋅ ℎ(𝑠)𝑑𝑠 + 𝑇 ∫ ℎ(𝑠)𝑑𝑠
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯•

Challenging follow-up: use this solution to choose optimal value of replacement time 𝑇•

Introduction•

Age and Residual Life

𝑨(𝒕) = 𝐚𝐠𝐞 = 𝐭𝐢𝐦𝐞 𝐬𝐢𝐧𝐜𝐞 𝐥𝐚𝐬𝐭 𝐫𝐞𝐧𝐞𝐰𝐚𝐥 = 𝒕 − 𝑻𝑵(𝒕)○

𝒁(𝒕) = 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐥𝐢𝐟𝐞 = 𝐭𝐢𝐦𝐞 𝐮𝐧𝐭𝐢𝐥 𝐧𝐞𝐱𝐭 𝐫𝐞𝐧𝐞𝐰𝐚𝐥 = 𝑻𝑵(𝒕) 𝟏 − 𝒕○

Consider a renewal process with continuous waiting times between renewals○

Let 𝑥, 𝑦 ≥ 0 be fixed values1.

Let 𝑹(𝒕) be the total time up to 𝒕 for which age > 𝒙 and residual life > 𝒚, then

= lim
→

1

𝑡
⎯⎯ 𝟙{𝐴(𝑠) > 𝑥, 𝑍(𝑠) > 𝑦}𝑑𝑠 =

1

𝔼[𝑡 ]
⎯⎯⎯⎯ ℙ(𝑡 > 𝑧)𝑑𝑧

lim
→

ℙ(𝐴(𝑡) > 𝑥, 𝑍(𝑡) > 𝑦) = lim
→

𝑅(𝑡)

𝑡
⎯⎯⎯⎯

Thus, lim
→

ℙ(𝑍(𝑡) > 𝑦) =
1

𝔼[𝑡 ]
⎯⎯⎯⎯ ℙ(𝑡 > 𝑧)𝑑𝑧2.

So the 𝐥𝐢𝐦𝐢𝐭𝐢𝐧𝐠 𝐏𝐃𝐅 𝐨𝐟 𝒁(𝒕) 𝐢𝐬 𝒈(𝒛) =
ℙ(𝒕𝒊 > 𝒛)

𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯⎯⎯⎯  for 𝑧 ≥ 0, and same for 𝐴(𝑡)

The 𝐥𝐢𝐦𝐢𝐭𝐢𝐧𝐠 𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 𝑨(𝒕) 𝐚𝐧𝐝 𝒁(𝒕) 𝐢𝐬 
𝔼 𝒕𝒊

𝟐

𝟐𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯⎯3.

If 𝑡 ~𝑓 then the 𝐥𝐢𝐦𝐢𝐭𝐢𝐧𝐠 𝐣𝐨𝐢𝐧𝐭 𝐏𝐃𝐅 𝐨𝐟 𝑨(𝒕) 𝐚𝐧𝐝 𝒁(𝒕) 𝐢𝐬 
𝒇(𝒂 + 𝒛)

𝔼[𝒕𝒊]
⎯⎯⎯⎯⎯⎯⎯⎯ for 𝑎, 𝑧 ≥ 04.

What is the limiting distribution for 𝐴(𝑡) and 𝑍(𝑡)?•

Given 𝑡 ~Gamma(2, 𝜆), what is limiting density for 𝐴(𝑡)?○

𝑔(𝑧) =
ℙ(𝑡 > 𝑧)

𝔼[𝑡 ]
⎯⎯⎯⎯⎯⎯⎯⎯⎯=

1

2/𝜆
⎯⎯⎯ 𝜆𝑒

(𝜆𝑡)

(2 − 1)!
⎯⎯⎯⎯⎯⎯⎯𝑑𝑡 =

𝜆

2
⎯⎯𝑒 (𝜆𝑧 + 1) for 𝑧 ≥ 0○

Example•
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We say that 𝑋 with 𝑡 > 0 is a continuous time Markov process if •

For any time 0 ≤ 𝑠 < ⋯ < 𝑠 < 𝑠, and any states 𝑗, 𝑖, 𝑖 , … , 𝑖 , we have•

ℙ 𝑿𝒔 𝒕 = 𝒋 𝑿𝒔 = 𝒊, 𝑿𝒔𝒏
= 𝒊𝒏, … , 𝑿𝒔𝟎

= 𝒊𝟎 = ℙ(𝑿𝒔 𝒕 = 𝒋|𝑿𝒔 = 𝒊) = ℙ(𝑿𝒕 = 𝒋|𝑿𝟎 = 𝒊)•

The equation above is called the (continuous) Markov property•

We denote the transition probability ℙ(𝑿𝒕 = 𝒋|𝑿𝟎 = 𝒊) by 𝒑𝒕(𝒊, 𝒋)•

Continuous Time Markov Processes

Change 𝑁(0) to be some starting number of points. Then•

=
ℙ(𝑁(𝑠 + 𝑡) = 𝑗, 𝑁(𝑠) = 𝑖, 𝑁(𝑠 ) = 𝑖 , … , 𝑁(𝑠 ) = 𝑖 )

ℙ(𝑁(𝑠) = 𝑖, 𝑁(𝑠 ) = 𝑖 , … , 𝑁(𝑠 ) = 𝑖 )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

=
ℙ(𝑁(𝑠 ) = 𝑖 , 𝑁(𝑠 , 𝑠 ] = 𝑖 − 𝑖 , … , 𝑁(𝑠 , 𝑠] = 𝑖 − 𝑖 , 𝑁(𝑠, 𝑠 + 𝑡] = 𝑗 − 𝑖)

ℙ(𝑁(𝑠 ) = 𝑖 , 𝑁(𝑠 , 𝑠 ] = 𝑖 − 𝑖 , … , 𝑁(𝑠 , 𝑠] = 𝑖 − 𝑖 )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= ℙ(𝑁(𝑠, 𝑠 + 𝑡] = 𝑗 − 𝑖) ⋅
ℙ(𝑁(𝑠) = 𝑖)

ℙ(𝑁(𝑠) = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

=
ℙ(𝑁(𝑠, 𝑠 + 𝑡] = 𝑗 − 𝑖, 𝑁(𝑠) = 𝑖)

ℙ(𝑁(𝑠) = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

=
ℙ(𝑁(𝑠 + 𝑡) = 𝑗, 𝑁(𝑠) = 𝑖)

ℙ(𝑁(𝑠) = 𝑖)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= ℙ(𝑵(𝒔 + 𝒕) = 𝒋|𝑵(𝒔) = 𝒊)

ℙ(𝑵(𝒔 + 𝒕) = 𝒋|𝑵(𝒔) = 𝒊, 𝑵(𝒔𝒏) = 𝒊𝒏, … , 𝑵(𝒔𝟎) = 𝒊𝟎)•

Poisson Process is Markovian

Suppose 𝑌 , 𝑌 , … is a DTMC with transition probability 𝑢(𝑖, 𝑗)○

Let 𝑁(𝑡) be a Poisson process with rate 𝜆○

Then 𝑿𝒕 = 𝒀𝑵(𝒕) is a continuous time Markov chain○

Procedure •

Transitions occur at random times according to the Poisson process○

Intuition•

This gives one general procedure for constructing continuous time Markov chain○

Significance•

Construction from a Discrete Time Markov Chain

𝑝 (𝑖, 𝑗) = 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

∈

○

Equation•

Proof•

Chapman–Kolmogorov Equation

Thursday, November 29, 2018 9:34 AM
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𝑝 (𝑖, 𝑗) = ℙ(𝑋 = 𝑗|𝑋 = 𝑖) = ℙ(𝑋 = 𝑗, 𝑋 = 𝑘|𝑋 = 𝑖)

 

∈

○

= ℙ(𝑋 = 𝑗|𝑋 = 𝑖)
( , )

ℙ(𝑋 = 𝑘|𝑋 = 𝑖)
( , )

 

∈

= 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

∈

Proof•

Suppose we know 𝑝 (𝑖, 𝑗) for all 𝑡 ∈ [0, 𝑡 )○

Then for all 𝑠 ∈ [𝑡 , 2𝑡 ), we have 𝒑𝒔(𝒊, 𝒋) = 𝒑𝒔 𝟐⁄ 𝒔 𝟐⁄ (𝒊, 𝒋) = 𝒑𝒔 𝟐⁄ (𝒊, 𝒌)𝒑𝒔 𝟐⁄ (𝒌, 𝒋)

 

𝒌∈𝑺

○

Thus for arbitrarily small 𝒕𝟎, we can always find 𝒑𝒔(𝒊, 𝒋) for all 𝑠 ≥ 𝑡○

Importance•

For any states 𝑖 ≠ 𝑗, the jump rate from 𝑖 to 𝑗 is defined as 𝑞 ≔ lim
→

𝑝 (𝑖, 𝑗)

ℎ
⎯⎯⎯⎯⎯⎯○

Definition•

= lim
→

𝜆𝑒 𝑢(𝑖, 𝑗) +
𝜆 ℎ

𝑛!
⎯⎯⎯⎯⎯⎯⎯𝑢 (𝑖, 𝑗) = 𝜆𝑢(𝑖, 𝑗)

𝑞 = lim
→

𝑝 (𝑖, 𝑗)

ℎ
⎯⎯⎯⎯⎯⎯ = lim

→

1

ℎ
⎯⎯ 𝑒

(𝜆ℎ)

𝑛!
⎯⎯⎯⎯⎯𝑢 (𝑖, 𝑗)○

Note that the jump rate 𝑞 is the rate for a thinned Poisson process○

Example of CTMCs constructed from DTMC•

Jump Rates

Suppose we know 𝑞(𝑖, 𝑗) for all states 𝑖 ≠ 𝑗○

Define 𝝀(𝒊) = 𝒒(𝒊, 𝒋)

 

𝒋 𝒊

 to be the 𝐫𝐚𝐭𝐞 𝐚𝐭 𝐰𝐡𝐢𝐜𝐡 𝐭𝐡𝐞 𝐌𝐂 𝐥𝐞𝐚𝐯𝐞𝐬 𝒊○

Define 𝒓(𝒊, 𝒋) =
𝒒(𝒊, 𝒋)

𝝀𝒊
⎯⎯⎯⎯⎯  𝐰𝐢𝐭𝐡 𝒓(𝒊, 𝒊) = 𝟎 to be the 𝐭𝐫𝐚𝐧𝐬𝐢𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 from 𝑖 to 𝑗○

Let 𝒀𝟎, 𝒀𝟏, … be a DTMC with transition matrix 𝑟(𝑖, 𝑗), and 𝝉𝟎, 𝝉𝟏, … ~
𝒊𝒊𝒅

𝐄𝐱𝐩(𝟏)○

Define 𝑡 =
𝜏

𝜆(𝑌 )
⎯⎯⎯⎯⎯⎯⎯~Exp 𝜆(𝑌 ) , and 𝑇 = 𝑡 , for 𝑖 ≥ 0○

Set 𝑋 = 𝑌  for 𝑇 ≤ 𝑡 < 𝑇 , then 𝑋 is a CTMC○

Procedure•

lim
→

𝑇 = 𝑇 could be finite, then 𝑋 is only defined for 0 ≤ 𝑡 < 𝑇○

One fix is to set 𝑿𝒕 = 𝚫 (cemetery state) for 𝒕 ≥ 𝑻○

Caveat•

Construction From Jump Rates
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Waiting time between customers is an Exp(𝜆) random variable○

As a CTMC, the state space is 𝑆 = {0,1,2, … }○

Poisson process•

CTMCs Constructed from Jump Rates

The jump rates are 
𝑞(𝑛, 𝑛 + 1) = 𝜆 ∀𝑛 ∈ 𝑆

𝑞(𝑖, 𝑗) = 0 𝑗 ≠ 𝑖 + 1
○

A line of customers is being helped by 𝒔 servers○

Customers arrive as a Poisson process with rate 𝝀○

Each server requires an 𝐄𝐱𝐩(𝝁) of time to serve their customer○

𝑋(𝑡) ≔ #Customers in system (being served and in line) at time 𝑡○

M/M/s Queue•

The jump rates are 
𝒒(𝒏, 𝒏 + 𝟏) = 𝝀 𝒏 ≥ 𝟎

𝒒(𝒏, 𝒏 − 𝟏) = 𝒏𝝁 𝟏 ≤ 𝒏 < 𝒔

𝒒(𝒏, 𝒏 − 𝟏) = 𝒔𝝁 𝒏 ≥ 𝒔

○

How do we get 𝑝 (𝑖, 𝑗) from the transition rates 𝑞(𝑖, 𝑗)○

Motivation•

Define 𝝀𝒊 = 𝒒𝒊𝒌

 

𝒌 𝒊

 𝐭𝐨 𝐛𝐞 𝐭𝐡𝐞 𝐫𝐚𝐭𝐞 𝐨𝐮𝐭 𝐨𝐟 𝐬𝐭𝐚𝐭𝐞 𝒊○

𝐁𝐚𝐜𝐤𝐰𝐚𝐫𝐝: 
𝒅

𝒅𝒕
⎯⎯⎯[𝒑𝒕(𝒊, 𝒋)] = 𝒒(𝒊, 𝒌)𝒑𝒕(𝒌, 𝒋)

 

𝒌 𝒊

− 𝝀𝒊𝒑𝒕(𝒊, 𝒋)○

𝐅𝐨𝐫𝐰𝐚𝐫𝐝:
𝒅

𝒅𝒕
⎯⎯⎯[𝒑𝒕(𝒊, 𝒋)] = 𝒑𝒕(𝒊, 𝒌)𝒒(𝒌, 𝒋)

 

𝒌 𝒊

− 𝒑𝒕(𝒊, 𝒋)𝝀𝒋○

Kolmogorov equations (coordinate form)•

𝑸 =
𝒒𝒊𝒋 𝐢𝐟 𝒊 ≠ 𝒋

⇔ 𝑸 =

−𝝀𝟏 𝒒 𝟏, 𝟐 𝒒 𝟏, 𝟑 ⋯

𝒒 𝟐, 𝟏 −𝝀 𝒒 𝟐, 𝟑 ⋯

Define the transition rate matrix (or jump rate matrix) 𝑄 as○

Kolmogorov equations (matrix form)•

Kolmogorov Equations

Tuesday, December 4, 2018 11:20 AM
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𝑸𝒊𝒋 =
𝒒𝒊𝒋 𝐢𝐟 𝒊 ≠ 𝒋

−𝝀𝒊 𝐢𝐟 𝒊 = 𝒋
⇔ 𝑸 =

⎣
⎢
⎢
⎡

−𝝀𝟏 𝒒(𝟏, 𝟐) 𝒒(𝟏, 𝟑) ⋯

𝒒(𝟐, 𝟏) −𝝀𝟐 𝒒(𝟐, 𝟑) ⋯

𝒒(𝟑, 𝟏) 𝒒(𝟑, 𝟐) −𝝀𝟑 ⋯
⋮ ⋮ ⋮ ⋱ ⎦

⎥
⎥
⎤



Then we have 

⎩
⎪
⎨

⎪
⎧

𝐁𝐚𝐜𝐤𝐰𝐚𝐫𝐝: 
𝒅

𝒅𝒕
⎯⎯⎯[𝒑𝒕] = 𝑸𝒑𝒕

𝐅𝐨𝐫𝐰𝐚𝐫𝐝: 
𝒅

𝒅𝒕
⎯⎯⎯[𝒑𝒕] = 𝒑𝒕𝑸 

○

Given the transition rates 𝑞(𝑖, 𝑗), we can find 𝑝 (𝑖, 𝑗) by solving the ODEs○

Why we need Kolmogorov equations•

Matrix form is nice for general proofs and theory○

Coordinate form is nice for specific examples, especially when most 𝑞(𝑖, 𝑗) = 0○

Is matrix or coordinate form better?•

𝑑𝑒

𝑑𝑡
⎯⎯⎯⎯ =

𝑑

𝑑𝑡
⎯⎯

(𝑡𝑄)

𝑛!
⎯⎯⎯⎯⎯ =

𝑑

𝑑𝑡
⎯⎯

(𝑡𝑄)

𝑛!
⎯⎯⎯⎯⎯ =

𝑡 𝑄

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ = 𝑄

(𝑡𝑄)

(𝑛 − 1)!
⎯⎯⎯⎯⎯⎯⎯ = 𝑄𝑒○

Claim: 𝒆𝒕𝑸 solves Forward  Kolmogorov equation•

𝑝 (𝑖, 𝑗) =
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

○

𝑒 =
(0𝑄)

𝑛!
⎯⎯⎯⎯⎯⎯=

(0𝑄)

0!
⎯⎯⎯⎯⎯ = 𝐼○

The initial condition is 𝑝 = 𝐼, because•

Matrix exponentials are hard to compute, especially for infinite state space○

Why not always use 𝑝 = 𝑒 for all CTMSs?•

Solving Forward Kolmogorov Equations

= lim
→

1

ℎ
⎯⎯ 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

∈

− 𝑝 (𝑖, 𝑗)

= lim
→

1

ℎ
⎯⎯ 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

+ 𝑝 (𝑖, 𝑗)𝑝 (𝑗, 𝑗) − 𝑝 (𝑖, 𝑗)

= lim
→

1

ℎ
⎯⎯ 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

− 𝑝 (𝑖, 𝑗) 1 − 𝑝 (𝑗, 𝑗)

= lim
→

1

ℎ
⎯⎯ 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

− 𝑝 (𝑖, 𝑗) 𝑝 (𝑗, 𝑘)

 

= lim
→

1

ℎ
⎯⎯ 𝑝 (𝑖, 𝑘)𝑝 (𝑘, 𝑗)

 

− 𝑝 (𝑖, 𝑗) lim
→

1

ℎ
⎯⎯ 𝑝 (𝑗, 𝑘)

 

= 𝑝 𝑖, 𝑘 lim
→

𝑝 𝑘, 𝑗

ℎ

 

− 𝑝 𝑖, 𝑗 𝑞 𝑗, 𝑘

 

𝑑

𝑑𝑡
⎯⎯ [𝑝 (𝑖, 𝑗)] = lim

→

𝑝 (𝑖, 𝑗) − 𝑝 (𝑖, 𝑗)

ℎ
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯•

Derivation of Forward Kolmogorov Equations
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= 𝑝 (𝑖, 𝑘) lim
→

𝑝 (𝑘, 𝑗)

ℎ
⎯⎯⎯⎯⎯⎯⎯

 

− 𝑝 (𝑖, 𝑗) 𝑞(𝑗, 𝑘)

 

= 𝑝 (𝑖, 𝑘)𝑞(𝑘, 𝑗)

 

− 𝑝 (𝑖, 𝑗)𝜆

The state space is 𝑆 = {0,1,2, … , 𝑁}•

Only nonzero rates are 
𝑞(𝑛, 𝑛 + 1) = 𝜆

𝑞(𝑛, 𝑛 − 1) = 𝜇
•

Note the conflict in notation. Usually 𝜆 = 𝑞

 

= 𝑞•

Example: Birth and Death Processes

𝑝 (𝑖, 𝑗) = 𝑝 (𝑖, 𝑗 − 1)𝜆 + 𝑝 (𝑖, 𝑗 + 1)𝜇 − 𝑝 (𝑖, 𝑗) 𝜆 + 𝜇 , ∀𝑗 = 1, … , 𝑁 − 1○

𝑝 (𝑖, 0) = 𝑝 (𝑖, 1)𝜇 − 𝑝 (𝑖, 0)𝜆○

𝑝 (𝑖, 𝑁) = 𝑝 (𝑖, 𝑁 − 1)𝜆 − 𝑝 (𝑖, 𝑁)𝜇○

Kolmogorov equations•
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Transition graph•

Intuitive View of CTMCs

An alarm clock that goes off after a random 𝐄𝐱𝐩 amount of time○

Exponential alarm clock•

Each edge in the graph represents an exponential clock with the edge weight as rate○

When you land in a new state, the clocks on the out edges begin○

Then your CTMC takes the path of the clock that goes off first○

Explanation on transition graph•

Make this informal description formal•

Show it possesses the Markov property•

Use Kolmogorov equations to determine 𝑝 (𝑖, 𝑗) for a MC defined by jump rates•

Foundational Work

Transition graph•

Two States Chains

𝑄 =
−𝜆 𝜆
𝜇 −𝜇

○

Transition rate matrix•

𝑑

𝑑𝑡
⎯⎯ [𝑝 ] = 𝑄𝑝 ⇔

𝑝 (1,1) 𝑝 (1,2)

𝑝 (2,1) 𝑝 (2,2)
=

−𝜆 𝜆
𝜇 −𝜇

𝑝 (1,1) 𝑝 (1,2)

𝑝 (2,1) 𝑝 (2,2)
○

Since 
𝑝 (1,2) = 1 − 𝑝 (1,1)

𝑝 (2,2) = 1 − 𝑝 (2,1)
, we only need to find 𝑝 (1,1), 𝑝 (2,2)○

𝑝 (1,1)  =  −𝜆𝑝 (1,1) + 𝜆𝑝 (2,1)

𝑝 (2,1)  =  𝜇𝑝 (1,1) − 𝜇𝑝 (2,1)
⇒ 𝑝 (1,1) − 𝑝 (2,1)

( )

= −(𝜆 + 𝜇) 𝑝 (1,1) − 𝑝 (2,1)

( )

○

Solving the equation above ,we have 𝑔(𝑡) = 𝐶𝑒 ( ) , where 𝐶 = 1○

Thus, 𝑝 (1,1) − 𝑝 (2,1) = 𝑒 ( )○

𝑝 1,1  =  −𝜆𝑒
⇒

𝑝 1,1 =
𝜆

𝜆 + 𝜇
𝑒 +

𝜇

𝜆 + 𝜇

Backward equation•

Properties of CTMC
Thursday, December 6, 2018 9:37 AM
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𝑝 (1,1)  =  −𝜆𝑒 ( )

𝑝 (2,1)  =  𝜇𝑒 ( )
⇒

⎩
⎪
⎨

⎪
⎧ 𝑝 (1,1) =

𝜆

𝜆 + 𝜇
⎯⎯⎯⎯⎯𝑒 ( ) +

𝜇

𝜆 + 𝜇
⎯⎯⎯⎯⎯

𝑝 (2,1) = −
𝜇

𝜆 + 𝜇
⎯⎯⎯⎯⎯𝑒 ( ) +

𝜇

𝜆 + 𝜇
⎯⎯⎯⎯⎯

○

Coordinate form: ℙ (𝑋 = 𝑗) = 𝜋(𝑗), ∀𝑛 ≥ 0, 𝑗 ∈ 𝑆○

Matrix form: 𝜋𝒫 = 𝜋, ∀𝑛 ≥ 0 ⇔ 𝜋𝒫 = 𝜋○

Recall from DTMC•

Coordinate form: ℙ𝝅(𝑿(𝒕) = 𝒋) = 𝝅(𝒋), ∀𝒕 > 𝟎, 𝒋 ∈ 𝑺○

Matrix form: 𝝅𝒑𝒕 = 𝝅○

Continuous time•

Assume 𝜋𝑄 = 0, we want to show that 𝜋𝑝 = 𝜋○

𝜋𝑝 = 𝜋𝑒 = 𝜋
(𝑡𝑄)

𝑛!
⎯⎯⎯⎯⎯ = 𝜋 + 𝜋

𝑡

𝑛!
⎯⎯𝑄 = 𝜋 + 0 = 𝜋○

Claim: 𝝅 is stationary if and only if 𝝅𝑸 = 𝟎•

Stationary Distributions

A CTMC 𝑋(𝑡) is irreducible if for any 𝒊, 𝒋 ∈ 𝑺, there exists states 𝒌𝟏, … , 𝒌𝒏 𝟏 s.t.○

𝒒(𝒊, 𝒌𝟏)𝒒(𝒌𝟏, 𝒌𝟐) ⋯ 𝒒(𝒌𝒏 𝟏, 𝒋) > 𝟎 i.e. "It is possible to go from 𝑖 to 𝑗"○

Irreducibility•

If 𝑋(𝑡) is irreducible, then 𝒑𝒕(𝒊, 𝒋) > 𝟎, for all 𝑡 > 0 and 𝑖, 𝑗 ∈ 𝑆○

Fact about periodicity•

If 𝑋(𝑡) is a CTMC s.t. 𝑋(𝑡) is irreducible, and has a stationary distribution○

Then, 𝐥𝐢𝐦
𝒕→

𝒑𝒕(𝒊, 𝒋) = 𝝅(𝒋), ∀𝒊, 𝒋 ∈ 𝑺○

Convergence theorem•

𝑝 (𝑖, 𝑗) > 0 for all ℎ > 0 and 𝑖, 𝑗 ∈ 𝑆○

𝑝 is a stochastic matrix that is irreducible, aperaodic, and has stationary distribution 𝜋○

By Discrete Time Convergence Theorem, lim
→

𝑝 (𝑖, 𝑗) = 𝜋(𝑗)○

Since this is true for all ℎ > 0, we have lim
→

𝑝 (𝑖, 𝑗) = 𝜋(𝑗)○

Proof•

Convergence Theorem

We say 𝜋 satisfies the detailed balance equations if ○

𝝅(𝒊)𝒒(𝒊, 𝒋) = 𝝅(𝒋)𝒒(𝒋, 𝒊), ∀𝒋 ≠ 𝒊○

Definition•

Any distribution satisfying the detailed balance equations is a stationary distribution○

Fact•

Example: Birth and Death Process•

Detailed Balance
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𝑆 = {0,1,2, … , 𝑁} with 𝑁 = ∞ as a possible choice○

Note: 𝜆  is a bad notation choice, since it usually refers to 𝜆 = 𝑞

 

= −𝑄○

Exercise: Show that Birth and Death processes satisfy the detailed balanced equations○

The transition rates for this Markov chain is 

𝑞(𝑛, 𝑛 + 1) = 𝜆 ∀𝑛 ∈ {0, … , 𝑁 − 1}

𝑞(𝑛, 𝑛 − 1) = 𝜇 ∀𝑛 ∈ {1, … , 𝑁}

𝑞(𝑖, 𝑗) = 0 otherwise

○

Let 𝜋 be a distribution that satisfies the detailed balance equation. Then○

𝜋(𝑖) ⋅ 0 = 𝜋(𝑗) ⋅ 0, which is automatically satisfied

For 𝑗 ≠ 𝑖 + 1 or 𝑖 − 1○

𝜋(𝑖)𝑞(𝑖, 𝑖 + 1) = 𝜋(𝑖 + 1)𝑞(𝑖 + 1, 𝑖)

𝜋(𝑖)𝜆 = 𝜋(𝑖 + 1)𝜇

𝜋(𝑖 + 1) =
𝜆

𝜇
⎯⎯⎯⎯𝜋(𝑖) =

𝜆 𝜆 ⋯ 𝜆 𝜆

𝜇 𝜇 ⋯ 𝜇 𝜇
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯𝜋(0)

For 𝑖 ∈ {0, … , 𝑁 − 1}○
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Two station queueing network•

Arrivals only occur to first station at rate 2•

Arriving customer at first station leaves if server is busy•

First server works at rate 4, second server works at rate 2•

When a customer is done as station 1, they go to station 2 immediately•

If station 2 already has a customer, the customer from station 1 leaves•

Model this as a CTMC with 𝑆 = {0,1,2,12}•

Find the proportion of customers that enter the system•

An arriving customer enters the system if station 1 is open•

This only happens when the system is in state 0 or 2, so we want 𝝅(𝟎) + 𝝅(𝟐)•

𝑄 =

 0   1  2   12
0
1
2

12

−2 2 0 0
0 −4 4 0
2 0 −4 2
0 2 4 −6

○

The jump rate matrix is •

𝜋(0)𝑞(0,1) = 𝜋(1)𝑞(1,0)○

2𝜋(0) = 𝜋(1) ⋅ 0 = 0○

Thus, 𝜋 = [0 0 0 0] is the only solution satisifies DB○

Detailed balance does not work•

⎩
⎪
⎨

⎪
⎧ −2𝜋(0) + 2𝜋(2) = 0

2𝜋(0) − 4𝜋(1) + 2𝜋(12) = 0
4𝜋(1) − 4𝜋(2) + 4𝜋(12) = 0

2𝜋(2) − 6𝜋(12) = 0
𝜋(0) + 𝜋(1) + 𝜋(2) + 𝜋(12) = 1

⇒ 𝜋 =
1

3
⎯⎯

2

9
⎯⎯

1

3
⎯⎯

1

9
⎯⎯○

Solving 𝜋𝑄 = 0 with 𝜋(0) + 𝜋(1) + 𝜋(2) + 𝜋(12) = 1, we have•

Exercise 4.8(a)

15 lily pads and 6 frogs•

Each frog gets the urge to jump to a new pad at rate 1•

When they jump, they choose 1 of 9 available pads uniformly at random•

Find the stationary distribution for the set of occupied lily pads•

Define 𝐿 = {1,2, … , 15} and 𝑆 = {𝑠 ⊆ 𝐿||𝑠| = 6}•

𝑞({𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, {𝑔, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}) =
1

9
⎯⎯ for any distinct 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 ∈ 𝐿○

Then the only non-zero transition rates are•

Exercise 4.13

Tuesday, December 11, 2018 9:36 AM
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𝜋({𝑎, … , 𝑓})𝑞({𝑎, … , 𝑓}, {𝑔, 𝑏, … , 𝑓}) = 𝜋({𝑔, 𝑏, … , 𝑓})𝑞({𝑔, 𝑏, … , 𝑓}, {𝑎, … , 𝑓})○

𝜋({𝑎, … , 𝑓}) ⋅
1

9
⎯⎯= 𝜋({𝑔, 𝑏, … , 𝑓}) ⋅

1

9
⎯⎯○

𝜋({𝑎, … , 𝑓}) = 𝜋({𝑔, 𝑏, … , 𝑓})○

To find 𝜋, use the detailed balance equation•

Therefore all the rates must be equal ⇒ 𝜋(𝑠) =
1

|𝑆|
⎯⎯⎯=

15
6

•

Asymmetric Simple Exclusion Process (with 𝑝 ≠ 𝑞)•

Find constraints on 𝜆, 𝜇 so that a stationary distribution exists for the M/M/s•

Stationary Distribution of M/M/s Queue 

The jump rates are 

𝑞(𝑛, 𝑛 + 1) = 𝜆 𝑛 ≥ 0

𝑞(𝑛, 𝑛 − 1) = 𝑛𝜇 1 ≤ 𝑛 < 𝑠

𝑞(𝑛, 𝑛 − 1) = 𝑠𝜇 𝑛 ≥ 𝑠

•

𝝅(𝒏) =
𝝀𝟎 ⋯ 𝝀𝒏 𝟏

𝝁𝟏 ⋯ 𝝁𝒏
⎯⎯⎯⎯⎯⎯⎯⎯⎯𝝅(𝟎) =

⎩
⎪
⎨

⎪
⎧ 𝜆

𝑛! 𝜇
⎯⎯⎯⎯⎯𝜋(0) 1 ≤ 𝑛 < 𝑠

𝜆

𝑠! 𝑠 𝜇
⎯⎯⎯⎯⎯⎯⎯⎯𝜋(0) 𝑛 ≥ 𝑠

○

Use the formula for birth and death process•

𝜋(𝑛) = 𝜋(𝑛) + 𝜋(𝑛) = 𝜋(0)
𝜆

𝑛! 𝜇
⎯⎯⎯⎯⎯+

𝜋(0)

𝑠!
⎯⎯⎯⎯

𝜆

𝜇
⎯⎯⎯

𝜆

𝑠𝜇
⎯⎯⎯ < ∞○

We want 
𝜆

𝑠𝜇
⎯⎯⎯ < ∞ ⇒

𝜆

𝑠𝜇
⎯⎯⎯< 1 ⇔ 𝝀 < 𝒔𝝁○

In order for 𝜋 to be a distribution, we need ∑ 𝜋(𝑛) < ∞•
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