Definitions and Theorems

Markov Chain

- Markov Property
- $\mathbb{P}\left(X_{l+1}=x_{l+1} \mid X_{0}=x_{0}, \ldots, X_{l}=x_{l}\right)=\mathbb{P}\left(X_{l+1}=x_{l+1} \mid X_{l}=x_{l}\right)$
- Chapman-Kolmogorov Equation
- $p^{m+n}(i, j)=\sum_{l \in S} p^{m}(i, l) p^{n}(l, j)$
- Stopping Time
- $\{T=n\}$ can be expressed using the variables $X_{0}, X_{1}, \ldots, X_{n}$
- Strong Markov Property
- $\mathbb{P}\left(X_{T+1}=j \mid X_{T}=i, T=n\right)=p(i, j)$
- Return Time/Probability
- $T_{y}=\min \left\{n \geq 1 \mid X_{n}=y\right\}$ is the time of first return
- $T_{y}^{k}=\min \left\{n>T_{y}^{k-1} \mid X_{n}=y\right\}$ is the time of k-th return
- $\rho_{x y}^{k}=\mathbb{P}_{x}\left(T_{y}^{k}<\infty\right)$ is the probability of reaching y from x for k times
- Number of Visits
- $N(y)$: Number of visits to y after time 0
- $N_{n}(y)$:Number of visits to y up to time n
- Initial Distribution
- $\mathbb{P}_{x}(A)=\left(A \mid X_{0}=x\right)$
- $\mathbb{P}_{\mu}\left(X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mu\left(x_{0}\right) \prod_{l=0}^{n-1} p\left(x_{l}, x_{l+1}\right)$
- Transient and Recurrent
- y is transient $\Leftrightarrow \rho_{y y}=\mathbb{P}_{y}\left(T_{y}<\infty\right)<1 \Leftrightarrow 1-\rho_{y y}=\mathbb{P}_{y}\left(T_{y}=\infty\right)>0$
- y is recurrent $\Leftrightarrow \rho_{y y}=\mathbb{P}_{y}\left(T_{y}<\infty\right)=1 \Leftrightarrow 1-\rho_{y y}=\mathbb{P}_{y}\left(T_{y}=\infty\right)=0$
- Communication: $x \Rightarrow y$ iff $p^{n}(x, y)>0$ for some $n \geq 0$
- Closed (impossible to get out of): If $i \in C$ and $p(i, j)>0$, then $j \in C$
- Irreducible (freely moved about): $i \Leftrightarrow j, \forall i, j \in C$
- Tail - Sum Formula: $\mathbb{E} N=\sum_{k=1}^{\infty} \mathbb{P}(N \geq k)$
- Theorems Related to Recurrence
- $\mathbb{E}_{x} N(y)=\frac{\rho_{x y}}{1-\rho_{y y}}$
- $\mathbb{E}_{x} N(y)=\sum_{n=1}^{\infty} p^{n}(x, y)$
- y is recurrent $\Leftrightarrow \sum_{n=1}^{\infty} p^{n}(y, y)=E_{y} N(y)=+\infty$
- If $x \Rightarrow y$ and $y \Rightarrow z$, then $x \Rightarrow z$
- If $x \Rightarrow y$ and $\rho_{y x}<1$, then x is transient
- If x is recurrent and $x \Rightarrow y$, then $\rho_{y x}=1$
- If x is recurrent and $x \Rightarrow y$, then y is recurrent
- In a finite closed set of states, there is at least one recurrent state
- Finite, Closed, Irreducible \Rightarrow Recurrent
- $|S|<\infty \Rightarrow S=T \cup R_{1} \cup \cdots \cup R_{k}$ for T, R_{i} disjoint, R_{i} irreducible
- Stationary Distribution/Measure
- μ is a stationary measure $\Leftrightarrow \mu=\mu \mathcal{P} \Leftrightarrow \mu(j)=\sum_{i \in S} \mu(i) p(i, j)$
- π is a stationary distribution $\Leftrightarrow \pi$ is a stationary measure and $\sum_{j \in S} \pi(j)=1$
- Normalize μ to get $\pi: \pi(k)=\frac{\mu(k)}{\sum_{l \in S} \mu(l)}$
- Positive vs Null Recurrent
- x is positive recurrent if $\mathbb{E}_{x} T_{x}<\infty$
- x is null recurrent if $\mathbb{E}_{x} T_{x}=\infty$
- Convergence Theorem
- If a MC is irreducible, aperiodic, and π exists, then $\lim _{n \rightarrow \infty} p^{n}(x, y)=\pi(y)$
- Asymptotic Frequency
- If a MC is irreducible and recurrent, then $\frac{N_{n}(y)}{n} \rightarrow \frac{1}{\mathbb{E}_{y} T_{y}} \stackrel{\text { if exists }}{=} \pi(y)$
- Law of Large Numbers for MC
- Suppose a MC is irreducible and π exists
- If $\sum_{x \in S}|f(x)| \pi(x)<\infty$, then $\frac{1}{n} \sum_{l=1}^{n} f\left(X_{l}\right) \rightarrow \sum_{x \in S} f(x) \pi(x)=\mathbb{E}_{\pi} f\left(x_{0}\right)$
- Doubly Stochastic
- A stochastic matrix is doubly stochastic if its column sum to 1 i.e. $\sum_{x \in S} p(x, y)=1$
- $\pi(x)=\frac{1}{N}, \forall x \in S$ is a stationary distribution \Leftrightarrow the MC is doubly stochastic
- Detailed Balance
- $\pi(x) p(x, y)=\pi(y) p(y, x), \forall x, y \in S$
- All distributions satisfying the detailed balance equations are stationary
- All random walks' graphs satisfy DBE's
- Exit Distribution
$\circ\left\{\begin{array}{c}h(a)=1, h(b)=0 \\ h(x)=\sum_{y \in S} p(x, y) h(y), \forall x \in C:=S \backslash\{a, b\} \Rightarrow h(x)=\mathbb{P}_{x}\left(V_{a}<V_{b}\right)\end{array}\right.$
- Exit Time
- Define $V_{A}:=\inf \left\{n \geq 0 \mid X_{n} \in A\right\}$ and $C:=S \backslash A$. Suppose $\mathbb{P}_{x}\left(V_{A}<\infty\right)>0, \forall x \in C$
- $\left\{\begin{array}{c}g(a)=0, \forall a \in A \\ g(x)=1+\sum_{y \in C} g(y) p(x, y) \Rightarrow g(x)=\mathbb{E}_{x}\left[V_{A}\right]\end{array}\right.$

Poisson Process

- Exponential Distribution
- $X \sim \operatorname{Exp}(\lambda) \Leftrightarrow f_{X}(t)=\left\{\begin{array}{cc}\lambda e^{-\lambda t} & t \geq 0 \\ 0 & t<0\end{array} \Leftrightarrow F_{X}(x)=\left\{\begin{array}{cc}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array}\right.\right.$
- $\mathbb{E}[X]=\frac{1}{\lambda}, \operatorname{Var}[X]=\frac{1}{\lambda^{2}}$
- $\mathbb{P}(X>s+t \mid X>s)=\mathbb{P}(X>t)$
- Gamma Distribution
$\circ T \sim \operatorname{Gamma}(n, \lambda) \Leftrightarrow T=\operatorname{Sum}$ of $n \operatorname{Exp}(\lambda) \Leftrightarrow f_{T}(t)=\left\{\begin{array}{cl}\lambda e^{-\lambda t} \cdot \frac{(\lambda t)^{n-1}}{(n-1)!} & t \geq 0 \\ 0 & t<0\end{array}\right.$
- $\mathbb{E}[T]=\frac{n}{\lambda}, \operatorname{Var}[T]=\frac{n}{\lambda^{2}}$
- Poisson Distribution
- $X \sim \operatorname{Poisson}(\lambda) \Leftrightarrow p_{X}(n)=e^{-\lambda} \frac{\lambda^{n}}{n!} \Rightarrow \mathbb{E}[X]=\operatorname{Var}[X]=\lambda$
- Poisson Process
- Interarrival time: $\tau_{k} \stackrel{i d}{\sim} \operatorname{Exp}(\lambda)$
- Arrival time: $T_{n}=\tau_{1}+\cdots+\tau_{n} \sim \operatorname{Gamma}(n, \lambda)$
- Number of arrivals up to time $s: N(s) \sim \operatorname{Poisson}(\lambda s)$
- Equivalent Definition of Poisson Process
- $N(0)=0$ (with probability 1)
- $N(t+s)-N(s) \sim$ Poisson (λt)
- $N(t)$ has independent increments
- Compound Poisson Process
- $S(t)=Y_{1}+Y_{2}+\cdots+Y_{N(t)}=\sum_{k=1}^{N(t)} Y_{k}$
- $S(t)=0$ when $N(t)=0$
- Mean and Variance of Random Sum
- $E[S]=E[N] E\left[Y_{1}\right]$
- $\operatorname{Var}[S]=\mathbb{E}[N] \operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}[N]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}$
- Mean and Variance of Compound Poisson Process
- $\operatorname{Var}(S)=\lambda \mathbb{E}\left[Y_{1}^{2}\right]$
- $\mathbb{E}[S(t)]=\lambda t \mathbb{E}\left[Y_{1}\right]$
- $\operatorname{Var}[S(t)]=\lambda t \mathbb{E}\left[Y_{1}^{2}\right]$
- Thinning a Poisson Process
- Define $N_{j}(t)=\sum_{k=1}^{N(t)} \mathbb{1}\left\{Y_{k}=j\right\}$ be the number of arrivales up to time t of type j
- Then $N_{1}(t), N_{2}(t), \ldots$ are independent Poisson process with rate $\lambda_{j}=\lambda \mathbb{P}\left(Y_{1}=j\right)$
- Superposition of Poisson Processes
- Suppose $N_{1}(t), \ldots, N_{k}(t)$ are independent Poisson process with rates $\lambda_{1}, \ldots, \lambda_{k}$
- Then $N(t)=N_{1}(t)+\cdots+N_{k}(t)$ is a Poisson process with rate $\lambda=\lambda_{1}+\cdots+\lambda_{k}$
- Conditioning of Poisson Processes
- $\left(T_{1}, \ldots, T_{n} \mid N(t)=n\right) \stackrel{D}{=}\left(U_{(1)}, \ldots, U_{(n)}\right)$
- $f\left(t_{1}, \ldots, t_{n}\right)=\left\{\begin{array}{cc}\frac{n!}{t^{n}} & 0 \leq t_{1} \leq \cdots \leq t_{n} \leq t \\ 0 & \text { otherwise }\end{array}\right.$
- Binomial and Conditioning of Poisson Processes
- $\mathbb{P}(N(s)=k \mid N(t)=n)=\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k}$ for $s<t$ and $0 \leq k \leq n$

Renewal Process

- Renewal process: Like a Poisson process, but waiting time t_{k} do not have to be $\operatorname{Exp}(\lambda)$
- Arrival LLN: $\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\mu}$, where $\mu=\mathbb{E}\left[t_{i}\right]$
- Reward LLN
- Let $r_{i}=$ reward/cost of i-th renewal, and $R(t)=\sum_{i=1}^{N(t)} r_{i}$, then, $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[r_{i}\right]}{\mathbb{E}\left[t_{i}\right]}$
- Alternating LLN
- Let s_{1}, s_{2}, \ldots be the times in state 1 , and u_{1}, u_{2}, \ldots be times in state 2
- Then the limiting fraction of time spent in state 1 is $\frac{\mathbb{E}\left[s_{i}\right]}{\mathbb{E}\left[s_{i}\right]+\mathbb{E}\left[u_{i}\right]}$
- Age and Residual Life
- $A(t)=$ age $=$ time since last renewal $=t-T_{N(t)}$
- $Z(t)=$ residual life $=$ time until next renewal $=T_{N(t)+1}-t$
- $\lim _{t \rightarrow \infty} \mathbb{P}(A(t)>x, Z(t)>y)=\frac{1}{\mathbb{E}\left[t_{i}\right]} \int_{x+y}^{\infty} \mathbb{P}\left(t_{i}>z\right) d z$
- Limiting PDF of $Z(t)$ is $g(z)=\frac{\mathbb{P}\left(t_{i}>z\right)}{\mathbb{E}\left[t_{i}\right]}$ for $z \geq 0$, and same for $A(t)$
- Limiting expected value of $A(t)$ and $Z(t)$ is $\frac{\mathbb{E}\left[t_{i}^{2}\right]}{2 \mathbb{E}\left[t_{i}\right]}$
- If $t_{k} \sim f$ then the limiting joint PDF of $A(t)$ and $Z(t)$ is $\frac{f(a+z)}{\mathbb{E}\left[t_{1}\right]}$

Continuous Time Markov Processes

- Markov Property
- For any time $0 \leq s_{0}<\cdots<s_{n}<s$, and any states $j, i, i_{n}, \ldots, i_{0}$, we have

○ $\mathbb{P}\left(X_{S+t}=j \mid X_{s}=i, X_{S_{n}}=i_{n}, \ldots, X_{S_{0}}=i_{0}\right)=\mathbb{P}\left(X_{s+t}=j \mid X_{s}=i\right)=\mathbb{P}\left(X_{t}=j \mid X_{0}=i\right)$

- Chapman-Kolmogorov Equation

$$
\circ p_{s+t}(i, j)=\sum_{k \in S} p_{s}(i, k) p_{t}(k, j)
$$

- Jump Rates: For any states $i \neq j, q_{i j}:=\lim _{h \rightarrow 0} \frac{p_{h}(i, j)}{h}$
- Kolmogorov Equations
- Define $\lambda_{i}=\sum_{k \neq i} q_{i k}$ to be the rate out of state i
\circ Define $Q_{i j}=\left\{\begin{array}{cc}q_{i j} & \text { if } i \neq j \\ -\lambda_{i} & \text { if } i=j\end{array} \Leftrightarrow Q=\left[\begin{array}{cccc}-\lambda_{1} & q(1,2) & q(1,3) & \cdots \\ q(2,1) & -\lambda_{2} & q(2,3) & \cdots \\ q(3,1) & q(3,2) & -\lambda_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]\right.$
- Backward: $\frac{d}{d t}\left[p_{t}(i, j)\right]=\sum_{k \neq i} q(i, k) p_{t}(k, j)-\lambda_{i} p_{t}(i, j) \Leftrightarrow \frac{d}{d t}\left[p_{t}\right]=Q p_{t}$
- Forward: $\frac{d}{d t}\left[p_{t}(i, j)\right]=\sum_{k \neq i} p_{t}(i, k) q(k, j)-p_{t}(i, j) \lambda_{j} \Leftrightarrow \frac{d}{d t}\left[p_{t}\right]=p_{t} Q$
- Stationary Distributions
- $\mathbb{P}_{\pi}(X(t)=j)=\pi(j), \forall t>0, j \in S \Leftrightarrow \pi p_{t}=\pi$
- π is stationary if and only if $\pi Q=0$
- Irreducibility
- A CTMC $X(t)$ is irreducible if for any $i, j \in S$, there exists states k_{1}, \ldots, k_{n-1} s.t.
- $q\left(i, k_{1}\right) q\left(k_{1}, k_{2}\right) \cdots q\left(k_{n-1}, j\right)>0$ i.e. "It is possible to go from i to j "
- Convergence Theorem
- If $X(t)$ is a CTMC s.t. $X(t)$ is irreducible, and has a stationary distribution
- Then, $\lim _{t \rightarrow \infty} p_{t}(i, j)=\pi(j), \forall i, j \in S$
- Detailed Balance
- $\pi(i) q(i, j)=\pi(j) q(j, i), \forall j \neq i$

Review, Introduction to Stochastic Processes

Thursday, September 6, 2018

Probability Space

- Sample space, Ω : set of all elementary outcomes in a random experiment
- Events, \mathcal{F} : set of subsets of the sample space
- Probability measure \mathbb{P} : function on the events that assigns probabilities to them
- $(\Omega, \mathcal{F}, \mathbb{P})$ form a probability space

Axioms of Probability Measure

1. For any event $A \in \mathcal{F}$, we must have $0 \leq \mathbb{P}(A) \leq 1$
2. $\mathbb{P}(\Omega)=1$
3. Countable additivity of \mathbb{P}

$$
\text { For disjoint events } A_{1}, A_{2}, A_{3} \ldots, \mathbb{P}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} A_{j}
$$

Properties of Probability Measure

- $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$
- If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

Random Variables

- Definitions
- A random variable X is a function with domain $\boldsymbol{\Omega}$ and codomain \boldsymbol{R}
- A discrete RV is a RV where range is a finite set, or a countably infinite set
- Classic examples: Bernoulli, Binomial, Geometric

What is Stochastic Processes

- A collection of random variables organized by an index set
- More formally, $\{X(t) \mid t \in \mathcal{L}\}$ is a stochastic process, and \mathcal{L} the index set
- We often classify and study the stochastic processes by properties of the index set

Common Choices for the Index Set

1. $\mathbb{Z}_{\geq 0}=\mathbb{N}=\{0,1,2,3 \ldots\}$

- This gives us a sequence of RVs called discrete time stochastic process
- Example: Pick a stock. Check its price each morning.
- Usual notation: $X(t)=X_{t}$, often use n instead of t

2. $\mathbb{R}_{\geq 0}=[0,+\infty)$

- This is called a continuous time stochastic process
- Example: Suppose you want to check the stock's price at ANY time.
- Notation: $X(t)=X_{t}$

3. \mathcal{L} is a set of subsets of some larger universe U

- Sometimes called a point process
- Example
- $U=$ All stocks on S\&P500
- $\mathcal{L}=$ Powerset of $U($ All subsets of $U)$
- For all $A \in \mathcal{L}, X(A)=\#$ Stocks in A that increase in value over 2018

State Space

- Definition
- The set of values of RVs can take is called the state space, denoted by S
- Example
- Suppose you are playing Monopoly
- $X_{n}=$ Your position on Monopoly board after n rounds of play
- This is a DTSP with $S=\{$ All positions on the board $\}$

Basic Question for DTSPs

- What is the value of $\mathbb{P}\left(X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ for any $x_{0}, x_{1}, \ldots, x_{n}$?
- Idea: apply the chain rule / multiplication rule for conditional probability
- Conditional probability
- $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A B)}{\mathbb{P}(B)} \Rightarrow \mathbb{P}(A B)=\mathbb{P}(B) \mathbb{P}(A \mid B)$
- Generalized conditional probability
- $\mathbb{P}\left(E_{1} E_{2} \cdots E_{n}\right)=\mathbb{P}\left(E_{1}\right) \prod_{l=1}^{n-1} \mathbb{P}\left(E_{l+1} \mid E_{1} \cdots E_{l}\right)$
- Formula for DTSPs in general
- $\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{0}=x_{0}\right) \prod_{l=0}^{n-1} \mathbb{P}\left(X_{l+1}=x_{l+1} \mid X_{0}=x_{0}, \ldots, X_{l}=x_{l}\right)$

Introduction to Markov Chain

Markov Chain

- Markov assumption
- Your next step only depends on where you are, not where you've been
- Markov property
$\bigcirc \mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right), \forall x_{i}$
- Further assumption in this course: temporally homogeneous
- $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\mathbb{P}\left(X_{m+1}=j \mid X_{m}=i\right), \forall m, n$
- Transition probability
- Since the subscript doesn't matter, we will use

$$
p(i, j):=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

to denote the transition probability from state i to state j

- Therefore, for Markov chain
- $\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{0}=x_{0}\right) \prod_{l=0}^{n-1} p\left(x_{l}, x_{l+1}\right)$

Initial distribution

- If we know the exact starting position from the MC
- Then $\mathbb{P}\left(X_{0}=i\right)=1$, for some $i \in S$
- We may write $\mathbb{P}_{i}\left(X_{n}=j\right):=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)$
- If the starting position is random
- We need to assign an initial distribution/measure on S
- Our usual notion for the initial distribution is μ
- $\mu(i):=\mathbb{P}\left(X_{0}=i\right)$, where $\left\{\begin{array}{l}0 \leq \mu(i) \leq 1 \\ \sum_{i \in S} \mu(i)=1\end{array}\right.$
- We may write $\mathbb{P}_{\mu}\left(X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right):=\mu\left(x_{0}\right) \prod_{l=0}^{n-1} p\left(x_{l}, x_{l+1}\right)$

Example: Highly Simplified Voter Model

- We randomly choose a US voter
- Start with $2012(n=0)$, then $2016(n=1), 2020(n=2)$, and so on
- In 2012, voters were split by D: 51%, R: 46%, T: 2%
- From one election to the next,
- D votes D, R, T with probability $0.3,0.5,0.2$
- R votes D, R, T with probability $0.3,0.3,0.4$
- T votes D, R, T with probability $0.6,0,0.4$
- What is the initial distribution for this model?
- Coordinate form: $\mu(D)=0.51, \mu(R)=0.46, \mu(T)=0.02$
- Vector form: $\mu=\left[\begin{array}{lll}0.51 & 0.47 & 0.02\end{array}\right]$
- How can we visualize this MC?

- How should we organize the transition probability?
- $\mathcal{P}=\left[\begin{array}{ccc}0.3 & 0.5 & 0.2 \\ 0.3 & 0.3 & 0.4 \\ 0.6 & 0 & 0.4\end{array}\right]$
- \mathcal{P} is called the transition matrix for the MC
- Note: Rows sums to 1 , columns do not have to sum to 1
- What is the probability that someone who votes R in 2012 votes T in 2016 and D in 2020?
- $\mathbb{P}_{R}\left(X_{1}=T, X_{2}=D\right)=p(R, T) \cdot p(T, D)=0.4 \times 0.6=0.24$
- What is the probability a 2012 R voter will vote D in 2020 ?
- $\mathbb{P}_{R}\left(X_{2}=D\right)=\sum_{s \in S} \mathbb{P}_{R}\left(X_{1}=s, X_{2}=D\right)$

$$
=\mathbb{P}_{R}\left(X_{1}=D, X_{2}=D\right)+\mathbb{P}_{R}\left(X_{1}=R, X_{2}=D\right)+\mathbb{P}_{R}\left(X_{1}=T, X_{2}=D\right)
$$

$$
=p(R, D) \cdot p(D, D)+p(R, R) \cdot p(R, D)+p(R, T) \cdot p(T, D)
$$

$$
=0.3 \times 0.3+0.3 \times 0.3+0.4 \times 0.6
$$

$$
=0.42
$$

Simple Random Walk, \mathcal{P}^{n}, Gambler's Ruin

Example: Simple Random Walk

- Let $\left\{Y_{n}\right\}_{n \geq 1}$ be iid with distribution $Y_{n}=\left\{\begin{array}{lc}+1 & \text { with probability } p \\ -1 & \text { with probability } 1-p=q\end{array}\right.$
- Let $\left\{X_{n}\right\}_{n \geq 0}$ be defined as $X_{n}=\left\{\begin{array}{cc}0 & \text { for } n=0 \\ \sum_{i=1}^{n} Y_{i} & \text { for } n \geq 1\end{array}\right.$
- Question: Is $X_{0}, X_{1}, X_{2}, \ldots$ a Markov chain?
- We need to check whether the Markov property is satisfied

$$
\circ \mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)
$$

- Compute $\mathbb{P}\left(X_{n+1}=j \mid X_{0}=x_{0}, \ldots, X_{n}=i\right)$

$$
\begin{aligned}
& \circ \mathbb{P}\left(X_{n+1}=j \mid X_{0}=x_{0}, \ldots, X_{n-1}=x_{n-1}, X_{n}=i\right) \\
&=\frac{\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{n-1}=x_{n-1}, X_{n}=i, X_{n+1}=j\right)}{\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{n-1}=x_{n-1}, X_{n}=i\right)}, \text { by Bayes' law } \\
& \quad=\frac{\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}, X_{n}=i, X_{n+1}=j\right)}{\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}, X_{n}=i\right)}, \text { since } X_{0}=0 \\
& \quad=\frac{\mathbb{P}\left(Y_{1}=x_{1}, Y_{2}=x_{2}-x_{1} \ldots, Y_{n}=i-x_{n-1}, Y_{n+1}=j-i\right)}{\mathbb{P}\left(Y_{1}=x_{1}, Y_{2}=x_{2}-x_{1} \ldots, Y_{n}=i-x_{n-1}\right)}, \text { since } Y_{i+1}=X_{i+1}-X_{i} \\
& \quad=\frac{\mathbb{P}\left(Y_{1}=x_{1}\right) \mathbb{P}\left(Y_{2}=x_{2}-x_{1}\right) \cdots \mathbb{P}\left(Y_{n}=i-x_{n-1}\right) \mathbb{P}\left(Y_{n+1}=j-i\right)}{\mathbb{P}\left(Y_{1}=x_{1}\right) \mathbb{P}\left(Y_{2}=x_{2}-x_{1}\right) \cdots \mathbb{P}\left(Y_{n}=i-x_{n-1}\right)} \\
& \quad=\mathbb{P}\left(Y_{n+1}=j-i\right)
\end{aligned}
$$

- Compute $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$

$$
\begin{aligned}
& \circ \mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\frac{\mathbb{P}\left(X_{n}=i, X_{n+1}=j\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& \quad=\frac{\mathbb{P}\left(X_{n}=i, Y_{n+1}=j-i\right)}{\mathbb{P}\left(X_{n}=i\right)}, \text { since } X_{n+1}=X_{n}+Y_{n+1} \Leftrightarrow Y_{n+1}=X_{n+1}-X_{n} \\
& \quad=\frac{\mathbb{P}\left(X_{n}=i\right) \mathbb{P}\left(Y_{n+1}=j-i\right)}{\mathbb{P}\left(X_{n}=i\right)}, \text { since } X_{n}=Y_{1}+\cdots+Y_{n} \text { is independent with } Y_{n+1} \\
& \quad=\mathbb{P}\left(Y_{n+1}=j-i\right)
\end{aligned}
$$

- Therefore $X_{0}, X_{1}, X_{2}, \ldots$ is a Markov chain

n-Step Transition Probabilities

- Motivation
- Compute $\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)$, given the transition probabilities $p(l, k)$ for the MC
- Statement
\circ Let $\mathcal{P}_{l k}=p(l, k)$ be the probability transition matrix, then $\mathbb{P}\left(\boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{j} \mid \boldsymbol{X}_{\mathbf{0}}=\boldsymbol{i}\right)=\left[\mathcal{P}^{\boldsymbol{n}}\right]_{\boldsymbol{i j}}$
- Proof
- For $n=1$: True by definition of \mathcal{P}
- For $n=2$
- $\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right)=\sum_{l \in S} \mathbb{P}\left(X_{2}=j, X_{1}=l \mid X_{0}=i\right)$
• $=\sum_{l \in S} \frac{\mathbb{P}\left(X_{2}=j, X_{1}=l, X_{0}=i\right)}{\mathbb{P}\left(X_{0}=i\right)}$
• $=\sum_{l \in S} \frac{\mu(i) p(i, l) p(l, j)}{\mu(i)}=\sum_{l \in S} p(i, l) p(l, j)=\sum_{l \in S} \mathcal{P}_{i l} \mathcal{P}_{l j}=0$
- The general case is proven via strong mathematical induction
- Corollary: Chapman-Kolmogorov Equation
$\bigcirc p^{m+n}(i, j)=\sum_{l \in S} p^{m}(i, l) p^{n}(\boldsymbol{l}, \boldsymbol{j})$
- Proof for Corollary
- $p^{m+n}(i, j)=\left[\mathcal{P}^{m+n}\right]_{i j}=\sum_{l \in S}\left[\mathcal{P}^{m}\right]_{i l}\left[\mathcal{P}^{n}\right]_{l j}=\sum_{l \in S} p^{m}(i, l) p^{n}(l, j)$

Example: Gambler's Ruin

- Background
- You have $\$ 7$. You need $\$ 10$. There is a casino game where you either win or lose $\$ 1$.
- The win probability is 0.45 . You play the game until you have lost or met your goal.
- Model this problem with a Markov chain
- $s=0.45, f=0.55, \mu(7)=1$

- Find the probability that you have met your goal by the 10 th round
$\circ \mathcal{P}=\left[\begin{array}{llllllllll}1 & 0 & & & & & & & & \\ f & 0 & s & & & & & & & \\ & f & 0 & s & & & & & & \\ & & f & 0 & s & & & & & \\ & & & f & 0 & s & & & & \\ & & & & f & 0 & s & & & \\ & & & & & f & 0 & s & & \\ & & & & & & f & 0 & s & \\ & & & & & & & f & 0 & s \\ & & & & & & & & 0 & 1\end{array}\right]$
- $\mathbb{P}\left(X_{10}=10 \mid X_{0}=7\right)=p^{10}(7,10)=\left[\mathcal{P}^{10}\right]_{8,11} \approx 0.248$, note that the index starts with 1
- Find the probability you lost it all by round 10
- $p^{10}(7,0)=\left[\mathcal{P}^{10}\right]_{8,1} \approx 0.042$

T, Strong Markov Property, $T_{y}, \rho_{y y}$, Recurrence

Stopping Time

- Motivation
- In the setting of Gambler's ruin

$\mathrm{p}=$ probability of winning turn $\mathrm{q}=$ probability of losing turn= $1-\mathrm{p}$

Win!
(Final stake: leave game)

- $T=$ The first time you have $\$ N$
- We can think of stopping time as a criteria to quit running the Markov chain
- Definition
- Let T be a random variable taking values in $\{0,1,2, \ldots, \infty\}$
- T is a stopping time for a Markov chain X_{0}, X_{1}, \ldots if
- The event $\{T=n\}$ can be expressed using the variables $\boldsymbol{X}_{0}, \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$
- i.e. You can tell if you stop at time n based on the states of the MC through time n
- Example: Determine if the following RVs are stopping times
- $T=\min \left\{n \geq 1 \mid X_{n}=5\right\}=$ time of first visit to state 5
- $\{T=n\}=\left\{X_{n}=5, X_{n-1} \neq 5, \ldots, X_{1} \neq 5\right\}$
- Therefore T is a stopping time
- Note: We do not include $\boldsymbol{X}_{\mathbf{0}}$, since $n \geq 1$
- $T=\max \left\{n \geq 1 \mid X_{n}=2\right\}=$ time of final visit to state 2
- $\{T=n\} \stackrel{\text { a.s. }}{=}\left\{X_{n}=2, X_{n+1}=3\right\}$

- T is not a stopping time, since we need to know $\left\{\boldsymbol{X}_{n+1}=3\right\}$ in the future
- $T=$ Time of the third visit to state 2
- $\{T=n\}=\left\{X_{n}=2,\left(\sum_{k=1}^{n-1} \mathbb{1}\left\{X_{k}=2\right\}\right)=2\right\}$, where $\mathbb{1}$ is a indicator function
- Since $\{T=n\}$ could be expressed using X_{0}, \ldots, X_{n}, it is a stopping time
- $T=$ Time of final visit to state 2 after visiting state 5
- $\{T=n\}=\emptyset$ for $n \neq 0$
- So T is a stopping time for the MC

Strong Markov Property

- Definition
- Let T be a stopping time for the Markov chain X_{0}, X_{1}, \ldots
- Given that $T=n$ and $X_{T}=y$. Then
- Any other information about X_{0}, \ldots, X_{r} is irrelevant for future predictions
- And $X_{T+k}(k \neq 0)$ behaves like a Markov chain with initial state y
- Justification
- Durret proves $\mathbb{P}\left(\boldsymbol{X}_{\boldsymbol{T}+\boldsymbol{1}}=\boldsymbol{j} \mid \boldsymbol{X}_{\boldsymbol{T}}=\boldsymbol{i}, \boldsymbol{T}=\boldsymbol{n}\right)=\boldsymbol{p}(\boldsymbol{i}, \boldsymbol{j})$
- Why stopping times? Why no any random variables?
- Suppose $T_{y}=\min \left\{n \geq 0 \mid X_{n+1}=y\right\}$
- T_{y} is not a stopping time, since $\left\{T_{y}=n\right\}=\left\{X_{n+1}=y\right\}$
- $\mathbb{P}\left(X_{T_{y}+1}=j \mid X_{T_{y}}=i, T_{y}=n\right)= \begin{cases}1 & \text { if } j=y \\ 0 & \text { if } j \neq y\end{cases}$

Return Time and Return Probability

- $\boldsymbol{T}_{\boldsymbol{y}}=\min \left\{n \geq \mathbf{1} \mid \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{y}\right\}$ is called the hitting time of y or time of first return to y
- $\boldsymbol{\rho}_{\boldsymbol{y} \boldsymbol{y}}=\mathbb{P}_{\boldsymbol{y}}\left(\boldsymbol{T}_{\boldsymbol{y}}<\infty\right)$ is called the return probability
- $T_{y}^{k}=\min \left\{n \geq T_{y}^{k-1} \mid X_{n}=y\right\}$ is called the time of \boldsymbol{k}-th return
- $\boldsymbol{\rho}_{y y}^{k}=\mathbb{P}_{\boldsymbol{y}}\left(\boldsymbol{T}_{y}^{k}<\infty\right)$ is called the \boldsymbol{k}-th return probability
- Proof: Use strong Markov property and mathematical induction
- Note: k is label on T_{y}^{k}, but exponent on $\rho_{y y}^{k}$

Recurrent and Transient States

- Motivation

- In the example above, it's less likely to return to state 1 and 2 as the time increase
- While for state 3, 4 and 5, the chain returns to those states for infinitely many times
- Definition
- If $\rho_{y y}<1$, we say y is transient (not guaranteed to keep returning to y)
- If $\rho_{y y}=1$, we say y is recurrent (guaranteed to return to y forever)

Recurrence, Closed, Irreducible, Communication

Introduction

- $T_{y}=\min \left\{n \geq 1 \mid X_{n}=y\right\}$ is the time of first return to y
- $\boldsymbol{\rho}_{\boldsymbol{y} \boldsymbol{y}}=\mathbb{P}_{\boldsymbol{y}}\left(\boldsymbol{T}_{\boldsymbol{y}}<\infty\right)$ is called the return probability of \boldsymbol{y}
- It's easier to calculate the return probability rather than finding the PMF, $E T_{y}$, etc
- But it's still difficult, so we try to classify states categorically
- y is transient if $\rho_{y y}<1$
- y is recurrent if $\rho_{y y}=1$
- It is possible to classify all states as transient or recurrent once at a time
- But we want to find a more efficient way to classify the states in groups

Example: Transient or Recurrent

- Classify the states of the gambler's ruin MC for a prize goal of $\$ 5$ as transient or recurrent

- Recurrent
- $\rho_{00}=\mathbb{P}_{0}\left(T_{0}<\infty\right)=p(0,0)=1$
- $\rho_{55}=\mathbb{P}_{5}\left(T_{5}<\infty\right)=\rho(5,5)=1$
- So state 0 and state 5 is recurrent
- Transient
- $\rho_{y y}<1 \Leftrightarrow 1-\rho_{y y}>0 \Leftrightarrow \mathbb{P}_{y}\left(T_{y}=\infty\right)>0$
- $\mathbb{P}_{2}\left(T_{2}=\infty\right) \geq \mathbb{P}_{2}\left(X_{1}=1, X_{2}=0\right)=p(2,1) p(1,0)>0$
- So state 2 is transient, similar for state 1,3 , and 4

Communication (Accessibility)

- Definition
- We say that \boldsymbol{x} communicates with \boldsymbol{y} if $\boldsymbol{p}^{\boldsymbol{n}}(\boldsymbol{x}, \boldsymbol{y})>\mathbf{0}$ for some $\boldsymbol{n} \geq \mathbf{0}$, denoted by $x \Rightarrow y$
- Remark: Different from Textbook
- Textbook uses $x \rightarrow y$ for communication
- This single arrow is used in graphs to denote $p(x, y)>0$
- But since communication is more general than 1-step, we use double arrows
- Textbook defines communication as $\mathbb{P}_{x}\left(T_{y}<\infty\right)=1$
- It is possible for $x \nRightarrow x$
- But the usual convention is to ensure $x \Rightarrow x$, which is guaranteed for our definition
- Example

- Why $1 \Rightarrow 4$
- $p^{3}(1,4) \geq p(1,2) p(2,3) p(3,4)>0$
- Why $4 \nRightarrow 1$
- Only $p(3,4), p(4,5)>0$ for $p(4, j)$, so 4 cannot get to 3,5 in one step
- Thus $p(5,4) p(3,3) p(3,4)>0$ are the only possible transitions from 3,5
- So for all $p^{n}(4,1)=0$ i.e. $4 \nRightarrow 1$

Closed and Irreducible Sets

- A closed set of states is impossible to get out of
- A set of states C is closed if the following condition is satisfied
- If $i \in C$ and $p(i, j)>0$, then $j \in C$
- A irreducible set of states can be freely moved about (you can go anywhere)
- A set of states C is irreducible if $i \Leftrightarrow j, \forall i, j \in C$
- Example (in the graph above)
- $\{1,2\},\{3,4,5\},\{4,5\},\{2\}$ are irreducible sets
- $\{3,4,5\},\{1,2,3,4,5\}$ are closed sets

Decomposition of Finite State Space (Theorem 1.8)

- Statement
- If the state space S is finite, then S can be written as a disjoint union
- $\boldsymbol{T} \cup \boldsymbol{R}_{\mathbf{1}} \cup \cdots \cup \boldsymbol{R}_{\boldsymbol{k}}$ for $k \geq 1$ (at least one recurrent state), where
- T is a set of transient states, and
- R_{i} are closed irreducible sets of recurrent states.
- Example
- Classify all states of the Markov chain with
$\mathcal{P}=\left[\begin{array}{ccccccc}0 & 0 & 0 & 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0.5 & 0 & 0 & 0.5 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
- $T=\{2,3,5,6\}$ is a set of transient states
- $R_{1}=\{1,4,7\}$ is a closed irreducible set of recurrent states

Number of Visits

- $N(y)=$ Number of times the Markov chain visit state y

Theorems Related to Recurrence

Some Notation Reminders

- $T_{y}=\min \left\{n \geq 1 \mid X_{n}=y\right\}$
- $T_{y}^{k}=\min \left\{n>T_{y}^{k-1} \mid X_{n}=y\right\}$
- $N(y)=$ Number of times MC visits state y after time 0
- $\rho_{x y}=\mathbb{P}_{x}\left(T_{y}<\infty\right)$
- y is transient $\Leftrightarrow \rho_{y y}<1$
- y is recurrent $\Leftrightarrow \rho_{y y}=1$
- $x \Rightarrow y$ iff $p^{n}(x, y)>0$ for some $n \geq 0$

Theorems Related to $N(y)$

- Lemma: tail-sum formula
- If N is a RV taking values in $\{0,1,2, \ldots\}$, then $\mathbb{E} \boldsymbol{N}=\sum_{\boldsymbol{k}=1}^{\infty} \mathbb{P}(\boldsymbol{N} \geq \boldsymbol{k})$
- Define the indicator $\mathbb{1}_{A}=\left\{\begin{array}{cc}1 & A \text { occurs } \\ 0 & A \text { does not occur }\end{array}\right.$. Then
- $N=\mathbb{1}_{\{N \geq 1\}}+\mathbb{1}_{\{N \geq 2\}}+\cdots=\sum_{k=1}^{\infty} \mathbb{1}_{\{N \geq k\}}$
- Taking \mathbb{E} on both side, we obtain
- $\mathbb{E} N=\mathbb{E} \mathbb{1}_{\{N \geq 1\}}+\mathbb{E} \mathbb{1}_{\{N \geq 2\}}+\cdots=\mathbb{P}(N \geq 1)+\mathbb{P}(N \geq 2)+\cdots=\sum_{k=1}^{\infty} \mathbb{P}(N \geq k)$
- Lemma 1.11: $\mathbb{E}_{x} N(y)=\frac{\rho_{x y}}{1-\rho_{y y}}$
- $\mathbb{E}_{x} N(y)=\sum_{k=1}^{\infty} \mathbb{P}_{x}(N(y) \geq k)$, by the tail-sum formula
$=\sum_{k=1}^{\infty} \mathbb{P}_{x}\left(T_{y}^{k}<\infty\right)$, since $\{N(y) \geq k\}$ is the same as the k th return occurs
$=\sum_{k=1}^{\infty} \mathbb{P}_{x}\left(T_{y}^{k}<\infty, T_{y}<\infty\right)$, since $\left\{T_{y}^{k}<\infty\right\}$ includes $\left\{T_{y}<\infty\right\}$
$=\sum_{k=1}^{\infty} \underbrace{\mathbb{P}_{x}\left(T_{y}^{k}<\infty \mid T_{y}<\infty\right)}_{\rho_{y y}^{k-1}} \underbrace{\mathbb{P}_{x}\left(T_{y}<\infty\right)}_{\rho_{x y}}$

$$
=\rho_{x y} \sum_{k=1}^{\infty} \rho_{y y}^{k-1}=\rho_{x y} \sum_{k=0}^{\infty} \rho_{y y}^{k}=\left\{\begin{array}{cl}
\frac{\rho_{x y}}{1-\rho_{y y}} & \text { if } \rho_{y y}<1 \\
+\infty & \text { if } \rho_{y y}=1
\end{array}\right.
$$

- Lemma 1.12: $\mathbb{E}_{x} N(y)=\sum_{n=1}^{\infty} p^{n}(x, y)$
- Use an indicator function to express $N(y): N(y)=\sum_{n=1}^{\infty} \mathbb{1}_{\left\{X_{n}=y\right\}}$
- Then, $\mathbb{E}_{x} N(y)=\sum_{n=1}^{\infty} \mathbb{E} \mathbb{1}_{\left\{X_{n}=y\right\}}=\sum_{n=1}^{\infty} \mathbb{P}_{x}\left(X_{n}=y\right)=\sum_{n=1}^{\infty} p^{n}(x, y)$
- Theorem 1.13: y is recurrent $\Leftrightarrow \sum_{n=1}^{\infty} p^{n}(y, y)=E_{y} N(y)=+\infty$
- y is recurrent $\Rightarrow \rho_{y y}=1 \Rightarrow \mathbb{E}_{y} N(y)=\rho_{y y} \sum_{k=1}^{\infty} 1=+\infty$
- $\mathbb{E}_{y} N(y)=\sum_{k=0}^{\infty} \rho_{y y}^{k}=+\infty \Rightarrow \rho_{y y}=1 \Rightarrow y$ is recurrent

Theorems Related to Communication

- Lemma 1.9: If $\boldsymbol{x} \Rightarrow \boldsymbol{y}$ and $\boldsymbol{y} \Rightarrow \boldsymbol{z}$, then $\boldsymbol{x} \Rightarrow \boldsymbol{z}$
- $p^{n_{1}}(x, y)>0$ and $p^{n_{2}}(y, z)>0$ for some $n_{1}, n_{2} \geq 0$
- $p^{n_{1}+n_{2}}(x, z) \geq p^{n_{1}}(x, y) p^{n_{2}}(y, z)>0$
- Therefore $x \Rightarrow z$
- Theorem 1.5: If $\boldsymbol{x} \Rightarrow \boldsymbol{y}$ and $\boldsymbol{\rho}_{\boldsymbol{y} \boldsymbol{x}}<\mathbf{1}$, then \boldsymbol{x} is transient
- Let $n \in \mathbb{N}$ s.t. $p^{n}(x, y)>0$
- $\mathbb{P}_{x}\left(T_{x}=\infty\right) \geq \mathbb{P}_{x}\left(T_{x}=\infty, X_{n}=y\right)$

$$
=\underbrace{\mathbb{P}_{x}\left(T_{x}=\infty \mid X_{n}=y\right)}_{\mathbb{P}_{y}\left(T_{x}=\infty\right)} \underbrace{\mathbb{P}_{x}\left(X_{n}=y\right)}_{p^{n}(x, y)}=\left(1-\rho_{y x}\right) p^{n}(x, y)>0
$$

- So $\rho_{x x}=\mathbb{P}_{x}\left(T_{x}<\infty\right)=1-\mathbb{P}_{x}\left(T_{x}=\infty\right)<1$
- Therefore x is transient
- Lemma 1.6: If \boldsymbol{x} is recurrent and $\boldsymbol{x} \Rightarrow \boldsymbol{y}$, then $\boldsymbol{\rho}_{\boldsymbol{y} \boldsymbol{x}}=\mathbf{1}$
- Use the contrapositive from the previous theorem
- If x is recurrent, then $x \nRightarrow y$ or $\rho_{y x}=1$
- By assumption $x \Rightarrow y$, so $\rho_{y x}=1$
- Lemma 1.9: If \boldsymbol{x} is recurrent and $\boldsymbol{x} \Rightarrow \boldsymbol{y}$, then \boldsymbol{y} is recurrent
- By the previous lemma, we have $y \Rightarrow x$
- So there exists l, k s.t. $p^{k}(y, x)>0$ and $p^{l}(x, y)>0$
- We want to show that $E_{y} N(y)=+\infty$
- $E_{y} N(y)=\sum_{n=1}^{\infty} p^{n}(y, y)$
- $\geq \sum_{n=1}^{\infty} p^{k+n+l}(y, y)$, the inequality holds since this is just one possible path
- $=\sum_{n=1}^{\infty} p^{k}(y, x) p^{n}(x, x) p^{l}(x, y)$, by Chapman-Kolmogorov equation
- $\geq p^{l}(x, y) p^{k}(y, x) \underbrace{\sum_{n=1}^{\infty} p^{n}(x, x)}_{\mathbb{E}_{x} N(x)}$, since only $p^{n}(x, x)$ depends on n
- $=p^{l}(x, y) p^{k}(y, x) \underbrace{\mathbb{E}_{x} N(x)}_{\infty}=+\infty$
- Therefore y is recurrent

Finite, Closed $\Rightarrow \exists$ Recurrent State (Lemma 1.9)

- Statement
- In a finite closed set of states, there is at least one recurrent state
- Proof
- Let C be a closed finite set of states
- Suppose that there is no recurrent state in C (i.e. $\mathbb{E}_{x} N(y)<\infty, \forall x, y \in C$)
- Then, $\sum_{y \in C} \mathbb{E}_{x} N(y)=\sum_{y \in C} \sum_{n=1}^{\infty} p^{n}(x, y)=\sum_{n=1}^{\infty} \underbrace{\sum_{y \in C} p^{n}(x, y)}_{1}=+\infty$
- This contradicts $\mathbb{E}_{x} N(y)<\infty$
- So the assumption is wrong, there must be a recurrent state

Finite, Closed, Irreducible \Rightarrow Recurrent (Theorem 1.7)

- Statement
- If C is a finite closed and irreducible set, then all states in C are recurrent
- Proof
- By the previous lemma, there is at least one recurrent state x
- Because C is irreducible, $x \Rightarrow y$ for all $y \in C$
- So y is also recurrent by Lemma 1.9
- Therefore all states in C are recurrent

Stationary Distribution/Measure, Renewal Chain

Stationary Distribution and Stationary Measure

- Motivation
- Let X_{0}, X_{1}, \ldots be a Markov chain, and μ be its initial distribution
- Then the distribution of X_{i} is
- $\mathbb{P}_{\mu}\left(X_{i}=j\right)=\sum_{i \in S} \mu(i) p^{n}(i, j), \forall j \in S$, or
- $X_{i} \sim \mu \mathcal{P}^{i}$ (in matrix form)
- What conditions must be satisfied so that X_{0}, X_{1}, \ldots follow the same distribution
- We say that $\mu: S \rightarrow \mathbb{R}_{\geq 0}$ is a stationary/invariant measure for a MC if
- $\boldsymbol{\mu}(\boldsymbol{j})=\sum_{i \in S} \boldsymbol{\mu}(\boldsymbol{i}) \boldsymbol{p}(\boldsymbol{i}, \boldsymbol{j})$ (coordinate form), or
- $\boldsymbol{\mu}=\boldsymbol{\mu} \boldsymbol{\mathcal { P }}$ (matrix form), or
- μ is a left eigenvector of \mathcal{P} with eigenvalue 1
- We say $\pi: S \rightarrow \mathbb{R}_{\geq 0}$ is a stationary/invariant distribution for a MC if
- π is a stationary measure and $\sum_{j \in S} \boldsymbol{\pi}(j)=\mathbf{1}$
- How can we convert stationary measures into stationary distributions?
- Given $\mu=[1,2,4,3]$, we can take $\pi=\frac{1}{\sum_{i \in S} \mu(i)} \mu$
- But this may not work when $\sum_{i \in S} \mu(i)$ is not finite
- Example: Social Mobility (Example 1.18)
- Given $\mathcal{P}=\left[\begin{array}{lll}0.7 & 0.2 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4\end{array}\right]$
- Find the stationary distribution for this MC
- $\left[\pi_{1}, \pi_{2}, \pi_{3}\right]\left[\begin{array}{lll}0.7 & 0.2 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4\end{array}\right]=\left[\pi_{1}, \pi_{2}, \pi_{3}\right]$
$\circ \Rightarrow\left\{\begin{array}{l}0.7 \pi_{1}+0.3 \pi_{2}+0.2 \pi_{3}=\pi_{1} \\ 0.2 \pi_{1}+0.5 \pi_{2}+0.4 \pi_{3}=\pi_{2} \\ 0.1 \pi_{1}+0.2 \pi_{2}+0.4 \pi_{3}=\pi_{3}\end{array} \Rightarrow\left\{\begin{array}{c}\pi_{1}=22 / 47 \\ \pi_{2}=16 / 47 \\ \pi_{3}=9 / 47\end{array}\right.\right.$
- How can we guarantee a stationary distribution exists
- If a Markov chain is irreducible and finite, then
- There is a unique stationary distribution π, and $\pi(j)>0, \forall j \in S$
- Proof: Linear algebra

Example: Renewal Chain (Countably Infinite State Space)

- $S=\mathbb{Z}_{\geq 0}=\{0,1,2, \ldots\}$
- Let $\left\{f_{k}\right\}_{k \geq 0}$ be a distribution on S
- Define the transition probability p as
- $p(0, k)=f_{k}$
- $p(k, k-1)=1$
- Let $f_{k}=\frac{6}{\pi^{2}} \cdot \frac{1}{(k+1)^{2}}$

- Obviously, 0 is recurrent $\Leftrightarrow \mathbb{P}_{0}\left(T_{0}<\infty\right)=1$
- What is $\mathbb{E}_{0} T_{0}$?

$$
\circ \mathbb{E}_{0} T_{0}=\sum_{k=1}^{\infty} k \mathbb{P}_{0}\left(T_{0}=k\right)=\sum_{k=1}^{\infty} k f_{k-1}=\sum_{k=1}^{\infty} k \frac{6}{\pi^{2}} \cdot \frac{1}{k^{2}}=\frac{6}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k}=+\infty
$$

- Find an invariant measure for this MC
- Let μ be an invariant measure, then

$$
\begin{aligned}
\circ \mu(k) & =\sum_{l=0}^{\infty} \mu(l) p(l, k) \\
& =\mu(0) \underbrace{p(0, k)}_{f_{k}}+\mu(k+1) \underbrace{p(k+1, k)}_{1}, \text { since we can only get } k \text { from } 0 \text { or } k+1 \\
& =\mu(0) f_{k}+\mu(k+1)
\end{aligned}
$$

- Thus, $\mu(k+1)=\mu(k)-\mu(0) f_{k}$
- Solving the recursion, we have $\mu(k)=\mu(0)\left(1-\sum_{l=0}^{k-1} f_{l}\right)$
- Set $\mu(0)=1$ (since we can freely scale the invariant measure by a positive number)
- Then for $k \geq 1, \mu(k)=1-\sum_{l=0}^{k-1} f_{l}=\sum_{l=k}^{\infty} f_{l}=\sum_{l=k}^{\infty} \mathbb{P}_{0}\left(T_{0}=l+1\right)=\mathbb{P}_{0}\left(T_{0} \geq k+1\right)$
- Note: $f=\mathbb{P}_{0}\left(T_{0}=l+1\right)$ since we need 1 step to get l, and l steps to return to 0
- Can we make μ into a distribution?
- $\sum_{k=0}^{\infty} \mu(k)=\sum_{k=0}^{\infty} \mathbb{P}_{0}\left(T_{0} \geq k+1\right) \stackrel{\text { tail sum }}{=} \mathbb{E}_{0} T_{0}=+\infty$
- So we cannot normalize μ into distribution
- Repeat this problem with $f_{k}=\frac{1}{2^{k+1}}$ (see next lecture)

Positive/Null Recurrent, Limit Behavior

Stationary Distribution and Stationary Measure

- Stationary measure
- $\mu: S \rightarrow \mathbb{R}_{\geq 0}$ S.t. $\boldsymbol{\mu}(\boldsymbol{k})=\sum_{l \in S} \boldsymbol{\mu}(\boldsymbol{l}) \boldsymbol{p}(\boldsymbol{l}, \boldsymbol{k})$
- Stationary distribution
- A stationary measure π with $\sum_{l \in S} \boldsymbol{\pi}(\boldsymbol{l})=\mathbf{1}$
- Given $\sum_{l \in S} \mu(l) \neq \infty$, we can normalize μ by setting $\boldsymbol{\pi}(\boldsymbol{k})=\frac{\boldsymbol{\mu}(\boldsymbol{k})}{\sum_{\boldsymbol{l} \in S} \boldsymbol{\mu}(\boldsymbol{l})}$
- In finite case, we can solve for $\boldsymbol{\pi}=\boldsymbol{\pi} \boldsymbol{\mathcal { P }}$ with $\sum_{l \in S} \pi(l)=1$
- Motivation
- If π is the initial distribution, then X_{0}, X_{1}, \ldots all have the same distribution
$\bigcirc \mathbb{P}_{\boldsymbol{\pi}}\left(\boldsymbol{X}_{\boldsymbol{j}}=\boldsymbol{x}\right)=\mathbb{P}_{\boldsymbol{\pi}}\left(\boldsymbol{X}_{\boldsymbol{k}}=\boldsymbol{x}\right), \forall j, k \geq 0, \forall x \in S$

Example: Renewal Chain (Cont.)

- $S=\mathbb{Z}_{\geq 0}=\{0,1,2, \ldots\}$
- Let $\left\{f_{k}\right\}_{k \geq 0}$ be a distribution on S
- Define the transition probability p as
- $p(0, k)=f_{k}$
- $p(k, k-1)=1$

- In the previous lecture, we set $f_{k}=\frac{6}{\pi^{2}} \cdot \frac{1}{(k+1)^{2}}$, and found
- $\mathbb{E}_{0} T_{0}=+\infty$
- $\mu(k)=\sum_{l=k}^{\infty} f_{l}=\mathbb{P}_{0}\left(T_{0} \geq k+1\right)$
- $\sum_{k=0}^{\infty} \mu(k)=+\infty \Rightarrow \pi$ does not exist
- If we set $f_{k}=\frac{1}{2^{k+1}}$, then
- $\mathbb{E}_{0} \mathrm{~T}_{0}=\sum_{k=1}^{\infty} k \mathbb{P}_{0}\left(T_{0}=k\right)=\sum_{k=1}^{\infty} k f_{k-1}=\sum_{k=1}^{\infty} \frac{k}{2^{k}} \stackrel{\operatorname{Geo}\left(\frac{1}{2}\right)}{=} 2$
- $\mathbb{P}_{0}\left(T_{0}=k\right)=f_{k-1}=\left(\frac{1}{2}\right)^{k}$, so $T_{0} \sim \mathrm{Geo}\left(\frac{1}{2}\right)$

○ $\sum_{l=0}^{\infty} \mu(l)=\sum_{l=0}^{\infty} \mathbb{P}_{0}\left(T_{0} \geq k+1\right)=\sum_{l=1}^{\infty} \mathbb{P}_{0}\left(T_{0} \geq k\right) \stackrel{\text { tail sum }}{=} \mathbb{E}_{0} T_{0}=2$

- $\pi(k)=\frac{\mu(k)}{2}=2^{-k-1}$

Positive vs Null Recurrent

- Motivation
- In the previous example, even for recurrent states, it is possible to have $\mathbb{E}_{\boldsymbol{x}} \boldsymbol{T}_{\boldsymbol{x}}=\infty$
- Definition
- Suppose x is recurrent, we say that
- x is positive recurrent if $\mathbb{E}_{x} T_{x}<\infty$
- x is null recurrent if $\mathbb{E}_{x} T_{x}=\infty$

Theorem Related to Recurrence and Stationary Measure/Distribution

- Suppose we have a MC with irreducible state space (finite or countably infinite)
- If all states are recurrent, then
- The MC has a unique stationary measure μ up to multiplicative constants
- $\boldsymbol{\mu}(\boldsymbol{x})>\mathbf{0}, \forall x \in S$
- The stationary distribution $\pi(x)=\frac{1}{\mathbb{E}_{x} T_{x}}$ exists iff all states are positive recurrent
- Note: If $x \Leftrightarrow y$, then x and y are both transient, positive recurrent, or null recurrent

Example: Limit Behavior of Two State MC

- Find the n-step transitions
- Compute $\mathbb{P}_{0}\left(X_{n}=0\right)$
- $\mathbb{P}_{0}\left(X_{n}=0\right)=\mathbb{P}_{0}\left(X_{n-1}=0\right)(1-a)+\mathbb{P}_{0}\left(X_{n-1}=1\right) b$
- Solving the recurrence, we have $\mathbb{P}_{0}\left(X_{n}=0\right)=(1-a-b) \mathbb{P}_{0}\left(X_{n-1}=0\right)+b$
- Set $x_{n}=\mathbb{P}_{0}\left(X_{n}=0\right)$. Then
- $x_{n}=(1-a-b) x_{n-1}+b$
- $x_{n}-\frac{b}{a+b}=(1-a-b)\left(x_{n-1}-\frac{b}{a+b}\right)$
- Set $y_{n}=x_{n}-\frac{b}{a+b}$. Then
- $y_{n}=(1-a-b) y_{n-1}$
- $y_{n}=(1-a-b)^{n} y_{0}$
- Therefore $\mathbb{P}_{0}\left(X_{n}=0\right)-\frac{b}{a+b}=(1-a-b)^{n}\left(\mathbb{P}_{0}\left(X_{0}=0\right)-\frac{b}{a+b}\right)$
- $p^{n}(0,0)=(1-a-b)^{n}\left(1-\frac{b}{a+b}\right)+\frac{b}{a+b}=\frac{b}{a+b}+(1-a-b)^{n} \frac{a}{a+b}$
- $p^{n}(0,1)=1-p^{n}(0,0)=\left(1-(1-a-b)^{n}\right) \frac{a}{a+b}$
- Evaluate $\lim _{n \rightarrow \infty} p^{n}(x, y)$
- $\lim _{n \rightarrow \infty} p^{n}(0,0)=\lim _{n \rightarrow \infty}\left(\frac{b}{a+b}+(1-a-b)^{n} \frac{a}{a+b}\right)=\frac{b}{a+b}$
- $\lim _{n \rightarrow \infty} p^{n}(0,1)=\lim _{n \rightarrow \infty}\left(\left(1-(1-a-b)^{n}\right) \frac{a}{a+b}\right)=\frac{a}{a+b}$
- Remark

○ $\boldsymbol{\pi}(\mathbf{0})=\frac{b}{a+b}=\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{p}^{\boldsymbol{n}}(\mathbf{0}, \mathbf{0})$

- $\boldsymbol{\pi}(\mathbf{1})=\frac{a}{a+b}=\lim _{n \rightarrow \infty} \boldsymbol{p}^{\boldsymbol{n}}(\mathbf{0}, \mathbf{1})$

Periodicity

- For the MC on the right
- $p(0,0)=0$
- $p^{2}(0,0)=0$
- $p^{3}(0,0)=1$

- We observe a period of 3 for the n-th return probability of state 0
- We say a state is aperiodic if the state has a period of 1
- (The definition of periodicity will be formalized in the next lecture)

Periodicity, Limiting Behavior

Example: Two State MC (Cont.)

- For $0<a, b<1$, we showed that $\lim _{n \rightarrow \infty} p^{n}(x, y)=\pi(y)$
- This is very difficult to compute the limit explicitly
- We will prove theorem to show this often is true

- One minor issue that can prevent convergence is periodicity
- When $\alpha=\beta=1, p(0,1)=1 ; p^{2}(0,1)=0 ; p^{3}(0,1)=1, p^{4}(0,1)=0, \cdots$

Periodicity

- Intuition
- Period represents the minimal length of gaps between visits to that state
- Definition
- The period of a state x is $\operatorname{gcd} \underbrace{\left\{\boldsymbol{n} \geq \mathbf{1} \mid \boldsymbol{p}^{\boldsymbol{n}}(\boldsymbol{x}, \boldsymbol{x})>\mathbf{0}\right\}}_{\boldsymbol{I}_{x}}$
- Example 1: Two state chain with $a=b=1$
- $I_{0}=\left\{n \geq 1 \mid p^{n}(0,0)>0\right\}=\{2,4,6,8, \cdots\} \Rightarrow \operatorname{gcd}\left(I_{0}\right)=2$

- So state 0 has period 2 , and same for state 1
- Example 2: Find the period of 0
- $p^{3}(0,0)>0$ and $p^{5}(0,0)>0$
- So $p^{3 k+5 l}>0$
- $I_{0}=\{3 k+5 l \mid k, l \geq 0$ not both equal to 0$\}$
- $\operatorname{gcd}\left(I_{0}\right)=\operatorname{gcd}(3,5)=1$
- So 0 has period 1 (it is aperiodic)
- $I_{0}=\{3,5,6,8,9,10,11,12, \cdots\}$
- Example 3: Find the period of 0

$$
\begin{aligned}
& \text { - } I_{0}=\{2 k+4 l \mid k>0 \text { or } l>0\} \\
& =\{2(k+2 l) \mid k>0 \text { or } l>0\}
\end{aligned}
$$

- $\Rightarrow \operatorname{gcd}\left(I_{0}\right)=2$
- So 0 has period 2
- Example 4: Find the period of 0
- $I_{0}=\{2,4,5,6,7 \cdots\}$
- So 0 is aperiodic

Theorems Related to Periodicity

- Lemma 1.15: If $\boldsymbol{p}^{j}(\boldsymbol{x}, \boldsymbol{x})>\mathbf{0}$ and $\boldsymbol{p}^{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{x})>\mathbf{0}$, then $\boldsymbol{p}^{\boldsymbol{j}+\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{x})>\mathbf{0}$
- Lemma 1.17: If $\boldsymbol{p}(\boldsymbol{x}, \boldsymbol{x})>\mathbf{0}$, then \boldsymbol{x} has period $\mathbf{1}$ (is aperiodic)
- Lemma 1.16: If \boldsymbol{x} has period 1, then $\exists \boldsymbol{n}_{\mathbf{0}} \in \mathbb{N}$ s.t. $\boldsymbol{p}^{\boldsymbol{n}}(\boldsymbol{x}, \boldsymbol{x})>\mathbf{0}, \forall \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$
- Lemma 1.18: If $\boldsymbol{x} \Leftrightarrow \boldsymbol{y}$, then x and y have the same period

Theorems Related to Limiting Behavior

- Convergence Theorem (Theorem 1.19)
- Suppose a MC is irreducible, aperiodic, and has a stationary distribution π
- Then $\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{p}^{\boldsymbol{n}}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{\pi}(\boldsymbol{y})$
- Note that the choice of x is arbitrary
- Asymptotic Frequency (Theorem 1.21)
- Suppose a MC is irreducible and recurrent. Then
$\circ \frac{\boldsymbol{N}_{\boldsymbol{n}}(\boldsymbol{y})}{\boldsymbol{n}} \rightarrow \frac{\mathbf{1}}{\mathbb{E}_{\boldsymbol{y}} \boldsymbol{T}_{\boldsymbol{y}}}$ where $N_{n}(y)$ is the number of visits to y up to time n
- Law of Large Numbers for MC (Theorem 1.23)
- Suppose a MC is irreducible and has a stationary distribution π. Let $f: S \rightarrow \mathbb{R}$
- If $\sum_{x \in S}|f(x)| \pi(x)<\infty$, then $\frac{\mathbf{1}}{\boldsymbol{n}} \sum_{l=1}^{\boldsymbol{n}} \boldsymbol{f}\left(\boldsymbol{X}_{\boldsymbol{l}}\right) \rightarrow \sum_{\boldsymbol{x} \in \boldsymbol{S}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{\pi}(\boldsymbol{x})=\mathbb{E}_{\pi} f\left(x_{0}\right)$

Example 1.24: Inventory Chain

- A store may sell $0,1,2,3$ items with probabilities $0.3,0.4,0.2,0.1$
- Let X_{n} be number of units in store at end of the day
- We want to find the optimal inventory policy given the profit $g\left(X_{n}\right)=12\left(3-X_{n}\right)-2 X_{n}$
- We can compare average daily profit for restocking when $X_{n}=0$ or 1 or 2
- If we restock when $X_{n} \leq 2$, then

$$
\circ \mathcal{P}=\left[\begin{array}{llll}
0.1 & 0.2 & 0.4 & 0.3 \\
0.1 & 0.2 & 0.4 & 0.3 \\
0.1 & 0.2 & 0.4 & 0.3 \\
0.1 & 0.2 & 0.4 & 0.3
\end{array}\right] \Rightarrow \pi=\left[\begin{array}{c}
0.1 \\
0.2 \\
0.3 \\
0.4
\end{array}\right]^{T}
$$

- Average profit after n days is

$$
\circ \frac{1}{n} \sum_{l=1}^{n} g\left(X_{l}\right) \stackrel{n \gg 1}{\approx} \sum_{s=0}^{3} g(s) \pi(s)=\sum_{s=0}^{3}[12(3-s)-2 s] \pi(s)=9.40
$$

- Repeat for restocking when $X_{n} \leq 0$ and $X_{n} \leq 1$
- We will find out that it is optimal to restock when $X_{n} \leq 1$

Convergence Theorem

Review: Markov Chain Convergence Theorem

- If a MC is irreducible, aperiodic, and has a stationary distribution $\boldsymbol{\pi}$
- Then $\lim _{n \rightarrow \infty} p^{n}(x, y)=\pi(y), \forall x, y \in S$

Proof for Markov Chain Convergence Theorem

- Proof outline (using coupling method)
- Consider two MCs with same transition probabilities, but different initial distributions
- Let $x \in S$ be the fixed initial state for X_{0}, X_{1}, \ldots
- Let π be the initial distribution for Y_{0}, Y_{1}, \ldots
- We will show that $\left|\mathbb{P}_{\boldsymbol{x}}\left(\boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{y}\right)-\mathbb{P}_{\boldsymbol{\pi}}\left(\boldsymbol{Y}_{\boldsymbol{n}}=\boldsymbol{y}\right)\right| \rightarrow \mathbf{0}$ as $n \rightarrow \infty$
- Then $\left|p^{n}(x, y)-\pi(y)\right| \rightarrow 0$ as $n \rightarrow \infty$
- Define a coupled MC
- Set $\bar{S}=S \times S$ as a new state space
- Set $\bar{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=p\left(x_{1}, x_{2}\right) p\left(y_{1}, y_{2}\right)$
- Use the initial distribution $\mu\left(\left(x_{0}, y_{0}\right)\right)=\mathbb{1}_{\left\{x_{0}=x\right\}} \pi\left(y_{0}\right)$
- We now have a single MC $\left(X_{0}, Y_{0}\right),\left(X_{1}, Y_{1}\right), \ldots$
- Show $\overline{\boldsymbol{p}}$ is irreducible
- Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \bar{S}=S \times S$ be arbitrary. We will show that $\left(x_{1}, y_{1}\right) \Rightarrow\left(x_{2}, y_{2}\right)$
- Note that this is non-trivial, consider the product MC of $\mathcal{P}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- p is irreducible, so there exists k, l s.t.
- $p^{k}\left(x_{1}, x_{2}\right)>0$ and $p^{l}\left(y_{1}, y_{2}\right)>0$
- p is aperodic, so there exists n_{x}, n_{y} s.t.
- $p^{n+l}\left(x_{1}, x_{2}\right)>0$ and $p^{n+k}\left(x_{1}, x_{2}\right)>0$ for $n>\max \left\{n_{x}, n_{y}\right\}$
- Then $\bar{p}^{n+l+k}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$

$$
\begin{aligned}
& =p^{n+l+k}\left(x_{1}, x_{2}\right) p^{n+l+k}\left(y_{1}, y_{2}\right) \\
& \geq \underbrace{p^{k}\left(x_{1}, x_{2}\right)}_{>0} \underbrace{p^{l+k}\left(x_{1}, x_{2}\right)}_{>0} \underbrace{p^{l}\left(y_{1}, y_{2}\right)}_{>0} \underbrace{p^{n+k}\left(y_{1}, y_{2}\right)}_{>0}>0 \text { if } n>\max \left\{n_{x}, n_{y}\right\}
\end{aligned}
$$

- Therefore \bar{p} is irreducible
- Find stationary distribution for \bar{p}
- Claim: $\bar{\pi}\left(\left(x_{0}, y_{0}\right)\right):=\pi\left(x_{0}\right) \pi\left(y_{0}\right)$ is a stationary distribution for \bar{p}
- $\bar{\pi}\left(\left(x_{0}, y_{0}\right)\right)=\sum_{(u, v) \in S \times S} \bar{p}\left((u, v),\left(x_{0}, y_{0}\right)\right) \bar{\pi}\left(\left(x_{0}, y_{0}\right)\right)$

$$
\begin{aligned}
&=\sum_{u \in S} \sum_{v \in S} p\left(u, x_{0}\right) p\left(v, y_{0}\right) \pi\left(x_{0}\right) \pi\left(y_{0}\right) \\
&=\underbrace{\sum_{u \in S} p\left(u, x_{0}\right) \pi\left(x_{0}\right)}_{\pi\left(x_{0}\right)} \underbrace{\sum_{v \in S} p\left(v, y_{0}\right) \pi\left(y_{0}\right)}_{\pi\left(y_{0}\right)} \\
&=\pi\left(x_{0}\right) \pi\left(y_{0}\right) \\
& \quad \sum_{(u, v) \in S \times S} \bar{\pi}((u, v))=\sum_{u \in S} \sum_{v \in S} \pi(u) \pi(v)=\sum_{u \in S} \pi(u) \sum_{v \in S} \pi(v)=1
\end{aligned}
$$

- Therefore $\bar{\pi}\left(\left(x_{0}, y_{0}\right)\right)$ is a stationary distribution for \bar{p}
- Show that $\boldsymbol{X}_{\boldsymbol{n}}, \boldsymbol{Y}_{\boldsymbol{n}}$ must eventually meet

○ Set $V_{(x, x)}:=\min \left\{n \geq 0 \mid X_{n}=Y_{n}=x\right\}$ and $T:=\min \left\{n \geq 0 \mid X_{n}=Y_{n}\right\}$

- Since \bar{p} is irrducible and has a stationary distribution, all states are recurrent
- Thus, $\mathbb{P}_{\mu}\left(V_{(x, x)}<\infty\right)=1 \Rightarrow \mathbb{P}_{\mu}(T<\infty)=1$, since $T \leq V_{(x, x)}$
- Show $\boldsymbol{X}_{\boldsymbol{n}}, \boldsymbol{Y}_{\boldsymbol{n}}$ have same distribution after meeting

$$
\begin{aligned}
& \circ \mathbb{P}_{\mu}\left(X_{n}=y, n \geq T\right)=\sum_{k=0}^{n} \sum_{z \in S} \mathbb{P}_{\mu}\left(X_{k}=z, T=k, X_{n}=y\right) \\
& \circ=\sum_{k=0}^{n} \sum_{z \in S} \mathbb{P}_{\mu}\left(X_{n}=y \mid X_{k}=z, T=k\right) \mathbb{P}_{\mu}\left(X_{k}=z, T=k\right) \\
& \circ=\sum_{k=0}^{n} \sum_{z \in S} p^{n-k}(z, y) \mathbb{P}_{\mu}\left(X_{k}=z, T=k\right), \text { by strong Markov property } \\
& \circ=\sum_{k=0}^{n} \sum_{z \in S} p^{n-k}(z, y) \mathbb{P}_{\mu}\left(Y_{k}=z, T=k\right) \\
& \circ=\sum_{k=0}^{n} \sum_{z \in S} \mathbb{P}_{\mu}\left(Y_{n}=y \mid Y_{k}=z, T=k\right) \mathbb{P}_{\mu}\left(Y_{k}=z, T=k\right) \\
& \circ=\sum_{k=0}^{n} \sum_{z \in S} \mathbb{P}_{\mu}\left(Y_{k}=z, T=k, Y_{n}=y\right)=\mathbb{P}_{\mu}\left(Y_{n}=y, n \geq T\right)
\end{aligned}
$$

- Show $\left|\mathbb{P}_{\boldsymbol{\mu}}\left(\boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{y}\right)-\mathbb{P}_{\boldsymbol{\mu}}\left(\boldsymbol{Y}_{\boldsymbol{n}}=\boldsymbol{y}\right)\right| \rightarrow \mathbf{0}$ as $n \rightarrow \infty$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\left|\mathbb{P}_{\mu}\left(X_{n}=y\right)-\mathbb{P}_{\mu}\left(Y_{n}=y\right)\right|=\left|\begin{array}{l}
\mathbb{P}_{\mu}\left(X_{n}=y, T>n\right)+\mathbb{P}_{\mu}\left(X_{n}=y, T \leq n\right) \\
-\mathbb{P}_{\mu}\left(Y_{n}=y, T>n\right)-\mathbb{P}_{\mu}\left(Y_{n}=y, T \leq n\right)
\end{array}\right| \\
\leq\left|\mathbb{P}_{\mu}\left(X_{n}=y, T>n\right)-\mathbb{P}_{\mu}\left(Y_{n}=y, T>n\right)\right| \\
\sum_{y \in S}\left|\mathbb{P}_{\mu}\left(X_{n}=y\right)-\mathbb{P}_{\mu}\left(Y_{n}=y\right)\right| \leq \sum_{y \in S}\left|\mathbb{P}_{\mu}\left(X_{n}=y, T>n\right)-\mathbb{P}_{\mu}\left(Y_{n}=y, T>n\right)\right| \\
\quad \leq \sum_{y \in S} \mathbb{P}_{\mu}\left(X_{n}=y, T>n\right)+\sum_{y \in S} \mathbb{P}_{\mu}\left(Y_{n}=y, T>n\right) \\
\leq 2 \sum_{y \in S} \mathbb{P}_{\mu}(T>n) \rightarrow 0 \text { as } n \rightarrow \infty, \text { since } T \text { is finite }
\end{array} .\right.
\end{aligned}
$$

Example: Convergence Theorem

- Let MC $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be defined as
- $\mathcal{P}=\left[\begin{array}{ccccc}0 & \alpha & 1-\alpha & 0 & 0 \\ 0 & 0 & \beta & 0 & 1-\beta \\ 0 & 0 & 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 / 6 & 5 / 6 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ for $\alpha, \beta \in(0,1)$
- Draw the transition graph

- Classify states as transient or recurrent
- $R_{1}=\{3,4\}, R_{2}=\{5\}$ are recurrent because they are closed, irreducible, finite
- $T=\{1,2\}$ are transient
- Find the periods of recurrent states
- $p(3,3), p(4,4), p(5,5)>0$, so state $3,4,5$ have period 1 (aperiodic)
- Find all stationary distributions
- $\pi(1)=\pi(2)=0$ because state 1,2 are transient
- The MC restricted to $R_{1}=\{3,4\}$ has stationary distribution
- $\pi^{1}=\left[\begin{array}{ll}\frac{1 / 6}{1 / 6+1 / 2} & \frac{1 / 2}{1 / 6+1 / 2}\end{array}\right]=\left[\begin{array}{ll}\frac{1}{4} & \frac{3}{4}\end{array}\right]$
- The MC restricted to $R_{2}=\{5\}$ has stationary distribution
- $\pi^{2}=[1]$, since there is only one state
- Therefore $\pi=\left[\begin{array}{llll}0 & 0 & s \cdot \frac{1}{4} & s \cdot \frac{3}{4} \\ (1-s) \cdot 1\end{array}\right]$ for some constant $0 \leq s \leq 1$
- Compute $\lim _{n \rightarrow \infty} p^{n}(1,3)$

$$
\text { ○ } \begin{aligned}
\lim _{n \rightarrow \infty} p^{n}(1,3) & =\lim _{n \rightarrow \infty}\left[p(1,3) p^{n-1}(3,3)+p(1,2) p(2,3) p^{n-2}(3,3)\right] \\
& =(1-\alpha) \lim _{n \rightarrow \infty} p^{n}(3,3)+\alpha \beta \lim _{n \rightarrow \infty} p^{n}(3,3) \\
& =(1-\alpha+\alpha \beta) \lim _{n \rightarrow \infty} p^{n}(3,3)=(1-\alpha+\alpha \beta) \cdot \frac{1}{4}
\end{aligned}
$$

Doubly Stochastic, Detailed Balance

Doubly Stochastic Chains

- Stochastic matrix
- The row of a MC's transition matrix sums up to 1 i.e. $\sum_{y \in S} p(x, y)=1$
- Any matrix with non-negative values, and row sum to 1 is called a stochastic matrix
- Every stochastic matrix gives the transition probabilities for some MC
- Doubly stochastic
- A stochastic matrix is doubly stochastic if its column sum to 1 i.e. $\sum_{x \in S} p(x, y)=1$
- We say that a MC is doubly stochastic if its transition matrix is
- Stationary distribution of doubly stochastic MC
- Statement
- Suppose we have a finite state space MC, where $|S|=N$
- $\boldsymbol{\pi}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{N}}, \forall x \in S$ is a stationary distribution \Leftrightarrow the MC is doubly stochastic
- (\Rightarrow) Assume π is a stationary distribution
- $\pi(y)=\sum_{x \in S} \pi(x) p(x, y) \Leftrightarrow \frac{1}{N}=\frac{1}{N} \sum_{x \in S} p(x, y) \Leftrightarrow \sum_{x \in S} p(x, y)=1$
- So the MC is doubly stochastic
- (\Longleftarrow) Assume the MC is doubly stochastic
- $\sum_{x \in S} \pi(x) p(x, y)=\frac{1}{N} \sum_{x \in S} p(x, y)=\frac{1}{N}=\pi(y), \forall y \in S$
- Therefore $\pi(x)=\frac{1}{N}$ is a stationary distribution for this MC

Detailed Balance Condition

- Definition
- We say a distribution satisfy the detailed balance condition/equations if

○ $\pi(x) p(x, y)=\pi(y) p(y, x), \forall x, y \in S$

- Detailed balance condition and stationary distribution
- Statement
- All distributions satisfying the detailed balance equations are stationary
- Proof
- Suppose π satisify the dtailed balance euqations i.e. $\pi(x) p(x, y)=\pi(y) p(y, x)$
- $\sum_{x \in S} \pi(x) p(x, y)=\sum_{x \in S} \pi(y) p(y, x)=\pi(y) \sum_{x \in S} p(y, x)=\pi(y) \Rightarrow \pi$ is stationary
- Example 1.29
- $\mathcal{P}=\left[\begin{array}{ccc}0.5 & 0.5 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.2 & 0.4 & 0.4\end{array}\right]$
- Can \mathcal{P} have a stationary distribution that satisfies DBE?
$\cdot\left\{\begin{array}{l}\pi(1) p(1,2)=\pi(2) p(2,1) \\ \pi(1) p(1,3)=\pi(3) p(3,1) \\ \pi(2) p(2,3)=\pi(3) p(3,2)\end{array} \Rightarrow\left\{\begin{array}{c}0.5 \cdot \pi(1)=0.3 \cdot \pi(2) \\ 0 \cdot \pi(1)=0.2 \cdot \pi(3) \\ 0.6 \cdot \pi(2)=0.4 \cdot \pi(3)\end{array} \Rightarrow\left\{\begin{array}{l}\pi(1)=0 \\ \pi(2)=0 \\ \pi(3)=0\end{array}\right.\right.\right.$
- This is not a distribution, so none that satisfy DBE exists
- Can it have any other stationary distributions?
- Since \mathcal{P} is doubly stochastic, so $\pi=\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$ is a stationary distribution
- This is the only stationary distribution, as the MC is irreducible and finite

Random Markov on Graphs

- Undirected Graph
- Undirected graph is a set of vertices and edges, $G=(V, E)$
- $V=\{1,2,3,4,5\}$
- $E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},\{3,5\},\{4,5\}\}$
$\bigcirc A=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$ is called the adjacency matrix

- The neighbor of a vertex are those vertices is share an edge with.
- The degree of a vertex is the number of neighbors if has
- Random Walk on G
- Set $S=V$. If in state V, you choose a neighbor of v uniformaly as the next state
- Then $p(u, v)=\frac{A(u, v)}{\operatorname{deg}(u)}, \forall u, v \in V$
- Random walk and DBE
- Statement

- All random walks' graphs satisfy DBE's

- Proof
- $\pi(u) p(u, v)=\pi(v) p(v, u)$
- $\Rightarrow \pi(u) \cdot \frac{A(u, v)}{\operatorname{deg} u}=\pi(v) \cdot \frac{A(u, v)}{\operatorname{deg} v}$
- $\Rightarrow \frac{\pi(u)}{\operatorname{deg} u}=\frac{\pi(v)}{\operatorname{deg} v}$
- If we set $\pi(x)=c \cdot \operatorname{deg} x, \forall x \in V$, then DBE is satisfied
- We just need to choose c so that π is a distribution
- $\sum_{v \in S} \pi(v)=\sum_{v \in S} c \cdot \operatorname{deg} x=1 \Rightarrow c:=\frac{1}{\sum_{v \in S} \operatorname{deg} x}$
- Then $\pi(x)=\frac{\operatorname{deg} x}{\sum_{v \in S} \operatorname{deg} x}=\frac{\operatorname{deg} x}{2|E|}$

Reversibility

- Let X_{0}, X_{1}, \ldots be a MC with transition probabilities p, stationary and initial distribution π
- Fix n and set $\boldsymbol{Y}_{\boldsymbol{m}}=\boldsymbol{X}_{\boldsymbol{n}-\boldsymbol{m}}, \forall m \in\{0,1,2, \ldots, n\}$ (i.e. Y_{0}, \ldots, Y_{n} is a a time reversal for X_{0}, \ldots, X_{n})
- Then Y_{m} is a MC with transition probability $\widehat{\boldsymbol{p}}(\boldsymbol{i}, \boldsymbol{j})=\frac{\boldsymbol{\pi}(\boldsymbol{j}) \boldsymbol{p}(\boldsymbol{j}, \boldsymbol{i})}{\boldsymbol{p}(\boldsymbol{i})}$
- Moreover, if DBE's are satisfied, then $\hat{p}=p$

○ $\widehat{\boldsymbol{p}}(\boldsymbol{i}, \boldsymbol{j})=\frac{\pi(j) p(\boldsymbol{j}, \boldsymbol{i})}{\pi(i)}=\frac{\pi(i) p(i, j)}{\pi(i)}=p(\boldsymbol{i}, \boldsymbol{j})$

Exit Distributions

Exit Distribution Motivative Example: Community College

- Set $V_{x}:=\inf \left\{n \geq 0 \mid X_{n}=x\right\}$, and we want to compute $\mathbb{P}_{F}\left(V_{G}<V_{D}\right)$
- First step analysis: if $X_{0}=F$, then $X_{1}=D, F$, or S

Exit Distribution (Theorem 1.27)

- Brainstorming
- Find $\mathbb{P}_{x}\left(V_{a}<V_{b}\right)$ for some $x, a, b \in S$
- $\mathbb{P}_{x}\left(V_{a}<V_{b}\right)=\sum_{y \in S} \mathbb{P}_{x}\left(X_{1}=y\right) \mathbb{P}_{x}\left(V_{a}<V_{b} \mid X_{1}=y\right)=\sum_{y \in S} \overbrace{p(x, y)}^{\text {known }} \overbrace{\mathbb{P}_{y}\left(V_{a}<V_{b}\right)}^{\text {unknown }}$
- So to find $\mathbb{P}_{x}\left(V_{a}<V_{b}\right)$, we need to find $\mathbb{P}_{y}\left(V_{a}<V_{b}\right), \forall y \in S$
- Observations (informal)
- $\mathbb{P}_{a}\left(V_{a}<V_{b}\right)=1$
- $\mathbb{P}_{b}\left(V_{a}<V_{b}\right)=0$
- There are $|S|$ linear equations in $|S|$ variables
- Define $h(x):=\mathbb{P}_{x}\left(V_{a}<V_{b}\right)$, then we need to find $h: S \rightarrow \mathbb{R}$ that satisfies
- $h(x)=\sum_{y \in S} p(x, y) h(y)$
- $h(a)=1, h(b)=0$
- Theorem
- Consider a MC with $|S|<\infty$
- Let $a, b \in S$, and set $C:=S \backslash\{a, b\}$
- Suppose $h: S \rightarrow \mathbb{R}$ satisfies
- $h(a)=1, h(b)=0$
- $h(x)=\sum_{y \in S} p(x, y) h(y), \forall x \in C$
\circ If $\mathbb{P}_{\boldsymbol{x}}\left(\boldsymbol{\operatorname { m i n }}\left\{\boldsymbol{V}_{\boldsymbol{a}}, \boldsymbol{V}_{\boldsymbol{b}}\right\}<\infty\right)>\mathbf{0}, \forall x \in C$, then $\boldsymbol{h}(\boldsymbol{x})=\mathbb{P}_{\boldsymbol{x}}\left(\boldsymbol{V}_{\boldsymbol{a}}<\boldsymbol{V}_{\boldsymbol{b}}\right), \forall x \in S$

Exit Distribution Example: Gambler's Ruin

$\mathrm{p}=$ probability of winning turn $\mathrm{q}=$ probability of losing turn= $1-\mathrm{p}$

(Final stake: leave game)

- Assume $p<\frac{1}{2}$, and we want to compute $\mathbb{P}_{\mathbf{x}}\left(V_{N}<V_{0}\right)$
- Construct h
- $h(0)=0, h(N)=1$
- $h(x)=\sum_{y \in S} p(x, y) h(y)=p(x, x-1) h(x-1)+p(x, x+1) h(x+1)$

$$
=p \cdot h(x-1)+q \cdot(x+1), \text { for } x \in\{1, \ldots, N-1\}
$$

○ $\Rightarrow \underbrace{p \cdot h(x)+q \cdot h(x)}_{h(x)}=p \cdot h(x-1)+q \cdot(x+1)$

- $\Rightarrow p(h(x+1)-h(x))=q(h(x)-h(x-1))$
- Solve the recurrence equation
- Set $u_{x}:=h(x+1)-h(x), \forall x \in\{1, \ldots, N-1\}$
- $u_{x}=\left(\frac{q}{p}\right) u_{x-1} \Rightarrow u_{x}=\left(\frac{q}{p}\right)^{x} \mu_{0}$
- $h(x)=\underbrace{h(x)-h(x-1)}_{u_{x-1}}+\underbrace{h(x-1)-h(x-2)}_{u_{x-2}}+\cdots-h(1)+\underbrace{h(1)-h(0)}_{u_{0}}$ $=\sum_{l=0}^{x-1} u_{l}=u_{0} \sum_{l=0}^{x-1}\left(\frac{q}{p}\right)^{l}=u_{0} \frac{1-(q / p)^{x}}{1-q / p}$
- $1=h(N)=h(N)-h(0)=u_{0} \frac{1-(q / p)^{N}}{1-q / p} \Rightarrow u_{0}=\frac{1-q / p}{1-(q / p)^{N}}$
- Therefore $h(x)=\frac{1-(q / p)^{x}}{1-(q / p)^{N}}$

Exit Time

Long Run Behavior of Markov Chains

- For irreducible, aperiodic MCs with $\boldsymbol{\pi}$, we have the Convergence Theorem
- If there are transient states in the MC, they will ultimately travel between recurrent states
- Two basic questions
- Which closed set of recurrent states do you end up in? $\mathbb{P}_{\boldsymbol{x}}\left(\boldsymbol{V}_{\boldsymbol{a}}<\boldsymbol{V}_{\boldsymbol{b}}\right)$
- How long should we expect the MC to travel between transient states before ending up in a recurrent state? $\mathbb{E}_{\boldsymbol{x}}\left[\boldsymbol{V}_{\boldsymbol{a}}\right]$

Exit Time Motivating Example: Community College

- How long will the average student remain at this community college?
- Define $L=\{D, G\}$ and $V_{L}=\inf \left\{n \geq 0 \mid X_{n} \in L\right\}$. Then we need to find $\mathbb{E}_{F}\left[V_{L}\right]$
- $\mathbb{E}_{F}\left[V_{L}\right]=\sum_{l \in S} \underbrace{E_{F}\left[V_{L} \mid X_{1}=l\right]}_{\left.1+\mathbb{E}_{l} l V_{L}\right]} \underbrace{\mathbb{P}_{F}\left(X_{1}=l\right)}_{p(F, l)}$, using firat step analysis

$$
\begin{aligned}
& =\sum_{l \in S}\left(1+\mathbb{E}_{l}\left[V_{L}\right]\right) p(F, l), \text { since we need } 1 \text { step to get from } F \text { to } l \\
& =1 \cdot p(F, D)+\left(1+\mathbb{E}_{F}\left[V_{L}\right]\right) p(F, F)+\left(1+\mathbb{E}_{S}\left[V_{L}\right]\right) p(F, S) \\
& =\underbrace{p(F, D)+p(F, F)+p(F, S)}_{1}+\mathbb{E}_{F}\left[V_{L}\right] p(F, F)+\mathbb{E}_{S}\left[V_{L}\right] p(F, S) \\
& =1+\mathbb{E}_{F}\left[V_{L}\right] p(F, F)+\mathbb{E}_{S}\left[V_{L}\right] p(F, S) \\
& =1+\mathbb{E}_{F}\left[V_{L}\right] \cdot 0.25+\mathbb{E}_{S}\left[V_{L}\right] \cdot 0.6
\end{aligned}
$$

- Similarly, we have $\mathbb{E}_{S}\left[V_{L}\right]=1+\mathbb{E}_{S}\left[V_{L}\right] p(S, S)=1+\mathbb{E}_{S}\left[V_{L}\right] \cdot 0.2$
$\cdot\left\{\begin{array}{l}\mathbb{E}_{F}\left[V_{L}\right]=1+\mathbb{E}_{F}\left[V_{L}\right] \cdot 0.25+\mathbb{E}_{S}\left[V_{L}\right] \cdot 0.6 \\ \mathbb{E}_{S}\left[V_{L}\right]=1+E_{S}\left[V_{L}\right] \cdot 0.2\end{array} \Rightarrow\left\{\begin{array}{l}\mathbb{E}_{F}\left[V_{L}\right]=7 / 3 \\ \mathbb{E}_{S}\left[V_{L}\right]=5 / 4\end{array}\right.\right.$
Exit Time (Theorem 1.28)
- Consider a MC with finite state space S
- Let $A \subseteq S$. Define $V_{A}:=\inf \left\{n \geq 0 \mid X_{n} \in A\right\}$ and $C:=S \backslash A$
- If $\mathbb{P}_{x}\left(V_{A}<\infty\right)>0, \forall x \in C$, and $g: S \rightarrow \mathbb{R}$ satisfies
- $\boldsymbol{g}(\boldsymbol{a})=\mathbf{0}, \forall \boldsymbol{a} \in \boldsymbol{A}$
- $g(x)=1+\sum_{y \in C} g(y) p(x, y)$
- Then $\boldsymbol{g}(\boldsymbol{x})=\mathbb{E}_{\boldsymbol{x}}\left[\boldsymbol{V}_{\boldsymbol{A}}\right]$ for all $x \in S$

Exit Time Example: Fair Gambler's Ruin

$\mathrm{p}=$ probability of winning turn
$\mathrm{q}=$ probability of losing turn= $1-\mathrm{p}$

Win!
(Final stake: leave game)

- Assume $p=q=0.5$, how long should you expect to play the game?
- Set $A=\{0, N\}$, then we want to find $\mathbb{E}_{x}\left[V_{A}\right], \forall x \in\{1, \ldots, N-1\}$
- Approach 1: Use the theorem to verify/disprove a conjecture
- Claim: $\mathbb{E}_{x}\left[V_{A}\right]=x(N-x)$
- Set $g(x)=x(N-x)$, then obviously $g(0)=g(N)=0$
- For $1 \leq x \leq N-1$

$$
\begin{aligned}
& 1+\sum_{y=1}^{N-1} g(y) p(x, y)=1+g(x-1) p(x, x-1)+g(x+1) p(x, x+1) \\
& =1+(x-1)(N-(x-1)) \cdot \frac{1}{2}+(x+1)(N-(x+1)) \cdot \frac{1}{2} \\
& =N x-x^{2}=x(N-x)=g(x)
\end{aligned}
$$

- Therefore $g(x)=\mathbb{E}_{x}\left[T_{A}\right]$
- Approach 2: Use the theorem to derive a solution
- By the theorem, we can define g as
- $g(0)=g(N)=0$
- $g(x)=1+\frac{1}{2} g(x-1)+\frac{1}{2} g(x+1), \forall x \in\{1, \ldots, N-1\}$
- Solve as recurrence equations (or as a linear system)
- $(g(x+1)-g(x))=-2+(g(x)-g(x-1))$
- Set $u_{x}=g(x+1)-g(x)$, then $u_{x}=-2+u_{x-1} \Leftrightarrow u_{x}=u_{0}-2 x, \forall x \in\{1, \ldots, N-1\}$
- $g(x)=g(x)-g(0)=\underbrace{g(x)-g(x-1)}_{u_{x-1}}+g(x+1)+\cdots+\underbrace{g(1)-g(0)}_{u_{0}}$

$$
=\sum_{l=1}^{x} u_{x-1}=\sum_{l=1}^{x}\left(u_{0}-2(l-1)\right)=u_{0} x-2 \frac{(x-1) x}{2}=u_{0} x-(x-1) x
$$

- $g(N)=u_{0} N-(N-1) N=0 \Rightarrow u_{0}=N-1$
- Therefore $g(x)=(N-1) x-(x-1) x=x(N-x)$

Probability Review for Poisson Process

Renewal Process

- $\tau_{k}=$ interarrival time
- $T_{k}=$ arrival/renewal time
- $N(s)=$ number of renewals up to time \boldsymbol{s}

Definition of Poisson Process

- Let $\tau_{1}, \tau_{2} \ldots \sim \operatorname{Exp}(\lambda)$ be independent
- Set $T_{0}=0, T_{k}=T_{k-1}+\tau_{k}=\tau_{1}+\cdots+\tau_{k}$
- Define $\boldsymbol{N}(\boldsymbol{s})=\boldsymbol{\operatorname { m a x }}\left\{\boldsymbol{n} \geq \mathbf{0} \mid \boldsymbol{T}_{\boldsymbol{n}} \leq \boldsymbol{s}\right\}$
- Then we call $\{N(s)\}$ a Poisson process with rate λ

Exponential Distribution

- Definition
- We write that $\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$ for $\lambda>0$ if
- $f_{X}(t)=\left\{\begin{array}{cc}\lambda e^{-\lambda t} & t \geq \mathbf{0} \\ 0 & t<0\end{array}\right.$, or
- $\quad F_{X}(x)=\left\{\begin{array}{cc}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array}\right.$
- Survival function
- $G(x)=\mathbb{P}(X>x)=1-F_{X}(x)=\left\{\begin{array}{cc}e^{-\lambda x} & x \geq 0 \\ 1 & x<0\end{array}\right.$
- Expected value
- $\mathbb{E}[X]=\int_{0}^{\infty} x f_{X}(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda}$
- $\operatorname{Exp}(\lambda)$ is memoryless
- $\mathbb{P}(X>s+t \mid X>s)=\frac{\mathbb{P}(X>s+t)}{\mathbb{P}(X>s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=\mathbb{P}(X>t)$

Gamma Distribution

- Definition
- We say that $\boldsymbol{T} \sim \operatorname{Gamma}(\boldsymbol{n}, \lambda)$ if $\boldsymbol{f}_{\boldsymbol{T}}(\boldsymbol{t})=\left\{\begin{array}{cc}\lambda \boldsymbol{e}^{-\lambda t} \cdot \frac{(\lambda \boldsymbol{t})^{n-1}}{(\boldsymbol{n}-\mathbf{1})!} & \boldsymbol{t} \geq \mathbf{0} \\ \mathbf{0} & \boldsymbol{t}<\mathbf{0}\end{array}\right.$
- Relation with exponential distribution
- Let $\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2} \ldots \sim \operatorname{Exp}(\boldsymbol{\lambda})$ be independent
\circ Set $\boldsymbol{T}_{\mathbf{0}}=\mathbf{0}, \boldsymbol{T}_{\boldsymbol{k}}=\boldsymbol{T}_{\boldsymbol{k}-\mathbf{1}}+\boldsymbol{\tau}_{\boldsymbol{k}}=\boldsymbol{\tau}_{\mathbf{1}}+\cdots+\boldsymbol{\tau}_{\boldsymbol{k}}$, , , $\boldsymbol{T}_{\boldsymbol{n}} \sim \operatorname{Gamma}(\boldsymbol{n}, \lambda)$
- Proof by induction, the base case is trivial
- For $n \geq 1, T_{n+1}=T_{n}+\tau_{n+1}$, where T_{n} and τ_{n+1} are independent
- $f_{T_{n+1}}(t)=\left(f_{T_{n}} * f_{\tau_{n+1}}\right)(t)=\int_{-\infty}^{\infty} f_{T_{n}}(s) f_{\tau_{n+1}}(t-s) d s$

$$
=\int_{0}^{t} \lambda e^{-\lambda s} \frac{(\lambda s)^{n-1}}{(n-1)!} \lambda e^{-\lambda(t-s)} d s=\lambda e^{-\lambda t} \cdot \frac{(\lambda t)^{n}}{n!} \text { for } t \geq 0
$$

- So $T_{n+1} \sim \operatorname{Gamma}(n+1, \lambda)$, which completes the proof

Poisson Distribution

- We say that $\boldsymbol{X} \sim \operatorname{Poisson}(\lambda)$ if $\boldsymbol{p}_{\boldsymbol{X}}(\boldsymbol{n})=\boldsymbol{e}^{-\lambda} \frac{\lambda^{n}}{\boldsymbol{n}!}$ for $n=0,1,2, \ldots$
- $\mathbb{E}[X]=\sum_{n=1}^{\infty} n \cdot e^{-\lambda} \cdot \frac{\lambda^{n}}{n!}=\lambda e^{-\lambda} \sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)!}=\lambda e^{-\lambda} \underbrace{\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}}_{e^{\lambda}}=\lambda \Rightarrow \mathbb{E}[\boldsymbol{X}]=\lambda$
- $\mathbb{E}[X(X-1)]=\sum_{n=2}^{\infty} n(n-1) \cdot e^{-\lambda} \cdot \frac{\lambda^{n}}{n!}=\lambda^{2} \Rightarrow \operatorname{Var}[\boldsymbol{X}]=\lambda$

Introduction to Poisson Process

Poisson Process

- In the graph above,
- $\tau_{k}=$ interarrival time
- $T_{k}=$ arrival/renewal time
- $N(s)=$ number of arrivals up to time \boldsymbol{s}
- For Poisson process, we have
- $\boldsymbol{\tau}_{\boldsymbol{k}}{ }^{i i d} \sim \operatorname{Exp}(\lambda)$
- $\boldsymbol{T}_{\boldsymbol{n}}=\tau_{1}+\cdots+\tau_{\boldsymbol{n}} \sim \operatorname{Gamma}(n, \lambda)$
- $N(s) \sim \operatorname{Poisson}(\lambda s)$

Equivalent Definition of Poisson Process

- $\{N(s) \mid s \geq 0\}$ is a Poisson process with rate λ if and only if
- $\boldsymbol{N}(\mathbf{0})=\mathbf{0}$ (with probability 1)
- $N(t+s)-N(s) \sim \operatorname{Poisson}(\lambda t)$
- $N(t)$ has independent increments
- Independent increment
- We say that $N(t)$ has independent increments if for any $t_{0}<\cdots<t_{n}$, the random variables $N\left(t_{1}\right)-N\left(t_{0}\right), \ldots, N\left(t_{n}\right)-N\left(t_{n-1}\right)$ are independent
- The number of arrivals between any two intervals has no effect to each other
- Proof (\Longleftarrow)
- $\mathbb{P}(N(s)=n)=\mathbb{P}\left(T_{n} \leq s, T_{n+1}>s\right)=\mathbb{P}\left(T_{n} \leq s, \tau_{n+1}>s-T_{n}\right)$

$$
\begin{aligned}
& =\int_{0}^{s} \int_{s-t}^{\infty} f_{T_{n}, \tau_{n+1}}(t, u) d u d t=\int_{0}^{s} f_{T_{n}}(t)\left(\int_{s-t}^{\infty} f_{\tau_{n+1}}(u) d u\right) d t \\
& =\int_{0}^{s} \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}\left(\int_{s-t}^{\infty} \lambda e^{-\lambda u} d u\right) d t=\int_{0}^{s} \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}\left(e^{-\lambda(s-t)}\right) d t \\
& =\frac{\lambda^{n}}{(n-1)!} e^{-\lambda s} \int_{0}^{s} t^{n-1} d t=\frac{\lambda^{n}}{(n-1)!} e^{-\lambda s}\left(\frac{s^{n}}{n}\right)=\frac{(\lambda s)^{n}}{n!}
\end{aligned}
$$

Poisson Process Example: Arrival of Patients

- Patients arrive at a rate of 1 every 10 minutes (on average)
- This doctor does not see patient until at least 3 are waiting
- What is the expected waiting time until the first patient is seen
- Let $\lambda=\frac{1 \text { patient arrival }}{10 \text { minutes }}=\frac{1}{10}$
- $\mathbb{E}\left[T_{3}\right]=\mathbb{E}\left[\tau_{1}+\tau_{2}+\tau_{3}\right]=3 \mathbb{E}\left[\tau_{1}\right]=3 \cdot \frac{1}{\lambda}=30$
- What is the probability that no patient is seen in the first hour?
- $\mathbb{P}(N(60)<3)=\sum_{t=0}^{2} \mathbb{P}(N(60)=t)=\sum_{t=0}^{2} e^{-6} \cdot \frac{6^{t}}{t!} \approx 0.062$

Poisson Process Example: Arrival of Customers

- Suppose customers arrive at a rate of 5 per hour, following a Poisson process
- Your store is open from 9am to 6 pm
- What is the probability that no customer arrives within 1 hour of opening?
- $\mathbb{P}(N(1)=0)=e^{-\lambda \cdot 1} \cdot \frac{(\lambda \cdot 1)^{0}}{0!}=e^{-5}$
- What is the probability that we have 2 customers from 9-10am, 3 customers from 10-10:30am and 5 customers from 2-3:30pm?
- Use the notation $N\left(t_{1}, t_{2}\right]:=N\left(t_{2}\right)-N\left(t_{1}\right)$
- $\mathbb{P}(N(0,1]=2, N(1,1.5]=3, N(5,6.5]=5)$

$$
\begin{aligned}
& =\mathbb{P}(N(0,1]=2) \mathbb{P}(N(1,1.5]=3) \mathbb{P}(N(5,6.5]=5) \\
& =\left(e^{-\lambda} \cdot \frac{\lambda^{2}}{2!}\right)\left(e^{-0.5 \lambda} \cdot \frac{(0.5 \lambda)^{3}}{3!}\right)\left(e^{-1.5 \lambda} \cdot \frac{(1.5 \lambda)^{5}}{5!}\right) \approx 0.00197
\end{aligned}
$$

- What is the probability that we have 3 customers from 10-10:30am, given 12 customers from 10am-12pm?
- $\mathbb{P}(N(1,1.5]=3 \mid N(1,3]=12)$

$$
\begin{aligned}
& =\frac{\mathbb{P}(N(1,1.5]=3, N(1,3]=12)}{\mathbb{P}(N(1,3]=12)}=\frac{\mathbb{P}(N(1,1.5]=3, N(1.5,3]=9)}{\mathbb{P}(N(1,3]=12)} \\
& =\frac{\left(e^{-5 \cdot 0.5} \frac{(5 \cdot 0.5)^{3}}{3!}\right)\left(e^{-5 \cdot 1.5} \frac{(5 \cdot 1.5)^{9}}{9!}\right)}{e^{-5 \cdot 2} \frac{(5 \cdot 2)^{12}}{12!}}=\binom{12}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{9}
\end{aligned}
$$

- Note this is a binomial distribution

Inhomogeneous Poisson Process

- $\{N(s) \mid s \geq 0\}$ is an inhomogeneous Poisson process with rate $\boldsymbol{\lambda}(\boldsymbol{r})$ if it satisfies
- $N(0)=0$ with probability 1
- $N(t)$ has independent increment

○ $N(t)-N(s)$ is Poisson distributed with mean $\int_{s}^{t} \lambda(r) d r$

Compound Poisson Process

Variations on Poisson Process

- Inhomogeneous Poisson Process
- Compound Poisson Process
- Thinning a Poisson Process
- Superposition of Poisson Process
- Conditioning for Poisson Process

Compound Poisson Process

- Motivating example: Risk Theory
- Suppose claims arrive as a Poisson process $N(t)$ with rate λ
- How much money must the company pay out over time
- Let Y_{k} be the amount of money company pays for $k^{\text {th }}$ claim
- Let $S(t)$ be the amount of money company paid out up to time t
- Then $S(t)=Y_{1}+Y_{2}+\cdots+Y_{N(t)}=\sum_{k=1}^{N(t)} Y_{k}$
- Motivating example: Stock Prices
- Suppose a stock price has changes occurs as a Poisson Process $N(t)$ with rate λ
- Let Y_{k} be the $k^{\text {th }}$ change in stock price
- Let $S(t)$ be the total price change up to time t
- Then $S(t)=\sum_{k=1}^{N(t)} Y_{k}$
- Definition
- Let $\{N(t) \mid t \geq 0\}$ be a Poisson process with rate λ, and Y_{1}, \ldots, Y_{k} be iid RVs
- A Compound Poisson Process is defined by
- $S(t)=Y_{1}+Y_{2}+\cdots+Y_{N(t)}=\sum_{k=1}^{N(t)} Y_{k}$
- $S(t)=0$ when $N(t)=0$
- Note: $S(t)$ is a sum of random length

Random Sum (Theorem 2.10)

- Let Y_{1}, \ldots, Y_{k} be iid RVs, and N be an independent non-negative discrete RV
- Define $S=Y_{1}+Y_{2}+\cdots+Y_{N}$, and $S=0$ if $N=0$. Then
- $\mathbb{E}[S]=\mathbb{E}[N] E\left[Y_{1}\right]$
- Note: $\mathbb{E}[S]=\mathbb{E}\left[\sum_{k=1}^{N} Y_{k}\right] \neq N \mathbb{E}\left[Y_{1}\right]$, since N is a random variable
- $\mathbb{E}[S \mid N=n]=\mathbb{E}\left[\sum_{k=1}^{n} Y_{k} \mid N=n\right]=\sum_{k=1}^{n} \mathbb{E}\left[Y_{k} \mid N=n\right]=\sum_{k=1}^{n} \mathbb{E}\left[Y_{k}\right]=n \mathbb{E}\left[Y_{1}\right]$
- Therefore $\mathbb{E}[S \mid N]=N \cdot \mathbb{E}\left[Y_{1}\right]$
- $\mathbb{E}[S]=\mathbb{E}[\mathbb{E}[S \mid N]]=\mathbb{E} \underbrace{\left[N \cdot \mathbb{E}\left[Y_{1}\right]\right]}_{N \times \text { constant }}=\mathbb{E}[N] \cdot \mathbb{E}\left[Y_{1}\right]$
$\circ \operatorname{Var}[S]=\mathbb{E}[N] \operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}[N]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}$
- $\mathbb{E}\left[S^{2} \mid N=n\right]=\mathbb{E}\left[\left(Y_{1}+\cdots+Y_{n}\right)^{2}\right]$

$$
\begin{aligned}
& =\operatorname{Var}\left[Y_{1}+\cdots+Y_{n}\right]+\left(\mathbb{E}\left[Y_{1}+\cdots+Y_{n}\right]\right)^{2}, \text { since } E\left[X^{2}\right]=E[X]^{2}+\operatorname{Var}[X] \\
& =\operatorname{Var}\left[Y_{1}\right]+\cdots+\operatorname{Var}\left[Y_{n}\right]+\left(\mathbb{E}\left[Y_{1}\right]+\cdots+\mathbb{E}\left[Y_{n}\right]\right)^{2}, \text { since } Y_{1}, \ldots, Y_{n} \text { are iid } \\
& =n \cdot \operatorname{Var}\left[Y_{1}\right]+n^{2}\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}
\end{aligned}
$$

- Therefore $\mathbb{E}\left[S^{2} \mid N\right]=N \cdot \operatorname{Var}\left[Y_{1}\right]+N^{2}\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}$
- $\mathbb{E}\left[S^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[S^{2} \mid N\right]\right]$

$$
=\mathbb{E}\left[N \cdot \operatorname{Var}\left[Y_{1}\right]+N^{2}\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}\right]
$$

$$
=\underbrace{[}_{N \times \text { constant }}\left[N \cdot \operatorname{Var}\left[Y_{1}\right]\right]+\underbrace{\left[N^{2}\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}\right]}_{N^{2} \times \text { constant }}
$$

$$
=\mathbb{E}[N] \cdot \operatorname{Var}\left[Y_{1}\right]+\mathbb{E}\left[N^{2}\right]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}
$$

- $\operatorname{Var}[S]=\mathbb{E}\left[S^{2}\right]-(\mathbb{E}[S])^{2}$

$$
\begin{aligned}
& =\left(\mathbb{E}[N] \cdot \operatorname{Var}\left[Y_{1}\right]+\mathbb{E}\left[N^{2}\right]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}\right)-\left(\mathbb{E}[N] \cdot \mathbb{E}\left[Y_{1}\right]\right)^{2} \\
& =\mathbb{E}[N] \cdot \operatorname{Var}\left[Y_{1}\right]+\underbrace{\left(\mathbb{E}\left[N^{2}\right]-(\mathbb{E}[N])^{2}\right)}_{\operatorname{Var}[N]}\left(\mathbb{E}\left[Y_{1}\right]\right)^{2} \\
& =\mathbb{E}[N] \cdot \operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}[N]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}
\end{aligned}
$$

- In particular, if $N \sim \operatorname{Poisson}(\lambda)$, then
$\circ \operatorname{Var}(\boldsymbol{S})=\mathbb{E}[N] \cdot \operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}[N]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}=\lambda \operatorname{Var}\left[Y_{1}\right]+\lambda\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}=\lambda \mathbb{E}\left[\boldsymbol{Y}_{\mathbf{1}}^{2}\right]$
- $\mathbb{E}[\boldsymbol{S}(\boldsymbol{t})]=\mathbb{E}[N(t)] \cdot \mathbb{E}\left[Y_{1}\right]=\boldsymbol{\lambda} \boldsymbol{E}\left[\boldsymbol{Y}_{\mathbf{1}}\right]$
$\circ \boldsymbol{\operatorname { V a r }}[\boldsymbol{S}(\boldsymbol{t})]=\mathbb{E}[N(t)] \cdot \operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}[N(t)]\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}=\lambda t \operatorname{Var}\left[Y_{1}\right]+\lambda t\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}=\boldsymbol{\lambda} \boldsymbol{t}\left[\boldsymbol{Y}_{\mathbf{1}}^{\mathbf{2}}\right]$

Compound Poisson Process Example

- An insurance company pays claim at rate of 4 per week as a Poisson process
- The average payment for a claim is $\$ 10,000$. The standard deviation is $\$ 6,000$
- Find the mean and standard deviation of total payments for 4 weeks
- Given $E\left[Y_{1}\right]=10000, \operatorname{Var}\left[Y_{1}\right]=6000^{2}=36000000, \lambda=4$
- $\mathbb{E}[S(4)]=\lambda \cdot 4 \cdot \mathbb{E}\left[Y_{1}\right]=4 \cdot 4 \cdot 10000=160000$
- $\operatorname{Var}[S(4)]=\lambda \cdot 4 \cdot \mathbb{E}\left[Y_{1}^{2}\right]=\lambda \cdot 4 \cdot\left(\operatorname{Var}\left[Y_{1}\right]+\left(\mathbb{E}\left[Y_{1}\right]\right)^{2}\right)$

$$
=4 \cdot 4 \cdot\left(36000000+(10000)^{2}\right)=2.176 \times 10^{9}
$$

- $\operatorname{SD}[S(4)]=\sqrt{\operatorname{Var}[S(4)]}=46647.6$

Thinning, Superposition, and Conditioning

General Idea for Thinning

- You have a Poisson process for arrivals, which are filtered or categorized upon arrival
- Not-so-surprising: The arrivals for a specific category form a Poisson process
- Surprising: The process for each category are independent of each other

Thinning Motivating Example: Highway Traffic

- Suppose vehicles pass a weigh station as a Poisson process with rate λ
- Let Y_{k} denote the type of the $k^{\text {th }}$ vehicle that passes
- Assume that $\underbrace{\mathbb{P}\left(Y_{k}=1\right)=0.85}_{\text {Car }}, \underbrace{\mathbb{P}\left(Y_{k}=2\right)=0.10}_{\text {Truck }}, \underbrace{\mathbb{P}\left(Y_{k}=3\right)=0.05}_{\text {Motorcycle }}$

- General Idea: $N_{1}(t), N_{2}(t), N_{3}(t)$ will be independent Poisson processes

Thinning a Poisson Process (Theorem 2.11)

- Statement
- Suppose $N(t)$ is a Poisson process with rate λ
- Also, Y_{1}, Y_{2}, \ldots are iid (and non-negative integer-valued) random variables
- Define $N_{j}(t)=\sum_{k=1}^{N(t)} \mathbb{1}\left\{Y_{k}=j\right\}$ be the number of arrivales up to time \boldsymbol{t} of type \boldsymbol{j}
- Then $N_{1}(t), N_{2}(t), \ldots$ are independent Poisson process with rate $\lambda_{\boldsymbol{j}}=\lambda \mathbb{P}\left(\boldsymbol{Y}_{\mathbf{1}}=\boldsymbol{j}\right)$
- Proof (Binary Case)
- Define $p=\mathbb{P}\left(Y_{1}=1\right)$ and $q=1-p=\mathbb{P}\left(Y_{1}=2\right)$
- Claim: $N_{1}(t) \sim \operatorname{Poisson}(p \lambda t)$ and $N_{2}(t) \sim \operatorname{Poisson}(q \lambda t)$
- $\mathbb{P}\left(N_{1}(t)=j\right)=\sum_{n=j}^{\infty} \mathbb{P}\left(N_{1}(t)=j, N(t)=n\right)$

$$
=\sum_{n=j}^{\infty} \underbrace{\mathbb{P}\left(N_{1}(t)=j \mid N(t)=n\right)}_{\sim \operatorname{Binomial}(n, p)} \underbrace{\mathbb{P}(N(t)=n)}_{\sim \operatorname{Poisson}(\lambda t)}
$$

$$
=\sum_{n=j}^{\infty}\binom{n}{j} p^{j}(1-p)^{n-j} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

$$
=e^{-\lambda t} \frac{p^{j}}{j!} \sum_{n=j}^{\infty} \frac{(\lambda t)^{n}(1-p)^{n-j}}{(n-j)!}
$$

$$
=e^{-\lambda t} \frac{p^{j}}{j!} \underbrace{\sum_{n=0}^{\infty} \frac{(\lambda t(1-p))^{n}}{n!}}_{e^{(1-p) \lambda t}}(\lambda t)^{j}
$$

$$
=e^{-p \lambda t} \frac{(p \lambda t)^{j}}{j!}
$$

- Therefore $N_{1}(t) \sim \operatorname{Poisson}(p \lambda t)$, and similarly $N_{2}(t) \sim \operatorname{Poisson}(q \lambda t)$
- Claim: $N_{1}(t)$ and $N_{2}(t)$ are independent
- $\mathbb{P}\left(N_{1}(t)=j, N_{2}(t)=k\right)=\mathbb{P}\left(N_{1}(t)=j, N(t)=j+k\right)$

$$
=\underbrace{\mathbb{P}\left(N_{1}(t)=j \mid N(t)=j+k\right)}_{\sim \operatorname{Binomial}(j+k, p)} \underbrace{\mathbb{P}(N(t)=j+k)}_{\sim \operatorname{Poisson}(\lambda t)}
$$

$$
=\binom{j+k}{j} p^{j} q^{k} e^{-\lambda t} \frac{(\lambda t)^{j+k}}{(j+k)!}
$$

$$
=\frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} \frac{(q \lambda t)^{k}}{k!} e^{-q \lambda t}
$$

$$
=\mathbb{P}\left(N_{1}(t)=j\right) \mathbb{P}\left(N_{2}(t)=k\right)
$$

- Claim: $N_{1}(t)$ is a Poisson Process (same for $N_{2}(t)$)
- Since $N_{1}(t) \leq N(t)$, we have $\mathbb{P}\left(N_{1}(0)=0\right)=1$
- In independence proof, we showed $N_{1}(t) \sim \operatorname{Poisson}(p \lambda t)$
- N_{1} has independet increment
$\square N_{1}\left(t_{j}, t_{j+1}\right]=\sum_{k=N_{1}\left(t_{j}\right)+1}^{N_{1}\left(t_{j+1}\right)} \mathbb{1}\left\{Y_{k}=1\right\}$
- $N_{1}\left(t_{1}, t_{2}\right], \ldots, N_{1}\left(t_{n-1}, t_{n}\right]$ are sums independent random variables Y_{k}
- Thus, the $N_{1}\left(t_{j}, t_{j+1}\right]$ will be independent for nonoverlapping intervals
- Therefore $N_{1}(t)$ is a Poisson process with rate λ

Superposition of Poisson Processes (Theorem 2.13)

- Suppose $N_{1}(t), \ldots, N_{k}(t)$ are independent Poisson process with rates $\lambda_{1}, \ldots, \lambda_{k}$
- Then $N(t)=N_{1}(t)+\cdots+N_{k}(t)$ is a Poisson process with rate $\lambda=\lambda_{1}+\cdots+\lambda_{k}$
- The proof is like thinning theorem proof, but a little easier. Proceed by mathematical induction

Order Statistics

- Definition
- Let X_{1}, \ldots, X_{n} be iid random variables
- Define $X_{(i)}$ be the k-th smallest element in $\left\{X_{1}, \ldots, X_{n}\right\}$
- $X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$
- $X_{(2)}=\min \left(\left\{X_{1}, \ldots, X_{n}\right\} \backslash\left\{X_{(1)}\right\}\right)$
- !
- $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$
- Then $X_{(1)}, \ldots, X_{(n)}$ are the order statistics for X_{1}, \ldots, X_{n}
- Fact
- If $U_{1}, \ldots, U_{n} \stackrel{i i d}{\sim}$ Unif $[0, t]$, then the joint PDF for $U_{(1)}, \ldots, U_{(n)}$ is
- $f\left(u_{1}, \ldots, u_{n}\right)=\left\{\begin{array}{cc}\frac{n!}{t^{n}} & 0 \leq u_{1} \leq \cdots \leq u_{n} \leq t \\ 0 & \text { otherwise }\end{array}\right.$

Conditioning of Poisson Processes (Theorem 2.14)

- For a Poisson process, the conditional distribution of arrival times satisfies
$\circ\left(\boldsymbol{T}_{1}, \ldots, \boldsymbol{T}_{\boldsymbol{n}} \mid \boldsymbol{N}(\boldsymbol{t})=\boldsymbol{n}\right) \stackrel{\boldsymbol{D}}{=}\left(\boldsymbol{U}_{(\mathbf{1})}, \ldots, \boldsymbol{U}_{(n)}\right)$
- Specifically, the joint PDF given $N(t)=n$ is
- $f\left(t_{1}, \ldots, t_{n}\right)=\left\{\begin{array}{cc}\frac{n!}{t^{n}} & 0 \leq t_{1} \leq \cdots \leq t_{n} \leq t \\ 0 & \text { otherwise }\end{array}\right.$

Binomial and Conditioning of Poisson Processes (Theorem 2.15)

- Statement
- Suppose $s<t$ and $0 \leq k \leq n$. Then

○ $\mathbb{P}(N(s)=\boldsymbol{k} \mid N(t)=n)=\binom{n}{k}\left(\frac{\boldsymbol{s}}{\boldsymbol{t}}\right)^{\boldsymbol{k}}\left(1-\frac{\boldsymbol{s}}{\boldsymbol{t}}\right)^{\boldsymbol{n}-\boldsymbol{k}}$

- In other words, $(N(s) \mid N(t)=n) \sim \operatorname{Binomial}(n, s / t)$
- Proof (using order statistics)
- Proof (proceed directly from definition of condition probability)

Poisson Process Comprehensive Problems

Exercise 2.47

- Problem setup
- $N_{1}(t):=$ number of trucks that have passed up to time t
- $N_{2}(t):=$ number of cars that have passed up to time t
- N_{1} and N_{2} are Poisson process with rate 40 and 100 respectively
- $1 / 8$ of trucks and $1 / 10$ of cars go to Bojangle's
- $B_{1}(t):=$ number of trucks that have gone to Bojangle's up to time t
- $B_{2}(t):=$ number of cars that have gone to Bojangle's up to time t
- Then B_{1} and B_{2} are Poisson process with rate 5 and 10 respectively
- Find the probability that exactly 6 trucks arrive at Bojangle's between noon and 1PM

$$
\text { - } \mathbb{P}\left(B_{1}(1)=6\right)=e^{-5} \frac{5^{6}}{6!}
$$

- Given that there were 6 truck arrivals at Bojangle's between noon and 1 PM , what is the probability that exactly two arrived between 12:20 and 12:40?

$$
\bigcirc \mathbb{P}\left(\left.B_{1}\left(\frac{1}{3}, \frac{2}{3}\right]=2 \right\rvert\, B_{1}(1)=6\right)=\binom{6}{2}\left(\frac{2 / 3-1 / 3}{1}\right)^{2}\left(1-\frac{2 / 3-1 / 3}{1}\right)^{4}=\binom{6}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{4}
$$

- Suppose that trucks always have 1 passenger; 30% of the cars have 1 passenger, 50% have 2 , and 20% have 4 . Find the μ and σ^{2} of the number of customers arrive at Bojangle's in one hour.
- Define
- $S_{1}(t):=$ number of customers that arrive in trucks up to time t
- $S_{2}(t):=$ number of customers that arrive in cars up to time t
- $Y_{1, k}:=$ number of passengers in $k^{\text {th }}$ truck to arrive at Bojangle's
- $Y_{2, k}:=$ number of passengers in $k^{\text {th }}$ cars to arrive at Bojangle's
- $S_{l}(t):=\sum_{k=1}^{B_{l}(t)} Y_{l, k}$
- $S(t):=S_{1}(t)+S_{2}(t)$ to be total customers up to time t
- Compute $\mathbb{E}[S(1)]=\mathbb{E}\left[S_{1}(1)\right]+\mathbb{E}\left[S_{2}(1)\right]$
- $\mathbb{E}\left[S_{1}(1)\right]=\mathbb{E}\left[B_{1}(1)\right] \mathbb{E}\left[Y_{1,1}\right]=(5 \cdot 1) \cdot 1=5$
- $\mathbb{E}\left[S_{2}(1)\right]=\mathbb{E}\left[B_{2}(1)\right] \mathbb{E}\left[Y_{2,1}\right]=(10 \cdot 1) \cdot(1 \times 0.3+2 \times 0.5+4 \times 0.2)=21$
- $\Rightarrow \mathbb{E}[S(1)]=\mathbb{E}\left[S_{1}(1)\right]+\mathbb{E}\left[S_{2}(1)\right]=26$
- Compute $\operatorname{Var}[S(1)]=\operatorname{Var}\left[S_{1}(1)\right]+\operatorname{Var}\left[S_{2}(1)\right]$ (by independence)
- $\operatorname{Var}\left[S_{1}(1)\right]=5 \mathbb{E}\left[Y_{1,1}^{2}\right]=5$
- $\operatorname{Var}\left[S_{2}(1)\right]=10 \mathbb{E}\left[Y_{2,1}^{2}\right]=10\left(1^{2} \times 0.3+2^{2} \times 0.5+4^{2} \times 0.2\right)=55$
- $\Rightarrow \operatorname{Var}[S(1)]=\operatorname{Var}\left[S_{1}(1)\right]+\operatorname{Var}\left[S_{2}(1)\right]=60$

Exercise 2.27

- Problem setup
- The next bus arrival time is uniformly distributed over the next hour
- Cars pass at a rate of 6 per hour (following a Poisson process)
- $1 / 3$ of car will pick up a hitchhiker
- Define
- $T_{B}:=$ time bus arrives, then $T_{B} \sim \operatorname{Unif}[0,1]$
- $N(t):=$ the number of car passed up to time t, then $N(t)$ is a Poisson process with $\lambda=6$
- $H(t):=$ the number of car pick up a hitchhiker up to time t, then $H(t)$ is a P.P. with $\lambda=2$
- $T_{1}:=$ arrival time for first car that will pick up a hitchhiker, then $T_{1} \sim \operatorname{Exp}(2)$
- What is the probability someone takes the bus rather than hitchhikes?
- $\mathbb{P}\left(T_{B}<T_{1}\right)=\int_{0}^{1} \int_{y}^{\infty} f_{T_{1}}(x) f_{T_{B}}(y) d x d y=\int_{0}^{1} \int_{y}^{\infty} 2 e^{-2 x} d x d y=\frac{1}{2}\left(1-\frac{1}{e^{2}}\right)$

Exercise 2.50

- Problem setup
- $N(t):=$ number of typos author has made in the first \boldsymbol{t} pages
- $N_{f}(t):=$ number of typos found in the first t pages
- Then $N(t), N_{f}(t)$ are Poisson processes with rate λ and 0.9λ respectively
- $X:=$ number of typos found in full manuscript, then $X=N_{f}(200)$
- Compute the expected number of typos
- $\mathbb{E}[X]=\mathbb{E}\left[N_{f}(200)\right]=200 \cdot 0.9 \lambda=180 \lambda$
- Estimate λ if the total number of typos is 108
- $180 \lambda \approx 108 \Rightarrow \hat{\lambda}=\frac{108}{180}=0.6$

More Exercises on Poisson Process

Exercise 2.45

- Problem setup
- Signals are sent as a Poisson process with rate λ
- Each signal reaches its target with probability p and fails with probability $q=1-p$
- $N_{1}(t):=\#$ successful transimissions up to time t
- $N_{2}(t):=$ \# failed transimissions upto time t
- Find the distribution of $\left(N_{1}(t), N_{2}(t)\right)$
- This is asking for the joint PMF of $N_{1}(t), N_{2}(t)$
- $N_{1}(t)$ and $N_{1}(t)$ are thinned versions of the general singal process
- So $N_{1}(t)$ and $N_{2}(t)$ are Poisson proecss with rates $p \lambda$ and $(1-p) \lambda$, respectively
- Additionally, $\boldsymbol{N}_{\mathbf{1}}(\boldsymbol{t})$ and $\boldsymbol{N}_{\mathbf{2}}(\boldsymbol{t})$ are independent
- $\mathbb{P}\left(N_{1}(t)=j, N_{2}(t)=k\right)=\mathbb{P}\left(N_{1}(t)=j\right) \mathbb{P}\left(N_{2}(t)=k\right)$

$$
=\left[e^{-p \lambda t} \frac{(p \lambda t)^{j}}{j!}\right]\left[e^{-(1-p) \lambda t} \frac{((1-p) \lambda t)^{k}}{k!}\right]=e^{-\lambda t} \frac{(p \lambda t)^{j}((1-p) \lambda t)^{k}}{j!k!}
$$

- $L:=$ \# signals lost before the first success. Find the distribution of L
- We can compute $\mathbb{P}(L \geq k)$, then $\mathbb{P}(L=k)=\mathbb{P}(L \geq k)-\mathbb{P}(L \geq k+1)$
- $F_{k}:=$ time of $k^{\text {th }}$ failed signal, $S_{k}:=$ time of $k^{\text {th }}$ successful signal
- $\mathbb{P}(L \geq k)=\mathbb{P}\left(F_{k}<S_{1}\right)=\int_{0}^{\infty} f_{F_{k}}(t) \int_{t}^{\infty} f_{S_{1}}(s) d s d t$
$=\int_{0}^{\infty} q \lambda e^{-q \lambda t} \frac{(q \lambda t)^{k-1}}{(k-1)!} \underbrace{\left(\int_{t}^{\infty} p \lambda e^{-p \lambda s} d s\right)}_{e^{-p \lambda s}} d t=\int_{0}^{\infty} q \lambda e^{-\lambda t} \frac{(q \lambda t)^{k-1}}{(k-1)!} d t$ $=q^{k} \int_{0}^{\infty} \underbrace{\lambda e^{-\lambda t} \frac{(\lambda t)^{k-1}}{(k-1)!}}_{\text {Gamma Dist. }} d t=q^{k}$
- $\mathbb{P}(L=k)=\mathbb{P}(L \geq k)-\mathbb{P}(L \geq k+1)=q^{k}(1-q)=(1-p)^{k} p$
- So $L \sim \operatorname{Geometric}(p)$
- Note: $\{\boldsymbol{L}=\boldsymbol{k}\}=\{$ First \boldsymbol{k} transimissions fail, $\boldsymbol{k}+\mathbf{1}$ transimission succeeds $\}$

Examples of Conditional Poisson Process

- $N(t)$ is a Poisson process with rate λ
- Recall that the PDF of $\left(T_{1}, \ldots, T_{n} \mid N(t)=n\right)$ is $f\left(t_{1}, \ldots, t_{n}\right)=\left\{\begin{array}{cc}\frac{n!}{t^{n}} & 0 \leq t_{1} \leq \cdots \leq t_{n} \leq t \\ 0 & \text { otherwise }\end{array}\right.$
- Compute $\mathbb{E}\left[T_{1} \mid N(1)=2\right]$
- $\mathbb{E}\left[T_{1} \mid N(1)=2\right]=\int_{0}^{1} \int_{0}^{t_{2}} t_{1} \cdot \frac{2!}{1^{2}} d t_{1} d t_{2}=\int_{0}^{1} t_{2}^{2} d t_{2}=\frac{1}{3}$
- Compute $\mathbb{E}\left[T_{1} T_{2} \mid N(1)=2\right]$
- $\mathbb{E}\left[T_{1} T_{2} \mid N(1)=2\right]=\int_{0}^{1} \int_{0}^{t_{2}} t_{1} t_{2} \cdot \frac{2!}{1^{2}} d t_{1} d t_{2}=\int_{0}^{1} t_{2}^{3} d t_{2}=\frac{1}{4}$
- Compute $\mathbb{E}\left[T_{2} \mid N(4)=3\right]$
$\circ \mathbb{E}\left[T_{2} \mid N(4)=3\right]=\int_{0}^{4} \int_{0}^{t_{3}} \int_{0}^{t_{2}} t_{2} \cdot \frac{3!}{4^{3}} d t_{1} d t_{2} d t_{3}=\int_{0}^{4} \int_{0}^{t_{3}} t_{2}^{2} \cdot \frac{3!}{4^{3}} d t_{2} d t_{3}=\int_{0}^{4} \frac{2!}{4^{3}} t_{3}^{3} d t_{3}=2$
- Compute $\mathbb{E}\left[T_{1} \mid N(1)=n\right]$
- Let $U_{1}, \ldots, U_{n} \stackrel{i i d}{\sim} \operatorname{Unif}([0,1])$ and define $T=\min \left\{U_{1}, \ldots, U_{n}\right\}$, then $E\left[T_{1} \mid N(1)=n\right]=\mathbb{E}[T]$
- $F_{T}(t)=1-\mathbb{P}(T>t)=1-\mathbb{P}\left(U_{1}>t, \ldots, U_{n}>t\right)=1-(1-t)^{n} \Rightarrow f_{T}(t)=n(1-t)^{n-1}$
- $E\left[T_{1} \mid N(1)=n\right]=\mathbb{E}[T]=\int_{0}^{1} t n(1-t)^{n-1} d t=\frac{1}{n+1}$

○ Alternatively, $\mathbb{E}\left[T_{1} \mid N(1)=n\right]=\int_{0}^{1} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{3}} \int_{0}^{t_{2}} t_{1} \frac{n!}{1^{n}} d t_{1} d t_{2} \cdots d t_{n-1} d t_{n}$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{3}} \frac{n!}{2!} t_{2}^{2} d t_{2} \cdots d t_{n-1} d t_{n} \\
& =\int_{0}^{1} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{4}} \frac{n!}{3!} t_{3}^{3} d t_{3} \cdots d t_{n-1} d t_{n}=\cdots \\
& =\int_{0}^{1} \frac{n!}{n!} t_{n}^{t} d t_{n}=\left[\frac{1}{n+1} t_{n}^{n+1}\right]_{t_{n}=0}^{t_{n}=1}=\frac{1}{n+1}
\end{aligned}
$$

Introduction to Renewal Process

Renewal Process

- Renewal process is more general than Poisson process
- The structure is the same as a Poisson process, but we do not assume $\boldsymbol{\tau}_{\boldsymbol{i}} \sim \operatorname{Exp}(\lambda)$
- We use the notation $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots \stackrel{\text { iid }}{\sim} \boldsymbol{F}$ where F is a CDF for a non-negative distribution
- With very few assumptions, it is difficult to say much in general

Arrival Law of Large Numbers

- Statement
- Let $\mu=\mathbb{E}\left[t_{i}\right]$ be the mean interarrival
- If $\mathbb{P}\left(\boldsymbol{t}_{\boldsymbol{i}}>0\right)>0$ then $\frac{N(\boldsymbol{t})}{\boldsymbol{t}} \rightarrow \frac{1}{\mu}$ as $\boldsymbol{t} \rightarrow \infty$
- Recall Strong Law of Large Numbers
- If $X_{1}, X_{2}, \ldots \stackrel{i i d}{\sim} F$ with $\mathbb{E}\left[X_{1}\right]=\mu_{F}$, then $\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \rightarrow \mu_{F}$ as $n \rightarrow \infty$
- Proof
\circ Using the strong law of large numbers $\lim _{t \rightarrow \infty} \frac{T_{N(t)}}{N(t)}=\lim _{t \rightarrow \infty} \frac{t_{1}+\cdots+t_{N(t)}}{N(t)} \rightarrow \mu$
- Also, we know that $T_{N(t)} \leq t<T_{N(t)+1}$
- Therefore, $\frac{\mathrm{T}_{N(t)}}{N(t)} \leq \frac{t}{N(t)}<\frac{T_{N(t)+1}}{N(t)}=\underbrace{\frac{T_{N(t)+1}}{N(t)+1}}_{\rightarrow \mu} \cdot \underbrace{\frac{N(t)+1}{N(t)}}_{\rightarrow 1}$
- As $t \rightarrow \infty, \mu \leq \lim _{t \rightarrow \infty} \frac{t}{N(t)} \leq \mu \cdot 1=\mu$
- Therefore $\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\mu}$

Renewal Reward Process

- Idea
- With each arrival, there is an associated reward (or cost)
- Notation
- $r_{k}=$ value $/$ cost of $k^{\text {th }}$ arrival
- $N(t)=$ number of arrivals up to time t
- $R(t)=\sum_{k=1}^{N(t)} r_{k}=$ cumulative reward up to time t
- Key assumptions
- $\left(r_{1}, t_{1}\right),\left(r_{2}, t_{2}\right), \ldots$ is an iid sequence of rewards and waiting times
- Reward/Cumulative Law of Large Number: $\frac{\boldsymbol{R}(\boldsymbol{t})}{\boldsymbol{t}} \rightarrow \frac{\mathbb{E}\left[\boldsymbol{r}_{i}\right]}{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}$ as $\boldsymbol{t} \rightarrow \infty$
- $\frac{R(t)}{N(t)}=\frac{1}{N(t)} \sum_{k=1}^{N(t)} r_{k} \rightarrow \mathbb{E}\left[r_{i}\right]$ as $t \rightarrow \infty$ by law of large numbers
- $\frac{R(t)}{t}=\frac{R(t)}{N(t)} \cdot \frac{N(t)}{t}=\mathbb{E}\left[r_{i}\right] \cdot \frac{1}{\mathbb{E}\left[T_{i}\right]}=\frac{\mathbb{E}\left[r_{i}\right]}{\mathbb{E}\left[T_{i}\right]}$ as $t \rightarrow \infty$ by arrival LLN

Alternating Renewal Process

- For the graph on the right, we have

- s_{1} time in state $1, u_{1}$ time in state 2
- s_{2} time in state $3, u_{2}$ time in state 4 , and so on.
- $s_{1}, s_{2}, \ldots \stackrel{i d}{\sim} F$ and $u_{1}, u_{2}, \ldots \stackrel{i d}{\sim} G$
- $s_{1}, u_{1}, s_{2}, u_{2}, \ldots$ are independent
- Alternating renewal LLN
- The long-run fraction of time spent in state 1 is $\frac{\boldsymbol{\mu}_{\boldsymbol{F}}}{\boldsymbol{\mu}_{\boldsymbol{F}}+\boldsymbol{\mu}_{\boldsymbol{G}}}$
- Reframe as a renweal reward process with $t_{k}=s_{k}+u_{k}$ and $r_{k}=s_{k}$
- Then $R(t)=\sum_{k=1}^{N(t)} r_{k}=\sum_{k=1}^{N(t)} s_{k}=$ total time spent in state 1 up to time t
- Therefore, $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[r_{i}\right]}{\mathbb{E}\left[t_{i}\right]}=\frac{\mu_{F}}{\mu_{F}+\mu_{G}}$

Application: Geiger Counter

- Problem background
- Radioactive particles are emitted as a Poisson process with unknown rate λ
- Geiger counter locks for a random amount of time when a particle registers
- Then it opens and waits for next particle
- Two processes: particle emission and particle observation
- How do we estimate actual emission rate λ from observed process?

- $O_{k} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$ and independent of C_{1}, C_{2}, \ldots
- Set $\gamma_{t}=\frac{\widetilde{N}(t)}{t}$, then for large values t, we can use arrival LLN
- $\gamma_{t} \approx \frac{1}{\mathbb{E}\left[t_{k}\right]}=\frac{1}{\mathbb{E}\left[C_{k}\right]+\mathbb{E}\left[O_{k+1}\right]}=\frac{1}{\mathbb{E}\left[C_{k}\right]+\lambda^{-1}} \Rightarrow \hat{\lambda}=\frac{\gamma_{t}}{\mathbf{1}-\gamma_{t} \mathbb{E}\left[\boldsymbol{C}_{\mathbf{1}}\right]}$

Renewal Process, Age and Residual Life

Review: LLN for Renewal Process

- Renewal process: Like a Poisson process, but waiting time $\boldsymbol{t}_{\boldsymbol{k}}$ do not have to be $\operatorname{Exp}(\boldsymbol{\lambda})$
- Arrival LLN: $\lim _{\boldsymbol{t} \rightarrow \infty} \frac{\boldsymbol{N}(\boldsymbol{t})}{\boldsymbol{t}}=\frac{\mathbf{1}}{\boldsymbol{\mu}}$, where $\mu=\mathbb{E}\left[t_{i}\right]$
- Reward LLN
- Let $r_{i}=$ reward/cost of i-th renewal, and $R(t)=\sum_{i=1}^{N(t)} r_{i}$, then, $\lim _{\boldsymbol{t} \rightarrow \infty} \frac{\boldsymbol{R}(\boldsymbol{t})}{\boldsymbol{t}}=\frac{\mathbb{E}\left[\boldsymbol{r}_{\boldsymbol{i}}\right]}{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}$
- Alternating LLN
- Let s_{1}, s_{2}, \ldots be the times in state 1 , and u_{1}, u_{2}, \ldots be times in state 2
- Then the limiting fraction of time spent in state 1 is $\frac{\mathbb{E}\left[\boldsymbol{s}_{\boldsymbol{i}}\right]}{\mathbb{E}\left[\boldsymbol{s}_{\boldsymbol{i}}\right]+\mathbb{E}\left[\boldsymbol{u}_{\boldsymbol{i}}\right]}$

Exercise 3.2: Alternating Renewal Process

- Let J_{1}, J_{2}, \ldots be the length of jobs, and S_{1}, S_{2}, \ldots be the time she spends between jobs
- Given that $\mathbb{E}\left[J_{k}\right]=11$ and $S_{k} \sim \operatorname{Exp}[1 / 3]$, what fraction of Monica's life will be work?
- This is an alternating renewal process where state 1 is "Monica is employed"
- By the Alternating LLN, Monica will work $\frac{\mathbb{E}\left[\boldsymbol{J}_{\boldsymbol{k}}\right]}{\mathbb{E}\left[\boldsymbol{J}_{\boldsymbol{k}}\right]+\mathbb{E}\left[\boldsymbol{S}_{\boldsymbol{k}}\right]}=\frac{11}{11+3}=\frac{11}{14}$ of the time

Exercise 3.4: Renewal Reward Process

- Taxi customers arrive to the stand independently, with interarrival times $t_{k} \sim F$
- The amount each customer pays r_{k} follows a distribution G
- What is the long-run amount of money per unit time that taxis at the stand collect
- Let $R(t)=\sum_{k=1}^{N(t)} r_{k}=$ total fares collected up to time t, then we want to find $\lim _{t \rightarrow \infty} \frac{R(t)}{t}$
- By the Renewal Reward LLN, $\lim _{\boldsymbol{t} \rightarrow \infty} \frac{\boldsymbol{R}(\boldsymbol{t})}{\boldsymbol{t}}=\frac{\mathbb{E}\left[\boldsymbol{r}_{\boldsymbol{i}}\right]}{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}=\frac{\mu_{G}}{\mu_{F}}$

Example 3.4: Renewal Reward Process

- The lifetime of a car follows some continuous distribution with density function h
- Mr. Brown's policy:
- If the car breaks, buy a new one for \$A, and repair for \$B
- If the car survives to time T, buy a new one for \$A
- What is the long-run average cost per unit time of this policy?
- This is a renewal process where the renewal is buying a new car
- Let t_{i} be time between car purchases and r_{i} be cost of buying $i^{\text {th }}$ car
- Then by the reward LLN, the long-run cost per unit time is $\frac{\mathbb{E}\left[\boldsymbol{r}_{\boldsymbol{i}}\right]}{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}$
- Let $s_{i} \sim h$ be the lifetime of $i^{\text {th }}$ car, then $\boldsymbol{t}_{\boldsymbol{i}}=\boldsymbol{\operatorname { m i n }}\left\{\boldsymbol{s}_{\boldsymbol{i}}, \boldsymbol{T}\right\}$
- $\mathbb{E}\left[t_{i}\right]=\mathbb{E}\left[\min \left\{s_{i}, T\right\}\right]=\int_{0}^{\infty} \min \{s, T\} h(s) d s=\int_{0}^{T} s \cdot h(s) d s+T \int_{T}^{\infty} h(s) d s$
- $\mathbb{E}\left[r_{i}\right]=(A+B) \mathbb{P}\left(s_{i}<T\right)+A \cdot \mathbb{P}\left(s_{i} \geq T\right)=A+B \cdot \mathbb{P}\left(s_{i}<T\right)=A+B \int_{0}^{T} h(s) d s$
- Therefore, $\frac{\mathbb{E}\left[r_{i}\right]}{\mathbb{E}\left[t_{i}\right]}=\frac{A+B \int_{0}^{T} h(s) d s}{\int_{0}^{T} s \cdot h(s) d s+T \int_{T}^{\infty} h(s) d s}$
- Challenging follow-up: use this solution to choose optimal value of replacement time T

Age and Residual Life

- Introduction

- $A(t)=$ age $=$ time since last renewal $=t-T_{N(t)}$
- $Z(t)=$ residual life $=$ time until next renewal $=\boldsymbol{T}_{N(t)+1}-t$
- What is the limiting distribution for $A(t)$ and $Z(t)$?
- Consider a renewal process with continuous waiting times between renewals

1. Let $x, y \geq 0$ be fixed values

Let $\boldsymbol{R}(\boldsymbol{t})$ be the total time up to \boldsymbol{t} for which age $>\boldsymbol{x}$ and residual life $>\boldsymbol{y}$, then

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \mathbb{P}(A(t)>x, Z(t)>y)=\lim _{t \rightarrow \infty} \frac{R(t)}{t} \\
&=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \mathbb{1}\{A(s)>x, Z(s)>y\} d s=\frac{1}{\mathbb{E}\left[t_{i}\right]} \int_{x+y}^{\infty} \mathbb{P}\left(t_{i}>z\right) d z
\end{aligned}
$$

2. Thus, $\lim _{t \rightarrow \infty} \mathbb{P}(Z(t)>y)=\frac{1}{\mathbb{E}\left[t_{i}\right]} \int_{y}^{\infty} \mathbb{P}\left(t_{i}>z\right) d z$

So the limiting PDF of $\boldsymbol{Z}(\boldsymbol{t})$ is $\boldsymbol{g}(\boldsymbol{z})=\frac{\mathbb{P}\left(\boldsymbol{t}_{\boldsymbol{i}}>\boldsymbol{z}\right)}{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}$ for $z \geq 0$, and same for $A(t)$
3. The limiting expected value of $A(t)$ and $Z(t)$ is $\frac{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}^{2}\right]}{2 \mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}$
4. If $t_{k} \sim f$ then the limiting joint PDF of $\boldsymbol{A}(\boldsymbol{t})$ and $\boldsymbol{Z}(\boldsymbol{t})$ is $\frac{\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{z})}{\mathbb{E}\left[\boldsymbol{t}_{\boldsymbol{i}}\right]}$ for $a, z \geq 0$

- Example
- Given $t_{i} \sim \operatorname{Gamma}(2, \lambda)$, what is limiting density for $A(t)$?
- $g(z)=\frac{\mathbb{P}\left(t_{1}>z\right)}{\mathbb{E}\left[t_{1}\right]}=\frac{1}{2 / \lambda} \int_{z}^{\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^{2-1}}{(2-1)!} d t=\frac{\lambda}{2} e^{-\lambda z}(\lambda z+1)$ for $z \geq 0$

Continuous Time Markov Processes

Continuous Time Markov Processes

- We say that X_{t} with $t>0$ is a continuous time Markov process if
- For any time $0 \leq s_{0}<\cdots<s_{n}<s$, and any states $j, i, i_{n}, \ldots, i_{0}$, we have
- $\mathbb{P}\left(X_{s+t}=\boldsymbol{j} \mid X_{s}=\boldsymbol{i}, X_{s_{n}}=i_{n}, \ldots, X_{s_{0}}=\boldsymbol{i}_{0}\right)=\mathbb{P}\left(X_{s+t}=\boldsymbol{j} \mid X_{s}=\boldsymbol{i}\right)=\mathbb{P}\left(X_{t}=\boldsymbol{j} \mid X_{0}=\boldsymbol{i}\right)$
- The equation above is called the (continuous) Markov property
- We denote the transition probability $\mathbb{P}\left(\boldsymbol{X}_{\boldsymbol{t}}=\boldsymbol{j} \mid \boldsymbol{X}_{\mathbf{0}}=\boldsymbol{i}\right)$ by $\boldsymbol{p}_{\boldsymbol{t}}(\boldsymbol{i}, \boldsymbol{j})$

Poisson Process is Markovian

- Change $N(0)$ to be some starting number of points. Then
- $\mathbb{P}\left(N(s+t)=\boldsymbol{j} \mid N(s)=i, N\left(s_{n}\right)=i_{\boldsymbol{n}}, \ldots, N\left(s_{0}\right)=i_{0}\right)$

$$
\begin{aligned}
& =\frac{\mathbb{P}\left(N(s+t)=j, N(s)=i, N\left(s_{n}\right)=i_{n}, \ldots, N\left(s_{0}\right)=i_{0}\right)}{\mathbb{P}\left(N(s)=i, N\left(s_{n}\right)=i_{n}, \ldots, N\left(s_{0}\right)=i_{0}\right)} \\
& =\frac{\mathbb{P}\left(N\left(s_{0}\right)=i_{0}, N\left(s_{0}, s_{1}\right]=i_{1}-i_{0}, \ldots, N\left(s_{n}, s\right]=i-i_{n}, N(s, s+t]=j-i\right)}{\mathbb{P}\left(N\left(s_{0}\right)=i_{0}, N\left(s_{0}, s_{1}\right]=i_{1}-i_{0}, \ldots, N\left(s_{n}, s\right]=i-i_{n}\right)} \\
& =\mathbb{P}(N(s, s+t]=j-i) \cdot \frac{\mathbb{P}(N(s)=i)}{\mathbb{P}(N(s)=i)} \\
& =\frac{\mathbb{P}(N(s, s+t]=j-i, N(s)=i)}{\mathbb{P}(N(s)=i)} \\
& =\frac{\mathbb{P}(N(s+t)=j, N(s)=i)}{\mathbb{P}(N(s)=i)} \\
& =\mathbb{P}(\boldsymbol{N}(\boldsymbol{s}+\boldsymbol{t})=\boldsymbol{j} \mid \boldsymbol{N}(\boldsymbol{s})=\boldsymbol{i})
\end{aligned}
$$

Construction from a Discrete Time Markov Chain

- Procedure
- Suppose Y_{0}, Y_{1}, \ldots is a DTMC with transition probability $u(i, j)$
- Let $N(t)$ be a Poisson process with rate λ
- Then $\boldsymbol{X}_{\boldsymbol{t}}=\boldsymbol{Y}_{\boldsymbol{N}(t)}$ is a continuous time Markov chain
- Intuition
- Transitions occur at random times according to the Poisson process
- Significance
- This gives one general procedure for constructing continuous time Markov chain

Chapman-Kolmogorov Equation

- Equation
- $p_{s+t}(i, j)=\sum_{k \in S} p_{s}(i, k) p_{t}(k, j)$
- Proof

$$
\begin{array}{r}
\circ p_{s+t}(i, j)=\mathbb{P}\left(X_{s+t}=j \mid X_{0}=i\right)=\sum_{k \in S} \mathbb{P}\left(X_{s+t}=j, X_{s}=k \mid X_{0}=i\right) \\
\quad=\sum_{k \in S} \underbrace{\mathbb{P}\left(X_{s+t}=j \mid X_{0}=i\right)}_{p_{t}(k, j)} \underbrace{\mathbb{P}\left(X_{s}=k \mid X_{0}=i\right)}_{p_{s}(i, k)}=\sum_{k \in S} p_{s}(i, k) p_{t}(k, j)
\end{array}
$$

- Importance
- Suppose we know $p_{t}(i, j)$ for all $t \in\left[0, t_{0}\right)$
- Then for all $s \in\left[t_{0}, 2 t_{0}\right)$, we have $\boldsymbol{p}_{\boldsymbol{s}}(\boldsymbol{i}, \boldsymbol{j})=\boldsymbol{p}_{s / \mathbf{2}+\boldsymbol{s} / \mathbf{2}}(\boldsymbol{i}, \boldsymbol{j})=\sum_{\boldsymbol{k} \in \boldsymbol{S}} \boldsymbol{p}_{s / \mathbf{2}}(\boldsymbol{i}, \boldsymbol{k}) \boldsymbol{p}_{s / \mathbf{2}}(\boldsymbol{k}, \boldsymbol{j})$
- Thus for arbitrarily small $\boldsymbol{t}_{\mathbf{0}}$, we can always find $\boldsymbol{p}_{\boldsymbol{s}}(\boldsymbol{i}, \boldsymbol{j})$ for all $s \geq t_{0}$

Jump Rates

- Definition
- For any states $i \neq j$, the jump rate from i to j is defined as $q_{i j}:=\lim _{h \rightarrow 0} \frac{p_{h}(i, j)}{h}$
- Example of CTMCs constructed from DTMC

$$
\begin{aligned}
\circ q_{i j}= & \lim _{h \rightarrow 0} \frac{p_{h}(i, j)}{h}=\lim _{h \rightarrow 0}\left[\frac{1}{h} \sum_{n=0}^{\infty} e^{-\lambda h} \frac{(\lambda h)^{n}}{n!} u^{n}(i, j)\right] \\
& =\lim _{h \rightarrow 0}\left[\lambda e^{-\lambda h} u(i, j)+\sum_{n=1}^{\infty} \frac{\lambda^{n} h^{n-1}}{n!} u^{n}(i, j)\right]=\lambda u(i, j)
\end{aligned}
$$

- Note that the jump rate $q_{i j}$ is the rate for a thinned Poisson process

Construction From Jump Rates

- Procedure
- Suppose we know $q(i, j)$ for all states $i \neq j$
- Define $\lambda(\boldsymbol{i})=\sum_{\boldsymbol{j} \neq \boldsymbol{i}} \boldsymbol{q}(\boldsymbol{i}, \boldsymbol{j})$ to be the rate at which the MC leaves \boldsymbol{i}
- Define $\boldsymbol{r}(\boldsymbol{i}, \boldsymbol{j})=\frac{\boldsymbol{q}(\boldsymbol{i}, \boldsymbol{j})}{\lambda_{\boldsymbol{i}}}$ with $\boldsymbol{r}(\boldsymbol{i}, \boldsymbol{i})=\mathbf{0}$ to be the transition probability from i to j
\circ Let $\boldsymbol{Y}_{\mathbf{0}}, \boldsymbol{Y}_{\mathbf{1}}, \ldots$ be a DTMC with transition matrix $r(i, j)$, and $\boldsymbol{\tau}_{\mathbf{0}}, \boldsymbol{\tau}_{\mathbf{1}}, \ldots \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\mathbf{1})$
- Define $t_{i}=\frac{\tau_{i}}{\lambda\left(Y_{i-1}\right)} \sim \operatorname{Exp}\left(\lambda\left(Y_{i-1}\right)\right)$, and $T_{i}=\sum_{n=0}^{i} t_{n}$, for $i \geq 0$
- Set $X_{t}=Y_{i-1}$ for $T_{i-1} \leq t<T_{i}$, then X_{t} is a CTMC
- Caveat
- $\lim _{n \rightarrow \infty} T_{n}=T_{\infty}$ could be finite, then X_{t} is only defined for $0 \leq t<T_{\infty}$
- One fix is to set $\boldsymbol{X}_{\boldsymbol{t}}=\boldsymbol{\Delta}$ (cemetery state) for $\boldsymbol{t} \geq \boldsymbol{T}_{\infty}$

M/M/s Queue, Kolmogorov Equations

CTMCs Constructed from Jump Rates

- Poisson process
- Waiting time between customers is an $\operatorname{Exp}(\lambda)$ random variable
- As a CTMC, the state space is $S=\{0,1,2, \ldots\}$

- The jump rates are $\left\{\begin{array}{cc}q(n, n+1)=\lambda & \forall n \in S \\ q(i, j)=0 & j \neq i+1\end{array}\right.$
- M/M/s Queue
- A line of customers is being helped by \boldsymbol{s} servers
- Customers arrive as a Poisson process with rate λ
- Each server requires an $\operatorname{Exp}(\boldsymbol{\mu})$ of time to serve their customer
- $X(t):=$ \#Customers in system (being served and in line) at time t

- The jump rates are $\left\{\begin{array}{cc}q(n, n+1)=\lambda & n \geq 0 \\ q(n, n-1)=n \mu & 1 \leq n<s \\ q(n, n-1)=s \mu & n \geq s\end{array}\right.$

Kolmogorov Equations

- Motivation
- How do we get $p_{t}(i, j)$ from the transition rates $q(i, j)$
- Kolmogorov equations (coordinate form)
- Define $\boldsymbol{\lambda}_{\boldsymbol{i}}=\sum_{\boldsymbol{k} \neq \boldsymbol{i}} \boldsymbol{q}_{\boldsymbol{i} \boldsymbol{k}}$ to be the rate out of state \boldsymbol{i}
- Backward: $\frac{d}{d t}\left[p_{t}(i, j)\right]=\sum_{k \neq i} q(i, k) p_{t}(k, j)-\lambda_{i} p_{t}(i, j)$

○ Forward: $\frac{d}{d t}\left[p_{t}(i, j)\right]=\sum_{k \neq i} p_{t}(i, k) q(k, j)-p_{t}(i, j) \lambda_{j}$

- Kolmogorov equations (matrix form)
- Define the transition rate matrix (or jump rate matrix) Q as

$$
\text { - } Q_{i j}=\left\{\begin{array}{cl}
q_{i j} & \text { if } i \neq j \\
-\lambda_{i} & \text { if } i=j
\end{array} \Leftrightarrow Q=\left[\begin{array}{cccc}
-\lambda_{1} & q(1,2) & q(1,3) & \cdots \\
q(2,1) & -\lambda_{2} & q(2,3) & \cdots \\
q(3,1) & q(3,2) & -\lambda_{3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\right.
$$

- Then we have $\left\{\begin{array}{l}\text { Backward: } \frac{d}{d t}\left[\boldsymbol{p}_{\boldsymbol{t}}\right]=\boldsymbol{Q} \boldsymbol{p}_{\boldsymbol{t}} \\ \text { Forward: } \frac{d}{d \boldsymbol{t}}\left[\boldsymbol{p}_{\boldsymbol{t}}\right]=\boldsymbol{p}_{\boldsymbol{t}} \boldsymbol{Q}\end{array}\right.$
- Why we need Kolmogorov equations
- Given the transition rates $q(i, j)$, we can find $p_{t}(i, j)$ by solving the ODEs
- Is matrix or coordinate form better?
- Matrix form is nice for general proofs and theory
- Coordinate form is nice for specific examples, especially when most $q(i, j)=0$

Solving Forward Kolmogorov Equations

- Claim: $\boldsymbol{e}^{t Q}$ solves Forward Kolmogorov equation

$$
\circ \frac{d e^{t Q}}{d t}=\frac{d}{d t}\left[\sum_{n=0}^{\infty} \frac{(t Q)^{n}}{n!}\right]=\sum_{n=0}^{\infty} \frac{d}{d t}\left[\frac{(t Q)^{n}}{n!}\right]=\sum_{n=0}^{\infty} \frac{t^{n-1} Q^{n}}{(n-1)!}=Q \sum_{n=1}^{\infty} \frac{(t Q)^{n-1}}{(n-1)!}=Q e^{t Q}
$$

- The initial condition is $p_{0}=I$, because

$$
\begin{aligned}
& \circ \quad p_{0}(i, j)= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
& \circ e^{0 Q}=\sum_{n=0}^{\infty} \frac{(0 Q)^{n}}{n!}=\frac{(0 Q)^{0}}{0!}=I
\end{aligned}
$$

- Why not always use $p_{t}=e^{t Q}$ for all CTMSs?
- Matrix exponentials are hard to compute, especially for infinite state space Derivation of Forward Kolmogorov Equations
- $\frac{d}{d t}\left[p_{t}(i, j)\right]=\lim _{h \rightarrow 0} \frac{p_{t+h}(i, j)-p_{t}(i, j)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\sum_{k \in S} p_{t}(i, k) p_{h}(k, j)-p_{t}(i, j)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\sum_{k \neq j} p_{t}(i, k) p_{h}(k, j)+p_{t}(i, j) p_{h}(j, j)-p_{t}(i, j)\right]
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\sum_{k \neq j} p_{t}(i, k) p_{h}(k, j)-p_{t}(i, j)\left(1-p_{h}(j, j)\right)\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\sum_{k \neq j} p_{t}(i, k) p_{h}(k, j)-p_{t}(i, j) \sum_{k \neq j} p_{h}(j, k)\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\sum_{k \neq j} p_{t}(i, k) p_{h}(k, j)\right]-p_{t}(i, j) \lim _{h \rightarrow 0} \frac{1}{h}\left[\sum_{k \neq j} p_{h}(j, k)\right]
$$

$$
\begin{aligned}
& =\sum_{k \neq j} p_{t}(i, k) \lim _{h \rightarrow 0} \frac{p_{h}(k, j)}{h}-p_{t}(i, j) \sum_{k \neq j} q(j, k) \\
& =\sum_{k \neq j} p_{t}(i, k) q(k, j)-p_{t}(i, j) \lambda_{j}
\end{aligned}
$$

Example: Birth and Death Processes

- The state space is $S=\{0,1,2, \ldots, N\}$
- Only nonzero rates are $\left\{\begin{array}{l}q(n, n+1)=\lambda_{n} \\ q(n, n-1)=\mu_{n}\end{array}\right.$
- Note the conflict in notation. Usually $\lambda_{n}=\sum_{k \neq n} q_{n k}=q_{n n}$

- Kolmogorov equations
- $p_{t}^{\prime}(i, j)=p_{t}(i, j-1) \lambda_{j-1}+p_{t}(i, j+1) \mu_{j+1}-p_{t}(i, j)\left(\lambda_{j}+\mu_{j}\right), \forall j=1, \ldots, N-1$
- $p_{t}^{\prime}(i, 0)=p_{t}(i, 1) \mu_{1}-p_{t}(i, 0) \lambda_{0}$
- $p_{t}^{\prime}(i, N)=p_{t}(i, N-1) \lambda_{N-1}-p_{t}(i, N) \mu_{N}$

Intuitive View of CTMCs

- Transition graph

- An alarm clock that goes off after a random Exp amount of time
- Explanation on transition graph
- Each edge in the graph represents an exponential clock with the edge weight as rate
- When you land in a new state, the clocks on the out edges begin
- Then your CTMC takes the path of the clock that goes off first

Foundational Work

- Make this informal description formal
- Show it possesses the Markov property
- Use Kolmogorov equations to determine $p_{t}(i, j)$ for a MC defined by jump rates

Two States Chains

- Transition graph

- $Q=\left[\begin{array}{cc}-\lambda & \lambda \\ \mu & -\mu\end{array}\right]$
- Backward equation
$\circ \frac{d}{d t}\left[p_{t}\right]=Q p_{t} \Leftrightarrow\left[\begin{array}{ll}p_{t}^{\prime}(1,1) & p_{t}^{\prime}(1,2) \\ p_{t}^{\prime}(2,1) & p_{t}^{\prime}(2,2)\end{array}\right]=\left[\begin{array}{cc}-\lambda & \lambda \\ \mu & -\mu\end{array}\right]\left[\begin{array}{ll}p_{t}(1,1) & p_{t}(1,2) \\ p_{t}(2,1) & p_{t}(2,2)\end{array}\right]$
- Since $\left\{\begin{array}{l}p_{t}(1,2)=1-p_{t}(1,1) \\ p_{t}(2,2)=1-p_{t}(2,1)\end{array}\right.$, we only need to find $p_{t}(1,1), p_{t}(2,2)$
$\circ\{\begin{array}{l}p_{t}^{\prime}(1,1)=-\lambda p_{t}(1,1)+\lambda p_{t}(2,1) \\ p_{t}^{\prime}(2,1)=\mu p_{t}(1,1)-\mu p_{t}(2,1)\end{array} \Rightarrow \underbrace{p_{t}^{\prime}(1,1)-p_{t}^{\prime}(2,1)}_{g^{\prime}(t)}=-(\lambda+\mu) \underbrace{\left(p_{t}(1,1)-p_{t}(2,1)\right)}_{g(t)}$
- Solving the equation above, we have $g(t)=C e^{-(\lambda+\mu) t}$, where $C=1$
- Thus, $p_{t}(1,1)-p_{t}(2,1)=e^{-(\lambda+\mu) t}$
$\circ\left\{\begin{array}{l}p_{t}^{\prime}(1,1)=-\lambda e^{-(\lambda+\mu) t} \\ p_{t}^{\prime}(2,1)=\mu e^{-(\lambda+\mu) t}\end{array} \Rightarrow\left\{\begin{array}{c}p_{t}(1,1)=\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}+\frac{\mu}{\lambda+\mu} \\ p_{t}(2,1)=-\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t}+\frac{\mu}{\lambda+\mu}\end{array}\right.\right.$

Stationary Distributions

- Recall from DTMC
- Coordinate form: $\mathbb{P}_{\pi}\left(X_{n}=j\right)=\pi(j), \forall n \geq 0, j \in S$
- Matrix form: $\pi \mathcal{P}^{n}=\pi, \forall n \geq 0 \Leftrightarrow \pi \mathcal{P}=\pi$
- Continuous time
- Coordinate form: $\mathbb{P}_{\boldsymbol{\pi}}(\boldsymbol{X}(\boldsymbol{t})=\boldsymbol{j})=\boldsymbol{\pi}(\boldsymbol{j}), \forall \boldsymbol{t}>\mathbf{0}, \boldsymbol{j} \in \boldsymbol{S}$
- Matrix form: $\boldsymbol{\pi} \boldsymbol{p}_{\boldsymbol{t}}=\boldsymbol{\pi}$
- Claim: $\boldsymbol{\pi}$ is stationary if and only if $\boldsymbol{\pi} \boldsymbol{Q}=\mathbf{0}$
- Assume $\pi Q=0$, we want to show that $\pi p_{t}=\pi$
- $\pi p_{t}=\pi e^{t Q}=\pi \sum_{n=0}^{\infty} \frac{(t Q)^{n}}{n!}=\pi+\pi \sum_{n=1}^{\infty} \frac{t^{n}}{n!} Q^{n}=\pi+0=\pi$

Convergence Theorem

- Irreducibility
- A CTMC $X(t)$ is irreducible if for any $\boldsymbol{i}, \boldsymbol{j} \in \boldsymbol{S}$, there exists states $\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{n - 1}}$ s.t.

○ $\boldsymbol{q}\left(\boldsymbol{i}, \boldsymbol{k}_{1}\right) \boldsymbol{q}\left(\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}\right) \cdots \boldsymbol{q}\left(\boldsymbol{k}_{\boldsymbol{n}-\mathbf{1}}, \boldsymbol{j}\right)>\mathbf{0}$ i.e. "It is possible to go from i to j "

- Fact about periodicity
- If $X(t)$ is irreducible, then $\boldsymbol{p}_{\boldsymbol{t}}(\boldsymbol{i}, \boldsymbol{j})>\mathbf{0}$, for all $t>0$ and $i, j \in S$
- Convergence theorem
- If $X(t)$ is a CTMC s.t. $X(t)$ is irreducible, and has a stationary distribution
\bigcirc Then, $\lim _{t \rightarrow \infty} p_{t}(\boldsymbol{i}, \boldsymbol{j})=\pi(\boldsymbol{j}), \forall \boldsymbol{i}, \boldsymbol{j} \in \boldsymbol{S}$
- Proof
- $p_{h}(i, j)>0$ for all $h>0$ and $i, j \in S$
- p_{h} is a stochastic matrix that is irreducible, aperaodic, and has stationary distribution π
- By Discrete Time Convergence Theorem, $\lim _{n \rightarrow \infty} p_{n h}(i, j)=\pi(j)$
- Since this is true for all $h>0$, we have $\lim _{t \rightarrow \infty} p_{t}(i, j)=\pi(j)$

Detailed Balance

- Definition
- We say π satisfies the detailed balance equations if

○ $\pi(i) q(i, j)=\pi(j) q(\boldsymbol{j}, \boldsymbol{i}), \forall \boldsymbol{j} \neq \boldsymbol{i}$

- Fact
- Any distribution satisfying the detailed balance equations is a stationary distribution
- Example: Birth and Death Process
- $S=\{0,1,2, \ldots, N\}$ with $N=\infty$ as a possible choice

- Exercise: Show that Birth and Death processes satisfy the detailed balanced equations
- The transition rates for this Markov chain is $\left\{\begin{array}{cc}q(n, n+1)=\lambda_{n} & \forall n \in\{0, \ldots, N-1\} \\ q(n, n-1)=\mu_{n} & \forall n \in\{1, \ldots, N\} \\ q(i, j)=0 & \text { otherwise }\end{array}\right.$
- Let π be a distribution that satisfies the detailed balance equation. Then
- $\operatorname{For} j \neq i+1$ or $i-1$
- $\pi(i) \cdot 0=\pi(j) \cdot 0$, which is automatically satisfied
- For $i \in\{0, \ldots, N-1\}$
- $\pi(i) q(i, i+1)=\pi(i+1) q(i+1, i)$
- $\pi(i) \lambda_{i}=\pi(i+1) \mu_{i+1}$
- $\pi(i+1)=\frac{\lambda_{i}}{\mu_{i+1}} \pi(i)=\frac{\lambda_{i} \lambda_{i-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{i+1} \mu_{i} \cdots \mu_{2} \mu_{1}} \pi(0)$

CTMC Exercises

Exercise 4.8(a)

- Two station queueing network
- Arrivals only occur to first station at rate 2
- Arriving customer at first station leaves if server is busy
- First server works at rate 4 , second server works at rate 2
- When a customer is done as station 1 , they go to station 2 immediately
- If station 2 already has a customer, the customer from station 1 leaves
- Model this as a CTMC with $S=\{0,1,2,12\}$
- Find the proportion of customers that enter the system
- An arriving customer enters the system if station 1 is open
- This only happens when the system is in state 0 or 2 , so we want $\boldsymbol{\pi}(\mathbf{0})+\boldsymbol{\pi}(2)$
- The jump rate matrix is
$\circ Q=\begin{gathered}0 \\ 1 \\ 2 \\ 12\end{gathered}\left[\begin{array}{cccc}0 & 1 & 2 & 12 \\ -2 & 2 & 0 & 0 \\ 0 & -4 & 4 & 0 \\ 2 & 0 & -4 & 2 \\ 0 & 2 & 4 & -6\end{array}\right]$
- Detailed balance does not work
- $\pi(0) q(0,1)=\pi(1) q(1,0)$

- $2 \pi(0)=\pi(1) \cdot 0=0$
- Thus, $\pi=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ is the only solution satisifies DB
- Solving $\pi Q=0$ with $\pi(0)+\pi(1)+\pi(2)+\pi(12)=1$, we have

$$
\circ\left\{\begin{array}{c}
-2 \pi(0)+2 \pi(2)=0 \\
2 \pi(0)-4 \pi(1)+2 \pi(12)=0 \\
4 \pi(1)-4 \pi(2)+4 \pi(12)=0 \\
2 \pi(2)-6 \pi(12)=0 \\
\pi(0)+\pi(1)+\pi(2)+\pi(12)=1
\end{array} \Rightarrow \pi=\left[\begin{array}{llll}
\frac{1}{3} & \frac{2}{9} & \frac{1}{3} & \frac{1}{9}
\end{array}\right]\right.
$$

Exercise 4.13

- 15 lily pads and 6 frogs
- Each frog gets the urge to jump to a new pad at rate 1
- When they jump, they choose 1 of 9 available pads uniformly at random
- Find the stationary distribution for the set of occupied lily pads
- Define $L=\{1,2, \ldots, 15\}$ and $S=\{s \subseteq L| | s \mid=6\}$
- Then the only non-zero transition rates are
- $q(\{a, b, c, d, e, f\},\{g, b, c, d, e, f\})=\frac{1}{9}$ for any distinct $a, b, c, d, e, f, g \in L$
- To find π, use the detailed balance equation
- $\pi(\{a, \ldots, f\}) q(\{a, \ldots, f\},\{g, b, \ldots, f\})=\pi(\{g, b, \ldots, f\}) q(\{g, b, \ldots, f\},\{a, \ldots, f\})$
- $\pi(\{a, \ldots, f\}) \cdot \frac{1}{9}=\pi(\{g, b, \ldots, f\}) \cdot \frac{1}{9}$
- $\pi(\{a, \ldots, f\})=\pi(\{g, b, \ldots, f\})$
- Therefore all the rates must be equal $\Rightarrow \pi(s)=\frac{1}{|S|}=\binom{15}{6}^{-1}$
- Asymmetric Simple Exclusion Process (with $p \neq q$)

Stationary Distribution of $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queue

- Find constraints on λ, μ so that a stationary distribution exists for the $M / M / s$

- The jump rates are $\left\{\begin{array}{cc}q(n, n+1)=\lambda & n \geq 0 \\ q(n, n-1)=n \mu & 1 \leq n<s \\ q(n, n-1)=s \mu & n \geq s\end{array}\right.$
- Use the formula for birth and death process

$$
\circ \boldsymbol{\pi}(\boldsymbol{n})=\frac{\lambda_{\mathbf{0}} \cdots \lambda_{\boldsymbol{n}-\mathbf{1}}}{\boldsymbol{\mu}_{\mathbf{1}} \cdots \boldsymbol{\mu}_{\boldsymbol{n}}} \boldsymbol{\pi}(\mathbf{0})=\left\{\begin{array}{cc}
\frac{\lambda^{n}}{n!\mu^{n}} \pi(0) & 1 \leq n<s \\
\frac{\lambda^{n}}{s!s^{n-s} \mu^{n}} \pi(0) & n \geq s
\end{array}\right.
$$

- In order for π to be a distribution, we need $\sum_{n=0}^{\infty} \pi(n)<\infty$

$$
\circ \sum_{n=0}^{\infty} \pi(n)=\sum_{n=0}^{s-1} \pi(n)+\sum_{n=s}^{\infty} \pi(n)=\underbrace{\pi(0) \sum_{n=0}^{s-1} \frac{\lambda^{n}}{n!\mu^{n}}}_{<\infty}+\frac{\pi(0)}{s!} \frac{\lambda^{s}}{\mu^{s}} \sum_{n=0}^{\infty}\left(\frac{\lambda}{s \mu}\right)^{n}<\infty
$$

- We want $\sum_{n=0}^{\infty}\left(\frac{\lambda}{s \mu}\right)^{n}<\infty \Rightarrow \frac{\lambda}{s \mu}<1 \Leftrightarrow \lambda<\boldsymbol{s} \boldsymbol{\mu}$

