Definitions and Theorems

Sunday, October 7, 2018 10:30 PM

Markov Chain
e Markov Property
© P11 = x1411X0 = X0, -, X = x1) = P(Xp4q = X1411X = x7)
¢ Chapman-Kolmogorov Equation
o PTG = ) DR )
=
¢ Stopping Time
o {T = n} can be expressed using the variables X, X, ..., X,,
¢ Strong Markov Property
o PXry1 =j|lXr =0T =n) =p(,j)
¢ Return Time/Probability
o T, = min{n = 1|X,, = y} is the time of first return
o T¥ = min{n > T} ~!|X, = y}is the time of k-th return
o p,’c‘y =P, (Tjic < 00) is the probability of reaching y from x for k times
¢ Number of Visits
o N(y): Number of visits to y after time 0
o N,(y):Number of visits to y up to time n

¢ [nitial Distribution

o Py(4) = (41Xy = x)
n-1

o ]P)M(XO = Xg, X1 = X1, -, X = ) = u(xp) np(xl'le)
1=0

¢ Transientand Recurrent
o yistransient < p,,, = ]Py(Ty < 00) <le1l-py = ]P’y(Ty = 00) >0
o yisrecurrent & py, = [F’y(Ty < 00) =1le1-py, = ]Py(Ty = 00) =0
e Communication: x = y iff p™(x,y) > 0 forsomen > 0
¢ Closed (impossible to get out of): If i € C and p(i,j) > 0,thenj € C

¢ Irreducible (freely moved about): i & j,Vi,j € C

¢ Tail — Sum Formula: EN = z P(N = k)
k=1
e Theorems Related to Recurrence

Pxy

O ]ExN(y) = ﬁ
yy
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o ExN(y) = 2 p"(x,y)
n=1

o yisrecurrent & Z p"(y,y) = E,N(y) = +

n=1

o Ifx=>yandy = z,thenx = z
o Ifx = yand py, <1,thenx is transient
o Ifxisrecurrentand x = y, then p,, =1
o Ifxisrecurrentand x = y, then y is recurrent
o In afinite closed set of states, there is at least one recurrent state
o Finite, Closed, Irreducible = Recurrent
o |§|<o=>8=TUR,U:--UR,forT,R; disjoint, R; irreducible
e Stationary Distribution/Measure
o uisa stationary measure © u = uP < u(j) = Z u(@p(,j)
i€s
o m is a stationary distribution < 7 is a stationary measure and Z n(j)=1
JES
(k)
st

o Normalize u to getw: w(k) =

Positive vs Null Recurrent
o x is positive recurrentif E, T, < oo
o xisnull recurrentif E, T, = oo

¢ Convergence Theorem

o IfaMCisirreducible, aperiodic, and 7 exists, then lim p™(x,y) = n(y)
n—-oo

Asymptotic Frequency

Nn (3’) 1 if exists

ﬁ
EYY&

o Ifa MCisirreducible and recurrent, then

n(y)

Law of Large Numbers for MC

o Suppose a MC is irreducible and 7 exists

n

1
o I ) If@IR() < oo then =" F(X) = ) f(IT(x) = Enf (x0)

XES =1 X€ES

Doubly Stochastic

o A stochastic matrix is doubly stochastic if its column sum to 1 i. e. z p(x,y)=1
XES

1
o m(x) = N’ Vx € S is a stationary distribution < the MC is doubly stochastic

Detailed Balance

o n(xX)p(x,y) =n()p(y,x),Vx,y €S
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o All distributions satisfying the detailed balance equations are stationary
o All random walks' graphs satisfy DBE's
¢ Exit Distribution
h(a) =1,h(b) =0

° Vh(x) = z p(x,y)h(y),Vx € C == S\ {a, b} = hx) = Pr(Va <Vp)
YES

e Exit Time
o Define V, = inf{n > 0|X,, € A} and C := S \ A. Suppose P, (V4 < ®) > 0,Vx € C
gl@)=0,vaeA

S e =1+ Z gOp,y) = 90 = Ex[Va]
yecC

Poisson Process

¢ Exponential Distribution

le ™ t>0 1—e™ x>0
© xp(1) & fx(t) {0 t<0 x () { 0 Y <0
1 1
9 ]E[X] = I,Var[X] = ﬁ
o PX>s+tlX>s)=PX>1t)
¢ Gamma Distribution
e @™t
o T~Gamma(n, 1) © T = Sum of n Exp(1) & fr(t) =<4€ (n—1)! t=0
0 t<o0
n n
9 ]E[T] = z,Var[T] = ﬁ

e Poisson Distribution

n

A
o X~Poisson(1) © py(n) = e‘lm = E[X] = Var[X] = A
e Poisson Process

o Interarrival time: T, e Exp(1)

o Arrival time: T,, = 7 + -+ + t,~Gamma(n, 1)

o Number of arrivals up to time s: N(s)~Poisson(1s)
¢ Equivalent Definition of Poisson Process

o N(0) = 0 (with probability 1)

o N(t+s)— N(s)~Poisson(At)

o N(t) has independent increments

¢ Compound Poisson Process
N(t)

O S(t) == Yl + YZ + "'+ YN(t) == Z Yk
k=1
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o S(t)=0whenN(t) =0
e Mean and Variance of Random Sum
o E[S] = E[N]E[Y:]
o Var[S] = E[N]Var[Y;] + Var[N](E[Y;])?
¢ Mean and Variance of Compound Poisson Process
o Var(S) = AE[YZ]
o E[S(t)] = AtE[Y;]
o Var[S(t)] = AtE[Y?]

¢ Thinning a Poisson Process
N(t)

o Define N;(t) = 1{Y, = j} be the number of arrivales up to time t of type j
k=1

o Then N;(t), N5(t), ... are independent Poisson process with rate 1; = AP(Y; = j)
e Superposition of Poisson Processes

o Suppose N, (t), ..., N;(t) are independent Poisson process with rates 14, ..., A,

o Then N(t) = N;(t) + -+ + Ni(t) is a Poisson process withrate A = 1; + -+ A

¢ Conditioning of Poisson Processes

D
o (Ty, .., ToIN(@®) = 1) = (Ugyy, e, Ugy)

n!
o f(tl,...,tn)z t_n OStISStnSt
0 otherwise

¢ Binomial and Conditioning of Poisson Processes

o P(N(s) =k|N(t) =n) = (Z) (;)k (1 _;)n—k fors<tand0 <k <n

Renewal Process

e Renewal process: Like a Poisson process, but waiting time t; do not have to be Exp(4)

. . N@®) 1
e Arrival LLN: tllm — = 17, where u = E[t;]
e Reward LLN
N(t)
. . R(@®) E[r]
o Letr; = reward/cost of i-th renewal,and R(t) = 17, then, tllm = EL,]
—00 i

i=1
¢ Alternating LLN

o Letsy,s,,...be the times in state 1, and u4, u,, ... be times in state 2

E[s;]
o Then the limiting fraction of time spent in state 1 is —————~—
i Els;] + E[w]

¢ Age and Residual Life
o A(t) = age = time since last renewal = ¢t — Ty,

o Z(t) = residual life = time until next renewal = Ty )41 — ¢
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o th-glo P(A(t) > x,Z(t) > y) = ﬁti]J,:yP(ti > z)dz
]P(tl‘ > Z)

o Limiting PDF of Z(t) is g(2) = B[]
i

for z = 0, and same for A(t)

E[t?
2E[¢;]

o Limiting expected value of A(t) and Z(t) is

fla+2z)

o Ift,~f then the limiting joint PDF of A(t) and Z(t) is E[C,]
1
Continuous Time Markov Processes

e Markov Property

o Foranytime0 < sy < :- < s, < s, and any states j, i, i, ..., iy, we have

© [P)(Xs+t =j|Xs =1,Xs, = lp, o, X5y = iO) =PXs4e = jIXs = ) = P(X; = jlXo = 1)
¢ Chapman-Kolmogorov Equation

O Ponelif) = ) pali Ptk )

kEeS

i,j
* Jump Rates: For any states i # j, q;; = %i_r}r(l) ph(h /)

¢ Kolmogorov Equations

o Define A; = z g;r to be the rate out of state i
k=#i

-A q(1,2) q(1,3)

o Define Q;; = {qij i Q= q21) -2 q(23)

—A; ifi=j q31) qB2) -3
d .. ] . .. d
o Backward: E[pt(l:])] = 2 q(, k)pc(k,j) — 4ipe (i, ) © a[pt] = Qp¢
k+i
d .. . . .. d
o Forwardi —[pe(L,)] = ) pe(i, Da(k,)) = pe(i. Ny & = lpl = peQ
k#i

Stationary Distributions
o P,(X(t) =j)=n(),vt>0,jeESenmp, =1

o mis stationary ifand only if 1Q = 0

Irreducibility
o A CTMC X(t) isirreducible if for any i, j € S, there exists states ky, ..., k1 S.t.
o q(i,ky)q(kq, ky) - q(kn_q1,j) > 0ie "Itis possible to go fromi to j"

e (Convergence Theorem

o IfX(t)isaCTMCs.t. X(t) is irreducible, and has a stationary distribution

o Then, tll_)l’l; p:(i,j) =n(j),Vi,jES

Detailed Balance

o m(Dq(,j) =n()q(,D,vj#i
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Review, Introduction to Stochastic Processes

Thursday, September 6, 2018 9:31 AM

Probability Space

¢ Sample space, (): set of all elementary outcomes in a random experiment

Events, F: set of subsets of the sample space

Probability measure P: function on the events that assigns probabilities to them

(Q, F,P) form a probability space

Axioms of Probability Measure
1. ForanyeventA € F,we musthave 0 < P(4) <1
2. P =1
3. Countable additivity of P

For disjoint events 44, 45,45 ..., P U Aj | = z Aj
j=1 j=1
Properties of Probability Measure
e P(A°)=1-P(4)
e IfA S B,thenP(4) < P(B)
e P(AUB) =P(A)+P(B)—-PANB)
Random Variables
¢ Definitions
o Arandom variable X is a function with domain Q and codomain R
o Adiscrete RV is a RV where range is a finite set, or a countably infinite set

¢ (lassic examples: Bernoulli, Binomial, Geometric

What is Stochastic Processes
¢ A collection of random variables organized by an index set
e More formally, {X(t)|t € L} is a stochastic process, and £ the index set

¢ We often classify and study the stochastic processes by properties of the index set

Common Choices for the Index Set
1. Z,o =N =1{0,1,2,3...}
o This gives us a sequence of RVs called discrete time stochastic process
o Example: Pick a stock. Check its price each morning.
o Usual notation: X(t) = X;, often use n instead of t
2. Ryo = [0, +)

o This is called a continuous time stochastic process
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o Example: Suppose you want to check the stock's price at ANY time.
o Notation: X(t) = X;
3. Lisasetofsubsets of some larger universe U
o Sometimes called a point process
o Example
= U = All stocks on S&P500
= L = Powerset of U(All subsets of U)
= Forall4 € £, X(A) = #Stocks in A that increase in value over 2018
State Space
¢ Definition
o The set of values of RVs can take is called the state space, denoted by S
e Example
o Suppose you are playing Monopoly
o X, = Your position on Monopoly board after n rounds of play

o Thisisa DTSP with S = {All positions on the board}
Basic Question for DTSPs

e Whatis the value of P(X, = xo, X1 = X4, ..., X, = x,) forany xg, x4, ..., x,?

Idea: apply the chain rule / multiplication rule for conditional probability

Conditional probability
P(AB)
P(B)

Generalized conditional probability

o P(A|B) =

= P(4B) = P(B)P(4|B)

n-1

o IP(E1E; - Ep) = P(Ey) 1_[ P(E;411Ey -+ EY)
=1

Formula for DTSPs in general
n-1

o P(Xg = xg, ., X = x5) = P(Xo = x0) H]P(Xzﬂ = X1411X0 = x0, -, X1 = x7)
1=0
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Introduction to Markov Chain

Tuesday, September 11, 2018 9:21 AM

Markov Chain

e Markov assumption

o Your next step only depends on where you are, not where you've been
¢ Markov property

0 P(Xp+1 = Xn+1|Xo = X0, -, Xn = x5) = P(Xp41 = X1 Xn = x), VX;
¢ Further assumption in this course: temporally homogeneous

0 P(Xn+1 =jlXn =1 = PXipy1 = jlXm = 0),Vm,n
¢ Transition probability

o Since the subscript doesn't matter, we will use

p(i,)) = PXn41 = jlXn = 1)
to denote the transition probability from state i to state j

o Therefore, for Markov chain
n-1
¢ Py = g Xn = %) = PO = x0) | [Pt 2x140)
1=0

Initial distribution
¢ Ifwe know the exact starting position from the MC
o ThenP(X, =i) =1, forsomei €S
o We may write P;(X,, =j) = P(X,, = j|X, = 1)
¢ [fthe starting position is random
o We need to assign an initial distribution/measure on S

o Our usual notion for the initial distribution is u

0<u()<1
o u(i) =P(X, = i), where N —
p@ =1

n-1

o We may write P, (Xo = xo, X1 = X1, ..., X = X) = p(x) np(xl,le)
1=0

Example: Highly Simplified Voter Model
¢ We randomly choose a US voter
e Start with 2012 (n = 0), then 2016 (n = 1),2020 (n = 2), and so on
e In 2012, voters were split by D: 51%, R: 46%, T: 2%
* From one election to the next,

o Dvotes D, R, T with probability 0.3, 0.5, 0.2
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o Rvotes D, R, T with probability 0.3, 0.3, 0.4
o Tvotes D, R, T with probability 0.6, 0, 0.4
e Whatis the initial distribution for this model?
o Coordinate form: u(D) = 0.51, u(R) = 0.46, u(T) = 0.02
o Vector form:u =[0.51 0.47 0.02]

e How can we visualize this MC?

Y OEBO

0.4

a3

02

¢ How should we organize the transition probability?

03 05 0.2
o P=|(03 03 04

06 0 04
o P is called the transition matrix for the MC

o Note: Rows sums to 1, columns do not have to sum to 1

¢ What is the probability that someone who votes R in 2012 votes T in 2016 and D in 20207
o Pr(Xy =T,X, =D)=pR,T) -p(T,D) =0.4%x0.6 =0.24

¢ What is the probability a 2012 R voter will vote D in 20207
o PR, =D)= ) Pp(X, =5,X, = D)

SES
= ]PR(X]_ = D'XZ = D) + ]P)R(Xl = R'XZ = D) + ]P)R(Xl = T,Xz = D)
=pR,D)-p(D,D) +p(R,R) - p(R,D) + p(R,T) - p(T, D)
=03%x03+03x%x03+0.4x%x0.6
=0.42
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Simple Random Walk, P", Gambler's Ruin

Thursday, September 13, 2018 10:13 AM

Example: Simple Random Walk

+1 with probability p
—1 with probability 1 —p =¢q

Let {Y, },,1 be iid with distribution Y,, = {

0 forn=20
.Y forn>1

Let {X,,},;>0 be defined as X,, = {

Question: Is X,, X1, X5, ... a Markov chain?

We need to check whether the Markov property is satisfied

o ]P)(Xn+1 = Xn411Xo = xg, oo, X = xn) = ]P(Xn+1 = Xpgq|Xp = xn)

Compute P(X,, 11 = j|Xo = X¢, oo, Xp = 1)
o PXpy1 =JjlXo = X0, e, X1 = X1, X = )
_ P(Xo =X, .., Xn-1 = Xp—1,Xn =, Xpn41 = J)
P(Xo = X0, s Xn-1 = X1, X = )
_ PXy =21, ., X1 = X1, X = 1, X1 = J)
P(X; = X1, 0, Xppeq = Xpeq, X = 1)

_ P(Yl =x1,Y2 =Xy, — X1 ...,Yn =i_xn_1,Yn+1 =]_l)

,by Bayes' law

,since X, =0

- ysince Vi = Xipq — X
]P)(Yl = Xq, YZ =Xy —Xq ""YTL =1— xn_l)

_ P(Y; =x) )P, =x; —21) PV, =1 — X1 )P(Ypyy =j — 1)
B Py =x)P(Y; =23 —x9) - P(Y, =i — xp1)
=P(Yn41 =7 —10)

e Compute P(X,41 =Jj|X, =1)

PX,=06Xp41=J
0 Pllays = Xy = ) = i 1 =)

P(X,, =1)
PXn =Y =j -0
= n [P’(X:; B) ,since Xy =X+ Y1 © Vo1 = X1 — Xi
- & =0 (n+1- d ),SinceXn =Y, +--+Y,isindependent with ¥, 4
P(X, =1)
=PYpyr =j—1D)

¢ Therefore X,, X1, X5, ... is a Markov chain

n-Step Transition Probabilities
e Motivation
o Compute P(X, = j|X, = i), given the transition probabilities p(l, k) for the MC
e Statement
o Let Py = p(l, k) be the probability transition matrix, then P(X,, = j|Xo = i) = [P"];;
e Proof

o Forn = 1: True by definition of P
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o Forn=2

. ]P’(Xz:]'|Xo=i)=2]1”(Xz=j;X1=l|Xo=i) . >
IES ; /
. _ZP(X2=j»X1=lX0=i) ‘O . .

h P(X, = i)

¥y

les

, .’l l, n; :
L u(L)pZ(i;p( ) ZP(L l)p(“)_z:?u?l] 2, ! n=2

LES lES les

o The general case is proven via strong mathematical induction
¢ (Corollary: Chapman-Kolmogorov Equation
o PN = ) P Dp"(L))
leS
¢ Proof for Corollary

o PG = [Py = D PPy = ) pm G D)

= =
Example: Gambler's Ruin
¢ Background
o You have $7. You need $10. There is a casino game where you either win or lose $1.

o The win probability is 0.45. You play the game until you have lost or met your goal.
¢ Model this problem with a Markov chain
o s=0.45f=055u(7)=1

0 009‘0161610 0 0
f £ £ F £

¢ Find the probability that you have met your goal by the 10th round

(1 0
f 0 s
f 0 s
f 0 s
_ f o s
o P= f 0 s
f 0 s
f 0 s
f 0 s
0 1

o P(Xy = 10|Xy = 7) = p'°(7,10) = [P*°]g,, ~ 0.248, note that the index starts with 1
¢ Find the probability you lost it all by round 10
o p'(7,0) = [P10]g; = 0.042
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T, Strong Markov Property, T v Pyys Recurrence

Tuesday, September 18, 2018 9:33 AM

Stopping Time
¢ Motivation

o In the setting of Gambler’s ruin

Starting stake

Lose!
(You've gone bust.
must leave game)

Win!

p=probability of winning turn
q=probability of losing turn= 1-p

o T = The first time you have $N

(Final stake: leave game)

o We can think of stopping time as a criteria to quit running the Markov chain
¢ Definition
o LetT be arandom variable taking values in {0,1,2, ..., o}
o T is a stopping time for a Markov chain X, Xy, ... if
* The event {T = n} can be expressed using the variables X, X;, ..., X,,
* e You can tell if you stop at time n based on the states of the MC through time n
¢ Example: Determine if the following RVs are stopping times
o T = min{n > 1|X,, = 5} = time of first visit to state 5
» T=n}={X,=5X,_1#5,..,X; # 5}
» Therefore T is a stopping time
= Note: We do not include X, sincen > 1

o T =max{n = 1|X,, = 2} = time of final visit to state 2

a.s.
» {T=n} ={X,=2X,4, =3}
* T is not a stopping time, since we need to know {X,,,1 = 3} in the future

o T = Time of the third visit to state 2
n-1
» {T=n}= {Xn =2, <2 1{X, = 2}) = 2},where 1is a indicator function
k=1

» Since {T = n} could be expressed using X, ..., X, it is a stopping time
o T = Time of final visit to state 2 after visiting state 5

» {T=n}=0forn+0

= SoT is astopping time for the MC

Page 12



Strong Markov Property

¢ Definition
o LetT be a stopping time for the Markov chain X, X, ...
o GiventhatT =nand X; = y. Then
o Any other information about Xy, ..., X, is irrelevant for future predictions
o And X, (k # 0) behaves like a Markov chain with initial state y

¢ Justification
o Durret proves P(Xr,q = j|Xr =i, T =n) = p(i,j)

¢ Why stopping times? Why no any random variables?
o Suppose T, = min{n > 0|X,,,; = y}

o T, is not a stopping time, since {Ty =n} = {Xp41 = ¥}
. . 1 ifj=y
o P(Xp1=jlXr, =0T, =n)= {o ifj' *y

Return Time and Return Probability
* T, = min{n > 1|X;, = y} is called the hitting time of y or time of first return to y

s pyy =P,(T, < ) s called the return probability

T% = min{n > T¥"1|X,, = y} is called the time of k-th return

p%, = P,(T% < ) is called the k-th return probability

o Proof: Use strong Markov property and mathematical induction

Note: k is label on T;‘, but exponent on p37,‘y

Recurrent and Transient States

e Motivation

o Inthe example above, it's less likely to return to state 1 and 2 as the time increase

o While for state 3, 4 and 5, the chain returns to those states for infinitely many times

¢ Definition
o If py, <1, wesayy is transient (not guaranteed to keep returning to y)

o If py, =1, wesay y is recurrent (guaranteed to return to y forever)
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Recurrence, Closed, Irreducible, Communication

Thursday, September 20, 2018 9:31 AM

Introduction
e T, = min{n > 1|X,, = y} is the time of first return to y
* pyy =P,(T, < ) s called the return probability of y
* It's easier to calculate the return probability rather than finding the PMF, ET,, etc
e Butit's still difficult, so we try to classify states categorically
o yistransientifp,, <1
o yisrecurrentifp,, =1
¢ [tis possible to classify all states as transient or recurrent once at a time

¢ But we want to find a more efficient way to classify the states in groups

Example: Transient or Recurrent

¢ (lassify the states of the gambler's ruin MC for a prize goal of $5 as transient or recurrent

COBO0BOSGOSOMA6:]

e Recurrent
0 poo =Po(Tp <®) =p(0,0) =1
o pss =P5(Ts <) =p(55)=1
o So state 0 and state 5 is recurrent
e Transient
0 pyy<le1-p,,>0P,(T,=0)>0
0 Py(T, =) =2P,(X; =1,X, =0) =p2,1D)p(1,0) >0

o So state 2 is transient, similar for state 1, 3, and 4

Communication (Accessibility)
¢ Definition
o We say that x communicates with y if p™(x,y) > 0 for some n > 0, denoted by x = y
¢ Remark: Different from Textbook
o Textbook uses x — y for communication
» This single arrow is used in graphs to denote p(x,y) > 0
= But since communication is more general than 1-step, we use double arrows
o Textbook defines communication as ]P’x(Ty < 00) =1
» [tis possible forx # x
» But the usual convention is to ensure x = x, which is guaranteed for our definition

e Example
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= p3(1,4) = p(1,2)p(2,3)p(3,4) > 0
o Why4# 1

* Onlyp(3,4),p(4,5) > 0 for p(4,j), so 4 cannot get to 3, 5 in one step
* Thus p(5,4)p(3,3)p(3,4) > 0 are the only possible transitions from 3, 5
» Soforallp™(4,1)=0ied4+1

Closed and Irreducible Sets

¢ A closed set of states is impossible to get out of
o Asetof states C is closed if the following condition is satisfied
o Ifi e Candp(i,j)>0,thenj€eC

¢ Airreducible set of states can be freely moved about (you can go anywhere)
o Asetofstates C isirreducibleif i & j,Vi,j € C

¢ Example (in the graph above)
o {1,2},{3,4,5},{4,5},{2} are irreducible sets
o {3,4,5},{1,2,3,4,5} are closed sets

Decomposition of Finite State Space (Theorem 1.8)

e Statement
o Ifthe state space S is finite, then S can be written as a disjoint union
o TUR{U:--URyfork =1 (atleast one recurrent state), where
= T isa setof transient states, and
= R; are closed irreducible sets of recurrent states.
¢ Example

o Classify all states of the Markov chain with

0 0 0 05 0 0 05
0 0 0 0 0505 0 (3) (6) (4)
0 05 0 0 0 05 0
oP=[05 0 0 0 0 0 05
0 0 05 0 0 05 0 ,
1 0 0 0o 0o o of (5 (2) (V)
Lo 0 0o 1 0 o0 ol

o T =1{2,3,5,6}isaset of transient states

o R, ={1,4,7}isaclosed irreducible set of recurrent states

Number of Visits

¢ N(y) = Number of times the Markov chain visit state y
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Theorems Related to Recurrence

Monday, September 24, 2018 9:21 PM

Some Notation Reminders
e T, = min{n > 1|X, = y}
e T¥ =min{n > T} X, =y}
¢ N(y) = Number of times MC visits state y after time 0
* Pry = Py(Ty < o)
* yistransient & p,, <1
e yisrecurrent & py, =1

o x = yiff p"(x,y) > 0 forsomen = 0

Theorems Related to N(y)

e Lemma: tail-sum formula

o If NisaRV taking valuesin {0,1,2, ... },then EN = Z P(N = k)
k=1

o Define the indicator 1, = {(1) 4 doi:;f)lifccur' Then

= N = ﬂ{NZl} + ﬂ{sz} + .= 2 ﬂ{NZk}
k=1

o Taking E on both side, we obtain
* EN = Elgysqy + Elgyspy +-=P(NZ1)+P(N=2) + - = Z P(N = k)
k=1

_Pry

e Lemma 1.11: E,N(y) = T-p

yy

o E,N(y) = Z P,(N(y) = k), by the tail-sum formula
k=1

I
s

P, (TJ‘," < 00) ,since {N(y) = k} is the same as the kth return occurs

=
Il
-

I
s

P, (T < 0, T, < ), since {Ty < oo} includes {T,, < oo}

=~
Il
_

P, (TF < 0o|T, < ) P, (T, < )

k_
pyy1 Pxy

I
s

&
1l
=

Xy
yy
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Pxy

= pxyEP;/(;l =pxyzp§y =11 pyy
k=1 k=0 +oo if pyy =1

if py, <1

e Lemma 1.12: E,N(y) = z p*(x,y)

n=1

o Use an indicator function to express N(y): N(y) = Z Lix, =y}

n=1

o Then E,NG) = ) Elpgeyy = ) ol =3) = ) p(x,y)
n=1 n=1 n=1

¢ Theorem 1.13: yis recurrent < z p"(y,y) =E,N(y) = +

n=1

o yisrecurrent = p,, = 1= E,N(y) = py,y Z 1=+4o00
k=1

o E,N(y) = Z pJI,‘y = 40 = p,, = 1= yisrecurrent
k=0
Theorems Related to Communication

e Lemmal9:lfx=yandy = z,thenx >z
o p™(x,y) > 0andp™(y,z) > 0forsomen,,n, =0
o p™mTM2(x,z) = p™(x,y)p™(y,2) > 0
o Thereforex = z

* Theorem 1.5:If x = y and py, < 1, then x is transient
o Letn e Nstp™(x,y) >0
O Py(Ty = 00) 2 Py(Ty = 0, Xy = y)

= ]Px(Tx = 00|Xn = Y) ]Px(Xn = Y) = (1 _pyx)pn(xry) >0
Py, (Ty=20) pr(x.y)

O SO Pyy = Py(Ty <) =1 P (Ty =) <1

o Therefore x is transient
* Lemma 1.6: If x is recurrentand x = y, then p,, = 1
o Use the contrapositive from the previous theorem
o Ifxisrecurrent, thenx # y or p,, =1
o Byassumptionx = y,s0 py, =1
¢ Lemma 1.9: If x is recurrent and x = y, then y is recurrent
o By the previous lemma, we havey = x
o Sothere exists [, k s.t. p*(y,x) > 0 and p'(x,y) > 0
o We want to show that E,, N(y) = +oo
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= EEN() = 2 p"(v,y)
n=1

p**t"*l(y,y),the inequality holds since this is just one possible path

v
NgE

S
Il
Y

I
NgE

p*(y, x)p™(x, x)p'(x, y) , by Chapman- Kolmogorov equation

S
Il
Y

= >pl(x,y)p*(y,x) Z p™(x,x),since only p™(x, x) depends on n
n=1
E,N(x)

= =pl(x,y)p*(y,x) ExN(x) = +o

[oe]

o Therefore y is recurrent

Finite, Closed = 3 Recurrent State (Lemma 1.9)
e Statement
o In afinite closed set of states, there is at least one recurrent state
e Proof
o Let C be a closed finite set of states

o Suppose that there is no recurrent state in C (i.e. E,N(y) < oo,Vx,y € ()

o ThenZlE N(y)—ZZp”(x 3’)_2 Zp"(xy)—+oo

yec yeC n= n=1 yeC

o This contradicts E, N(y) < o

o So the assumption is wrong, there must be a recurrent state
Finite, Closed, Irreducible = Recurrent (Theorem 1.7)
e Statement

o IfC is a finite closed and irreducible set, then all states in C are recurrent

e Proof

o

By the previous lemma, there is at least one recurrent state x

O

Because C is irreducible, x = y forally € C

O

So y is also recurrent by Lemma 1.9

Therefore all states in C are recurrent

o
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Stationary Distribution/Measure, Renewal Chain

Thursday, September 27, 2018 9:32 AM

Stationary Distribution and Stationary Measure

e Motivation
o Let Xy, X3, ... be a Markov chain, and u be its initial distribution
o Then the distribution of X; is
* Py =)= ) udp"(i.)), v €5 or
=
= X; ~uP' (in matrix form)

o What conditions must be satisfied so that X, X;, ... follow the same distribution

We say that u: S = R, is a stationary/invariant measure for a MC if
o u@j) = z u()p(i,j) (coordinate form), or
i€S
o u = puP (matrix form), or

o puis aleft eigenvector of P with eigenvalue 1

We say m: S = R is a stationary/invariant distribution for a MC if

o is a stationary measure and Z n(j)=1
JES
¢ How can we convert stationary measures into stationary distributions?
1

o Givenu =[1,2,4,3],wecantakem = ————
K Yies 1(0) #

o But this may not work when 2 (i) is not finite
i€s

Example: Social Mobility (Example 1.18)

[0.7 0.2 0.1]

o Given®? =103 0.5 0.2
0.2 04 041

o Find the stationary distribution for this MC
[0.7 0.2 0.1]

o) [7T1,7T2,7T3] 03 05 02]= [7T1,7T2,7T3]
0.2 04 041

0.7my + 0.3m, + 0.2m3 = 14 m = 22/47
o =1:0.2m; +0.5m, + 043 =1, > <M, = 16/47
0.17T1 + 0.27T2 + O.4’7T3 =Ti3 T3 = 9/47

¢ How can we guarantee a stationary distribution exists
o Ifa Markov chain is irreducible and finite, then

o There is a unique stationary distribution 7, and 7(j) > 0,Vj € §

o Proof: Linear algebra
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Example: Renewal Chain (Countably Infinite State Space)
o S=17y=1{012..}
e Let {fi}k=o be a distributionon S

¢ Define the transition probability p as

o p(0,k) = fi
© p(k,k_l)zl 4‘ -
6 1 °
t et m Gy

¢ Obviously, 0 is recurrent & P, (T, < ) =1

e Whatis E,T,?

N S C 61 6l
9 [EoT():Zk]P)()(TO=k)=2kfk_1=2k?'pzﬁ E=+OO
k=1 k=1 k=1 k

¢ Find an invariant measure for this MC

o Let u be an invariant measure, then

WIGESWIOIES
=0

= u(0)p(0,k) + u(k + 1) p(k + 1,k), since we can only get k from O or k + 1
fk 1

= p0)fy + pulk +1)
o Thus, u(k + 1) = pu(k) — p(0)fi
k—1

o Solving the recursion, we have u(k) = u(0)| 1 - z fi
1=0

o Setu(0) = 1 (since we can freely scale the invariant measure by a positive number)

k-1 [e9) o)
° Thenforkz1,,u(k)=1—Zfl=Zfl=ZHD0(TO=I+1)=]P’O(TOZI€+1)
=0 =k =k

o Note: f = Py(Ty =L+ 1) since we need 1 step to get [, and [ steps to return to 0

¢ (Can we make yu into a distribution?

il
° 2 u(k) = Z Po(Ty = k +1) 2" EyT, = 400
k=0 k=0
o So we cannot normalize u into distribution

1
¢ Repeat this problem with f;, = SEFT (see next lecture)
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Positive/Null Recurrent, Limit Behavior

Tuesday, October 2, 2018 9:31 AM

Stationary Distribution and Stationary Measure

e Stationary measure

o 1S - Rags.t.ul) = ) pOpLK)
leS

¢ Stationary distribution

o A stationary measure  with Z nl)=1
IeS

u(k)

o Given Z u(l) # oo, we can normalize u by setting (k) = Z—ﬂ(l)
les

leS

o Infinite case, we can solve for T = TP with z () =1
leS

e Motivation
o Ifm is the initial distribution, then X,, X3, ... all have the same distribution

o Pr(X;=x)=Pr(X),=x),Vj,k=0,Vx€S

Example: Renewal Chain (Cont.)
« S=7.,=1{012..}
e Let {fi}k>o be adistributionon S
¢ Define the transition probability p as
o p(0,k) = fi
o plk,k—1)=1

1
w2 (k+1)2’

¢ Inthe previous lecture, we set f;, = and found

@) ]EOTO = 400

o uk) = fi=Py(Tyo=k+1)
1=k

o0
o Z u(k) = +o0 = m does not exist
k=0
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1
o Ifwesetf, = 2k+1,then

1\* 1
o Po(To=k) = fr-1 = <E> ,s0 Ty~Geo <E>

o Zu(l) - z Po(Ty = k+1) = z Po(Ty = k) =" E,T, = 2
=0 = =1

. (k)_ﬂ(k) 5k

Positive vs Null Recurrent
e Motivation
o Inthe previous example, even for recurrent states, it is possible to have E, T, = oo
¢ Definition
o Suppose x is recurrent, we say that
o x is positive recurrentif E, T, < oo

o xisnull recurrentif E,T, = o

Theorem Related to Recurrence and Stationary Measure/Distribution
¢ Suppose we have a MC with irreducible state space (finite or countably infinite)
o [fall states are recurrent, then
o The MC has a unique stationary measure g up to multiplicative constants

o u(x)>0,vxesS

o The stationary distribution 7 (x) = exists iff all states are positive recurrent

XX

¢ Note: If x © y, then x and y are both transient, positive recurrent, or null recurrent

Example: Limit Behavior of Two State MC

| -a ‘g I-b
b

¢ Find the n-step transitions
o Compute Py(X,, = 0)
" Py(Xp =0) =Po(Xp-1 =0)(1 —a) + Po(Xp—y = 1)b
= Solving the recurrence, we have Py(X,, =0) = (1 —a - b)Py(X,,.1 =0)+ b
o Setx, = Py(X, = 0). Then
Xp=0—-a—-Db)x,_,+b
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b

b
- xn‘m:“‘“‘b><xn—1‘m)

b
o Sety, =x, —a—+b.Then

- Ynz(l_a_b)Yn—l
* yn=0A—-a—-b)"y,

b b
o Therefore Py(X, = 0) — Py (1-=a-b)" <]P>0(X0 =0) - m)

b b b a
n _ o _n\n _ — — g — h)n
° pr(00)=(0-a=b) <1 a+b>+a+b a+b+(1 a—b) a+b
0 PO =1-p"00) = (1~ (1 -a-bh"——

e Evaluate lim p"(x,y)
n—oo

b
a+b

b a
i n = |i _ — — n =
o Jim @0 = im (G 0 —a b2

] n L P W
o limp (0,1)—7}1_{{)10((1 1-a-b")—7)=—

e Remark

b
° O = T 00

o (1) = a;:-b = 1111_)11010 p"(0,1)

Periodicity

¢ For the MC on the right 0
o p(0,0)=0 ‘ \‘
o p%(0,0)=0
o p3(0,0) =1 Q |

¢ We observe a period of 3 for the n-th return probability of state 0
¢ We say a state is aperiodic if the state has a period of 1

¢ (The definition of periodicity will be formalized in the next lecture)
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Periodicity, Limiting Behavior

Thursday, October 4, 2018 9:35 AM

Example: Two State MC (Cont.)

e For0 < a,b <1,weshowed that lim p"(x,y) = n(y) Q

n—-oo
e Thisis very difficult to compute the limit explicitly |- o, ‘e‘ 0 b
¢ We will prove theorem to show this often is true ;

¢ One minor issue that can prevent convergence is periodicity

Whena = =1,p(0,1) = 1;p%(0,1) = 0;p3(0,1) = 1,p*(0,1) = 0, -

Periodicity
e Intuition
o Period represents the minimal length of gaps between visits to that state
¢ Definition

o The period of a state x is ged {n > 1|p™(x, x) > 0}
Iy

e Example 1: Two state chainwitha =b =1
o Iyp={n=>1|p™(0,0) >0} ={2,46,8,:-} = gcd(ly) =2

o So state 0 has period 2, and same for state 1

e Example 2: Find the period of 0 e
o p3(0,0) > 0and p5(0,0) >0 Q o

o So p3k+5l >0

o Iy = {3k + 5l|k,l = 0 not both equal to 0} o o e
o gcd(ly) =ged(3,5) =1
o So 0 has period 1 (itis aperiodic)
o I,=1{356891011,12,-} e
e Example 3: Find the period of 0 G.Q e
o Iy={2k+4llk >0orl > 0}
= {2(k + 20|k > 0orl > 0} (4)
o =gcd(ly) =2
o So 0 has period 2
¢ Example 4: Find the period of 0
o Iy=1{245,6,7}

o So 0 is aperiodic

Theorems Related to Periodicity
e Lemma 1.15: If p/(x, x) > 0 and p*(x, x) > 0, then p/**(x, x) > 0
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e Lemma1.17: If p(x,x) > 0, then x has period 1 (is aperiodic)
¢ Lemma 1.16: If x has period 1, then 3ny € Ns.t. p™(x,x) > 0,Vn > n,

¢ Lemma 1.18: If x & y, then x and y have the same period

Theorems Related to Limiting Behavior
¢ Convergence Theorem (Theorem 1.19)
o Suppose a MC is irreducible, aperiodic, and has a stationary distribution
o Then lim p"(x, y) = n(y)
o Note that the choice of x is arbitrary

¢ Asymptotic Frequency (Theorem 1.21)

o Suppose a MC is irreducible and recurrent. Then

N,(y) .

n IEyTy

¢ Law of Large Numbers for MC (Theorem 1.23)

O

where N, (y) is the number of visits to y up to time n

o Suppose a MC is irreducible and has a stationary distribution . Let f: § - R

n

1
o I ) IfGOITGo) < oo then — > F(X) = D FOR() = Exf (30)

X€ES =1 XES

Example 1.24: Inventory Chain
e Astoremaysell 0, 1, 2, 3 items with probabilities 0.3, 0.4, 0.2, 0.1

¢ Let X;, be number of units in store at end of the day
e We want to find the optimal inventory policy given the profit g(X,,) = 12(3 — X,,) — 2X,,
¢ We can compare average daily profit for restocking when X,, = 0 or 1 or 2

¢ [fwerestock when X,, < 2, then

0.1 02 04 03 0.117
_lo1 02 04 03 o2
°P=101 02 04 03/ |03
01 02 04 03 0.4

e Average profit after n days is
3

n 3
1 n>
° Zz g < z g(s)m(s) = 2[12(3 —5) — 2s]n(s) =9.40
=1 s=0

s=0
¢ Repeat for restockingwhen X, < 0and X, <1

¢ We will find out that it is optimal to restock when X,, < 1
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Convergence Theorem

Tuesday, October 9, 2018 9:32 AM

Review:

Markov Chain Convergence Theorem

¢ [faMCisirreducible, aperiodic, and has a stationary distribution

e Then lim p"(x,y) = n(y),Vx,y €S
n—-oo

Proof for Markov Chain Convergence Theorem

¢ Proof outline (using coupling method)

O

o

@)

O

o

Consider two MCs with same transition probabilities, but different initial distributions
Let x € S be the fixed initial state for X;, X, ...

Let 7 be the initial distribution for Yy, Y;, ...

We will show that |P,(X, =y) —P,(Y,=y)| > 0asn - o

Then |p™(x,y) —n(y)| > 0 asn —» o

¢ Define a coupled MC

O

O

O

O

SetS = S X S as a new state space

Set ﬁ((xp)ﬁ); (xz;)’z)) = p(x1, x2)p(V1, ¥2)

Use the initial distribution u((xo,v0)) = Tixy=x3 (Vo)
We now have a single MC (X, Yp), (X1, Y1), ...

¢ Show p is irreducible

o

o

O

O

o

Let (x4,y1), (x2,y,) € S = S X S be arbitrary. We will show that (x;,y;) = (x,,y,)
0 1]

Note that this is non-trivial, consider the product MC of P = 1 0

p is irreducible, so there exists k, [ s.t.
= p*(xy,x;) > 0and p'(y1,¥,) >0
p is aperodic, so there exists ny, n,, s.t.

= p™*l(xy,x,) > 0and p™** (xy, x,) > 0 for n > max{n,,n,}

Then g™+ ((xy, 1), (x2,¥2))
= p™t (g, ) p™ R (yy, v2)

> pk(xg,x0) P (xy, x2) p O, y2) PR (y1,y2) > 0ifn > max{nx,ny}
>0 >0 >0 >0

Therefore p is irreducible

¢ Find stationary distribution for p

o

o

Claim: ﬁ((xo, yo)) = m(xy)m(y,) is a stationary distribution for p

Aoy = Y. p(), (0, 30)w(Cco 7))

(u,v)ESXS
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_ Z Z p(u, %) (¥, o) (26T (Vo)

UES VES
= P xn) ) pEy)T(0)
UES VES
(xg) (yo)
= 1(xo)1(Yo)
o z ﬁ((u, 17)) = Z z m(uw)m(v) = z (u) z m(v) =1
(u,v)ESXS UES VES ues vES

o Therefore ((xo, o)) is a stationary distribution for p
¢ Show that X,,, Y,, must eventually meet
o SetV(yy) = min{n = 0|X, =Y, = x}and T := min{n > 0|X,, = ¥,,}
o Since p is irrducible and has a stationary distribution, all states are recurrent
o Thus, P, (Vixx <) =1=P,(T <) =1,sinceT < Vi,

e Show X,,, Y, have same distribution after meeting

n
O Bula=yn=T)= ) 3 B =2T = kX, =)

k=0 z€eS

° _ZZIP’(X =YX =2T =P, (X, = 2T = k)

k=0 z€eS

Z z p ¥ (z, V)P, (Xx =z, T = k), by strong Markov property

=0 z€eS

in" HE B = 2T = 1)

n

:2211» Yo=YV =2T = )P,(Y, =2,T = k)
k=0 z€S
n

o _Zz[@ Ve=2zT=kYy=y)=P,(Y,=y,n=T)

k=0 z€S
e Show |P,(X, =y) —P,(Y,=y)| > 0asn—>
P,Xy=yT>n)+P,(X,=y,T <n)

[P (X = ) = Pu (Y = )| = —P,(Y, =T >n)—P,(Y,=yT <n)

<|P,Xp=yT>n)—P,(Y,=yT>n)|

° ZIP#(Xn =) —Pu(Yy =y)| < ZIP#(Xn =y, T>n) =Py(Yy=y,T >n)|

YES YyES
SZ]P’#(Xn =y,T>n)+Z]P’#(Yn =y,T>n)
yES yES

< 22 P, (T >n) —» 0asn — oo,since T is finite
YES
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Example: Convergence Theorem

e Let MC X4, X;, X3, X4, X5 be defined as

00 a 1—-a 0 0
0 0 B 0 1-p
o =0 0 1/2 1/2 0 |[fora,p € (0,1)
0 0 1/6 5/6 0
0 0 0 0 1

¢ Draw the transition graph |—ﬂ

¢ (lassify states as transient or recurrent
o R; ={3,4},R, = {5} are recurrent because they are closed, irreducible, finite
o T = {1,2} are transient
¢ Find the periods of recurrent states
o p(3,3),p(4,4),p(5,5) > 0, so state 3, 4, 5 have period 1 (aperiodic)
¢ Find all stationary distributions
o m(1) = m(2) = 0 because state 1, 2 are transient
o The MC restricted to R; = {3,4} has stationary distribution
-nl—[ 1/6 1/2 ]_[1 3]
1/6+1/2 1/6+1/2 4 4
o The MC restricted to R, = {5} has stationary distribution

» 12 = [1], since there is only one state

1 3
o Thereforem = [0 0 s- 7 512 (1-5)- 1] for some constant0 < s <1
e Compute lim p™(1,3)
n—->oco
o lim p™(1,3) = lim [p(1,3)p"~*(3,3) + p(1,2)p(2,3)p""*(3,3)]
n—oo n—oo

=(1-a) lim p"(3,3) + af lim p™(3,3)
n—-oo n—-oo

=(1—a+aﬁ)r£i_r)gop"(3,3)=(1—a+a5).%
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Doubly Stochastic, Detailed Balance

Tuesday, October 16, 2018 9:33 AM

Doubly Stochastic Chains

e Stochastic matrix

o The row of a MC's transition matrix sums up to 1 i.e. 2 plx,y)=1
YES

o Any matrix with non-negative values, and row sum to 1 is called a stochastic matrix
o Every stochastic matrix gives the transition probabilities for some MC
¢ Doubly stochastic

o A stochastic matrix is doubly stochastic if its column sum to 1 i. e. Z pix,y)=1
XES

o We say that a MC is doubly stochastic if its transition matrix is
¢ Stationary distribution of doubly stochastic MC
o Statement

» Suppose we have a finite state space MC, where |S| = N

1
» (x) = N Vx € § is a stationary distribution < the MC is doubly stochastic

o (=) Assume 7 is a stationary distribution

1 1
» n(y) = Eﬂ(x)p(x.y) oy= Nz p(x,y) & Ep(x,y) =1

X€ES XES XES

= So the MC is doubly stochastic
o (&) Assume the MC is doubly stochastic

1 1
D PGy == ) ploy) =3 =T(G),Vy €S

N
XES XES

1
= Therefore m(x) = N is a stationary distribution for this MC

Detailed Balance Condition

¢ Definition
o We say a distribution satisfy the detailed balance condition/equations if
o m(x)p(x,y) =n(y)p(y,x),Vx,y €S

¢ Detailed balance condition and stationary distribution
o Statement

= All distributions satisfying the detailed balance equations are stationary

o Proof

» Suppose 7 satisify the dtailed balance euqations i.e. w(x)p(x,y) = n(y)p(y, x)
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f D HpEy) = ) w00 = 7)Y p(,x) = 7(y) = mis stationary

XES XES XES

¢ Example 1.29

05 05 0
o P=(03 01 0.6

02 04 04
o Can P have a stationary distribution that satisfies DBE?
r(Dp(1,2) =n(2)p2,1) (05-7(1)=03-7w(2) (n(1)=0

» {n(Dp(1,3) =3)p3,1) =5 0-71(1)=02-w(3) =2<{n(2)=0
t(2)p(2,3) = n(3)p(3,2) 0.6 -m(2) =04 -1m(3) w(3)=0

= This is not a distribution, so none that satisfy DBE exists

o Canithave any other stationary distributions?
: . : 1 1 17, : o
= Since P is doubly stochastic,so & = 33 3 is a stationary distribution

» This is the only stationary distribution, as the MC is irreducible and finite

Random Markov on Graphs
¢ Undirected Graph

o Undirected graph is a set of vertices and edges, G = (V,E)
o V=1{1,2345}
o E={{1,2},{1,3},{2,3},{2,4},{3:4},{3,5}, {4,5}} e o

01100 0
10 1 0

1
o A=|1 1 0 1 1]iscalledthe adjacency matrix e e
011 0 1
0 01 10
o The neighbor of a vertex are those vertices is share an edge with.
o The degree of a vertex is the number of neighbors if has

e Random Walkon G

o SetS = V.Ifin state V, you choose a neighbor of v uniformaly as the next state

A(u,v)
-—, Yy,
deg(u)

¢ Random walk and DBE

o Thenp(u,v) = vEV

o Statement
= All random walks' graphs satisfy DBE's

o Proof

* t(Wp(u,v) = n(v)p(v,u)

= = a(u) -Ad(:' v) =n(v) .Ad(u, V)
gu egv
m(u) 7w(v)
L I— =
degu degv

» [fwesetm(x) = c-degx,Vx €V, then DBE is satisfied
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= Wejustneed to choose c so that « is a distribution

1
. n(v)=26-de x=1=c=g——F7—m
Z & Yoesdegx

VES VES
degx  degx
Yoesdegx  2|E|

= Thenn(x) =

Reversibility
e Let X,, X;, ... be a MC with transition probabilities p, stationary and initial distribution
e FixnandsetY,, = X;,_,,, Vm € {0,1,2, ...,n} (ie. Yy, ..., Yy, is a a time reversal for Xy, ..., X;,)
w(j)p(,i
e Then Y, is a MC with transition probability p(i, j) = %

e Moreover, if DBE's are satisfied, thenp = p

_mipG) _m@OpGp)
“ T a0 | =@ P

o p(.j)
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Exit Distributions

Thursday, October 18, 2018 9:31 AM
Exit Distribution Motivative Example: Community College

0.6 0.7
o.1S o‘zs
1 C@ o-l !
(/M|

e SetV, = inf{n > 0|X,, = x}, and we want to compute P (V; < Vp)

¢ First step analysis: if X, = F,thenX; = D,F,or S

( Pr(X; = D) Pr(V; < VplX, =D)
0
+Pp(X, = F) Pp(Vg < VplX, = F)
Pr(Vg<Vp)=| ©7F R AT
+Pr(X, =5) Pr(Vg < VplX; =5)
Ps(Vg<Vp)

o <
Ps(X; = D) Ps(Vg <VplX; = D)

0
+Ps(X; = F) Ps(Vg < VplX, =F)
Pr(Vg<Vp)
+Ps(X; = 8) Ps(Vg < VplX; =5)
1

. {]P’F(VG <Vp) =025-Pp(Vg <Vp) +0.6-Ps(Vg <Vp) {]PF(VG <Vp) =07

Ps(Vg <Vp) =

Exit Distribution (Theorem 1.27)
e Brainstorming

o Find P,(V, < V}) for some x,a,b € S
known unknown

0 Pua < V) = ) PelXs = NP <Vl =) = Y pCi ) By < V)
YES YES

o Soto find P,(V, <V}), we need to find P, (V, <V,),Vy €S

¢ Observations (informal)
o Py(V,<V,) =1
o P,(V,<Vp)=0
o There are |S| linear equations in |S| variables
o Define h(x) := P, (V, < V}), then we need to find h: S — R that satisfies

* k() = ) Py

YES
* h(a) =1,h(b) =0
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e Theorem
o Consider a MC with |S| < o
o Leta,b € S,andsetC =S\ {a, b}
o Suppose h: S — R satisfies
* h(a) =1,h(b) =0

* hG) = ) plnyhG), VxeC

YyES
o IfP,(min{V,,Vp} < ) >0,Vx € C,thenh(x) =P,(V,<Vp),VX€ES

Exit Distribution Example: Gambler's Ruin

Starting stake
Lose!

(You've gone bust.
must leave game)

Win!
p=probability of winning turn
qg=probability of losing turn= 1-p

(Final stake: leave game)
1
e Assumep < > and we want to compute P, (Vy < V)

e Constructh

o h(0) =0,h(N) =1

o h(x) = Z p(,y)h(y) = pl,x — Dh(x —1) + p(x,x + Dh(x + 1)
YES

=p-h(x—1)+q-(x+1),forxef{l,..,N—1}

o >p-h(x)+q-h(x)=p-h(x—1)+q-(x+1)
h(x)

o = p(h(x +1) — h(x)) = q(h(x) — h(x — 1))
¢ Solve the recurrence equation

o Setu,:=h(x+1)—h(x),vxe{l,..,N—1}

x
O Uy = <g> Uy—1 = Uy = <%> Ho

o h(x)= h(x)—h(x—1)+ h(x—=1) —h(x—2)+--—h(1) + h(1) — h(0)

x—1 x—1 l
_l=0ul—u0;<p> Ug 1_q/p
1- N 1-
o 1=h(N)=h(N)— h(0) =uo%£=’”0 :%
Therefore h(x) = 1—(q/p)"
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Exit Time

Tuesday, October 23, 2018 9:30 AM

Long Run Behavior of Markov Chains
¢ Forirreducible, aperiodic MCs with ir, we have the Convergence Theorem
¢ [fthere are transient states in the M(, they will ultimately travel between recurrent states
¢ Two basic questions
o Which closed set of recurrent states do you end up in? P, (V, < V)

o How long should we expect the MC to travel between transient states before ending
up in a recurrent state? E, [V ,]

Exit Time Motivating Example: Community College

0.b 0.7
o) -@p
0-

¢ How long will the average student remain at this community college?

e Define L = {D,G}and V, = inf{n > 0|X,, € L}. Then we need to find Ez[V,]

o Ep[V,] = Z Er[V, X, = ] Pr(X; = 1), using firat step analysis
les  1+E[vy] p(F.1)

= 2(1 + E;[V,.]) p(F, 1), since we need 1 step to get from F to [
les

=1-p(F,D) + (1 + Ee[V.Dp(F,F) + (1 + Es[V,Dp(F, S)

1

=1 + ]EF[VL] . 025 + ]ES[VL] - 0.6
e Similarly, we have Eg[V,] = 1 + E5[V, ]p(S,S) =1 + Eg[V;] - 0.2

. (EplVi] =1+ Eg[V,]- 0.25 + Bs[V,]- 06 _ (E¢[Vi]=7/3
Es[V,] =1+ Es[V,]-0.2 Eg[V.] = 5/4

Exit Time (Theorem 1.28)
¢ Consider a MC with finite state space S
e LetA C S.DefineV, :=inf{n > 0|X,, € A}and C :==S\ A
e IfP,(Vy <) >0,Vx € C,and g: S — R satisfies
o gla)=0,vaeA
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o glx)=1+ Z g¥px,y)

yec
e Then g(x) = Ex[V4] forallx € S

Exit Time Example: Fair Gambler's Ruin

Starting stake

Lose!
(You've gone bust.
must leave game)

Win!
p=probability of winning turn
g=probability of losing turn= 1-p

e Assumep = q = 0.5, how long should you expect to play the game?
e SetA = {0, N}, then we want to find E, [V,],Vx € {1,..., N — 1}

(Final stake: leave game)

¢ Approach 1: Use the theorem to verify/disprove a conjecture
o Claim: E,[V4] = x(N — x)
o Setg(x) = x(N — x), then obviously g(0) = g(N) =0

o Forl1<x<N-1
N-1

£ 1+ ) gOIPEY) =1+ g0 - DpCox— 1)+ gl + Dp(rx +1)
y=1

=1+(x—1)(N—(x—1))%+(x+1)(N—(x+1))'%
=Nx—x?2=x(N—x) =g(x)
o Therefore g(x) = E,[T4]

e Approach 2: Use the theorem to derive a solution

o By the theorem, we can define g as
= 9(0)=g(N)=0
1 1
" gx)=1 +Eg(x -1 +Eg(x +1),vxe{l,..,N—-1}
o Solve as recurrence equations (or as a linear system)

o (gx+ 1) —g)=-2+(9(x) —gkx—-D)

o Setu, =g(x+1)—g), thenuy = -2+u,_; ©u, =uy—2x,Vx €{1,..,N -1}

o gx)=gx)—g0)=gx)—gx-1D+gx+1)+--+ g(1)—g(0)

Ux—1 Ug

X X

-1
=Zux_1 =;(u0—2(l—1)) =u0x—2¥=uox—(x—1)x

I=1
o gIN)=uygN-(N-1)N=0=uy,=N-1
o Therefore g(x) = (N — Dx — (x — Dx = x(N — x)
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Probability Review for Poisson Process

Thursday, October 25, 2018 9:32 AM

Renewal Process

T5
T1 a2 73 T4
| X X X X X
0 T1 T2 T3 T4 S T5

¢ 7, = interarrival time
¢ T, = arrival/renewal time

¢ N(s) = number of renewals up to time s

Definition of Poisson Process
e Letty, 7, ..~Exp(A) be independent
o SetTy =0T =Ty 1+T%, =71+ + 74
e Define N(s) = max{n > 0|T, < s}

e Then we call {N(s)} a Poisson process with rate 1

Exponential Distribution
¢ Definition

o We write that X~Exp(4) for A > 0 if

—At >
o fx®)= {'180 o g,or

_ —-Ax >
o B = {1 X2

¢ Survival function

X x>0

— _1_ _Je
o Gx)=PX>x)=1 FX(JC)—{1 20

¢ Expected value

[oe] [ee)

1
xfxy(x)dx = J xle MPdx = 1
0

0 ]E[X]=f

0
¢ Exp(4) is memoryless

P(X>s+t) e~ Als+t)

o PX>s+t|X>s)= =e M =PX >t)

P(X >s) e
Gamma Distribution
¢ Definition
e @t
o We say that T~Gamma(n, 4) if f(t) = Ae™"" - (n—1)! t=20
0 t<o0
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¢ Relation with exponential distribution

o Lettq, Ty ...~Exp(4) be independent

o

SetTy=0,T, =Ty 1 +7T =71+ + T}, thenT,,~Gamma(n, 1)

O

Proof by induction, the base case is trivial

O

Forn>1,T,y1 =T, + 741, Where T, and 7,,,; are independent
O s ® = i fony)O = | (5o €= s
t As n—-1 At n
= f 22 I a9 = ge-nt % fort >0
0 !

(n—1)!

o SoT,+1~Gamma(n + 1, 1), which completes the proof

Poisson Distribution

An
o We say that X~Poisson(2) if py(n) = e"lm forn=0,1,2, ...

[ee]
n

- an o A1 2
. E[X]:Zwe-ﬂ-—:Ae-l =/’le"12F=A=>]E[X]=A

n=1 n=1 n=0
el

. IE[X(X—l)]=Zn(n—1)-e_’1-l—'=lz=>Var[X]=/1
n!

n=2
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Introduction to Poisson Process

Tuesday, October 30, 2018 9:31 AM

Poisson Process

T1 T2 73 T4
' X X X X [

[
0 T Ty T3 T s Tk

¢ Inthe graph above,

o Ty = interarrival time

o T, = arrival/renewal time

o N(s) = number of arrivals up to time s
¢ For Poisson process, we have

o rkiifi Exp(4)

o T,=11+ +1,~Gamma(n, 1)

o N(s)~Poisson(4s)

Equivalent Definition of Poisson Process
e {N(s)|s = 0} is a Poisson process with rate A if and only if
o N(0) = 0 (with probability 1)
o N(t+s)— N(s)~Poisson(4t)
o N(t) has independent increments
¢ Independent increment
o We say that N(t) has independent increments if for any t, < --- < t,,,
the random variables N(t;) — N(t,), ..., N(t,) — N(t,,_,) are independent
o The number of arrivals between any two intervals has no effect to each other
¢ Proof (&)

o P(N(s)=n)=P(T,, <8,Tps1>5)=P(T, <5,Tpy1 >SS —Ty)
= f J i (t,w) dudt = f an(t) <J anH(u) du) dt
0 Js-t 0 s—t

N ~ (At)n_l 00 e N ~ (lt)n_l s
=f0 e M(n—l)!Os_tAe A du)dt=L le Mm(e AMs=6)) ¢

__M e~ s fst"‘ldt __ e~ As ST s
(n-1)! 0 (n-1)! n n!

Poisson Process Example: Arrival of Patients

¢ Patients arrive at a rate of 1 every 10 minutes (on average)

¢ This doctor does not see patient until at least 3 are waiting
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What is the expected waiting time until the first patient is seen

Let 1 patientarrival 1
O = g
© 10 minutes 10

1
o E[T;] = E[t; + 7, + 73] = 3E[r;] = 3 +==30

What is the probability that no patient is seen in the first hour?
2
t

2
o P(N(60) < 3) = Z P(N(60) = t) = Z =6 % ~ 0.062
t=0

t=0

Poisson Process Example: Arrival of Customers

Suppose customers arrive at a rate of 5 per hour, following a Poisson process

Your store is open from 9am to 6pm

What is the probability that no customer arrives within 1 hour of opening?

@-1)°
0!

What is the probability that we have 2 customers from 9-10am, 3 customers from
10-10:30am and 5 customers from 2-3:30pm?

-5

o P(N(1) =0) =e*1. e

o Use the notation N(t,t,] := N(t,) — N(t;)
o P(N(0,1] = 2,N(1,1.5] = 3, N(5,6.5] = 5)
=P(N(0,1] = 2)P(N(1,1.5] = 3)P(N(5,6.5] = 5)

A2 (0.51)3 (1.51)%
[ ,-2 —-0.51 -1.51 ~
= <e . 2!> <e . 3 ><e . o > ~ 0.00197

What is the probability that we have 3 customers from 10-10:30am, given 12 customers
from 10am-12pm?

o P(N(1,1.5] = 3|N(1,3] = 12)
_ P(N(1,1.5]=3,N(1,3] =12) _P(N(1,1.5] = 3,N(1.53] = 9)

P(N(1,3] = 12) - P(N(1,3] = 12)
<e_5'0'5 (5- ;)'.5)3> <e_5.1.5 (5 91'-5)9> L
B ! ! (12 1 E
- 52 (52" B ( 3 ) <4> <4>
12!

o Note this is a binomial distribution

Inhomogeneous Poisson Process

{N(s)|s = 0} is an inhomogeneous Poisson process with rate A(r) if it satisfies
o N(0) = 0 with probability 1

o N(t) has independent increment

t
o N(t) — N(s) is Poisson distributed with mean f A(r)dr

s
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Compound Poisson Process

Thursday, November 1, 2018 5:30 PM

Variations on Poisson Process
¢ Inhomogeneous Poisson Process
¢ Compound Poisson Process
¢ Thinning a Poisson Process

¢ Superposition of Poisson Process

Conditioning for Poisson Process

Compound Poisson Process
e Motivating example: Risk Theory
o Suppose claims arrive as a Poisson process N (t) with rate 1
o How much money must the company pay out over time
o LetY, be the amount of money company pays for k™ claim

o Let S(t) be the amount of money company paid out up to time t
N(t)
o ThenS(t) =Y, +Y, +--+ Yvey = Z Yy
k=1
¢ Motivating example: Stock Prices
o Suppose a stock price has changes occurs as a Poisson Process N (t) with rate A

o LetY, be the k™ change in stock price

o LetS(t) be the total price change up to time t
N(t)

o Then S(t) = z Yy
k=1

¢ Definition
o Let{N(t)|t = 0} be a Poisson process with rate A, and Y;, ..., Y, be iid RVs

o A Compound Poisson Process is defined by
N(b)
= S(t)=Y1+Y2+"'+YN(t) = Y,
k=1
= S(t)=0whenN(t) =0

o Note: S(t) is a sum of random length

Random Sum (Theorem 2.10)

e LetY), ..., Y, beiid RVs,and N be an independent non-negative discrete RV
e DefineS=Y,+Y,+--+Yy,andS = 0if N = 0. Then
o E[S] = E[N]E[Y4]
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# NE[Y;],since N is a random variable

=n| = Y EIVIN =n] = ) E[%] = nE[Y,]
1 k=1 k=1

» Therefore E[S|N] = N - E[Y;]
E[S] = E[E[SIN]] = E[N - E[Y;]] = E[N] - E[Y;]

NXconstant

k=

Juy

N
* Note: E[S]=E ZY

NEE

» E[SIN=n]=E| ) Y|N

=
1l

o Var[S] = E[N]Var[Y,] + Var[N](E[Y,])?
» E[S?|N =n] = E[(Y; + -+ ¥;)?]
= Var[Y; + -+ Y,,] + (E[Y; + - + ¥,,])?, since E[X?] = E[X]? + Var[X]
= Var[Y;] + -+ + Var[Y, ] + (E[Y;] + - + E[Y,,])?, since Y, ..., ¥, are iid
=n - Var[¥;] + n?(E[V;])?
= Therefore E[S?|N] = N - Var[¥;] + N2(E[Y;])?

= E[s?] = E [E[s?|N]]
= E[N - Var[Y;] + N2(E[Y;])?]
= E[N - Var[v;]] + E [N*(E[;])?]

Nxconstant NZ2xconstant
= E[N] - Var[V;] + E[N?](E[\;])?
= Var[S] = E[S?] — (E[SD?
= (E[N] - Var[¥;] + E[N?](E[Y;])?) — (E[N] - E[1])?

= E[N] - Var[v;] + (E[N?] - (E[N])?) (E[Y;])?
Var[N]

= E[N] - Var[Y;] + Var[N](E[Y;])?
e In particular, if N~Poisson(A), then
o Var(S) = E[N] - Var[Y;] + Var[N](E[V;])? = AVar[Y;] + A(E[Y;])? = AE[Y}]
o E[S(®)] = E[N(6)] - E[Y;] = ALE[Y4]
o Var[S(t)] = E[N(t)] - Var[Y;] + Var[N(D](E[V;])? = AtVar[Y;] + At(E[V;])? = AtE[YF]

Compound Poisson Process Example
¢ Aninsurance company pays claim at rate of 4 per week as a Poisson process
e The average payment for a claim is $10,000. The standard deviation is $6,000
¢ Find the mean and standard deviation of total payments for 4 weeks
e Given E[Y;] = 10000, Var[Y;] = 60002 = 36000000, 1 = 4
e E[S4)]=2-4-E[Y;]=4-4-10000 = 160000
e Var[S(4)] =21-4-E[YZ]=2-4-(Var[\;] + (E[Y1])?)
=4-4-(36000000 + (10000)?) = 2.176 x 10°
e SD[S(4)] = +/Var[S(4)] = 46647.6
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Thinning, Superposition, and Conditioning

Tuesday, November 6, 2018 9:32 AM

General Idea for Thinning
¢ You have a Poisson process for arrivals, which are filtered or categorized upon arrival
¢ Not-so-surprising: The arrivals for a specific category form a Poisson process

¢ Surprising: The process for each category are independent of each other
Thinning Motivating Example: Highway Traffic
¢ Suppose vehicles pass a weigh station as a Poisson process with rate 4

o LetY, denote the type of the k™ vehicle that passes
e Assume thatP(Y, = 1) = 0.85,P(Y;, = 2) = 0.10,P(Y, = 3) = 0.05

Car Truck Motorcycle
A A a ya) (@] Pa
N k) p—— : ; ' —>
e T T T3 W s T
(o)
/U3 ) ‘;' >
a
Ny (#) + >
n
A A 2) PN
N' @) ! } : —>
0 C G (3 C4

e General Idea: N;(t), N, (t), N3(t) will be independent Poisson processes

Thinning a Poisson Process (Theorem 2.11)

e Statement
o Suppose N(t) is a Poisson process with rate 1
o Also,Y;,Y,, ... are iid (and non-negative integer-valued) random variables
N(t)
o Define N;(t) = Z 1{Y, = j} be the number of arrivales up to time t of type j
k=1
o Then Ny (t), No(£), ... are independent Poisson process with rate 4; = AP(Y = j)
¢ Proof (Binary Case)
o Definep =P, =1)andg=1—-—p =P, =2)
o Claim: N; (t)~Poisson(pAt) and N, (t)~Poisson(qAt)
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* PO =) = ) PWL () = j,N(E) = 1)

n=j

Z P, (6) = JIN(®) = ) PIN(E) = n)

~Binomial(n,p) ~Poisson(At)
=2, (j)pra-prens
n=j
MP o (A)™(1 —p)n
e (=t
P O 4t —p)
=e/’1t.'2( — )(/1)}
]'n:o
e(1-p)at

_ o PR
Jj!
» Therefore N; (t)~Poisson(pAt), and similarly N, (t)~Poisson(gAt)
o Claim: N, (t) and N, (t) are independent
= P(N1(t) =, No(t) = k) =P(N(6) =j,N(t) =j + k)
=P, () =jIN@) =j+k)P(N(t) =j +k)
~Binomial(j+k,p) ~Poisson(At)
B (J ) k) plake 8
J G+ k)!
! k!
= PN, () = HP(N(2) = k)
o Claim: N, (t) is a Poisson Process (same for N,(t))

= Since N;(t) < N(t), we have P(N;(0) =0) =1

* Inindependence proof, we showed N; (t)~Poisson(pAt)
» N, hasindependet increment
N1(tj+1)

o N1( jr 1+1] = Z 1fy, = 1}
k=Nq(t;)+1

o N;(ty,t,], ..., Ny(t,—1,t,] are sums independent random variables Y,

o Thus, the Nl( i ]+1] will be independent for nonoverlapping intervals

» Therefore N, (t) is a Poisson process with rate 1

Superposition of Poisson Processes (Theorem 2.13)

e Suppose N;(t), ..., N, (t) are independent Poisson process with rates A4, ..., A;

e Then N(t) = N{(t) + ---+ N, (t) is a Poisson process withrate A = 11 + -+ + 4,

¢ The proofis like thinning theorem proof, but a little easier. Proceed by mathematical induction
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Order Statistics
¢ Definition
o LetXj, .., X, beiid random variables
o Define X(;) be the k-th smallest elementin {X;, ..., X, }
= Xy = min{X;, ..., X}
" X =min({Xy, ... X3\ {X})

" X(TL) = maX{Xli ---:Xn}
o Then X(y), ..., X(n) are the order statistics for Xy, ..., X,

e Fact

o IfUy, ..., Uy Unif[0, ], then the joint PDF for Uy, ..., Ugy is

n!
o f(ulf'"run): t_n OSU.:[SSunSt
0 otherwise

Conditioning of Poisson Processes (Theorem 2.14)

¢ For a Poisson process, the conditional distribution of arrival times satisfies

D
o (T, .. TuIN@®) =n) = (Upy, ..., Umy)
¢ Specifically, the joint PDF given N(t) = n s

n!

— 0t <<t <t
o f(tlr"'rtn)z tn - 1= -n-

0 otherwise

Binomial and Conditioning of Poisson Processes (Theorem 2.15)

¢ Statement

o Supposes < tand 0 < k < n.Then

o poe) —am -m - ()0 (1-3)"

o In other words, (N(s)|N(t) = n)~Binomial(n, s/t)
¢ Proof (using order statistics)

¢ Proof (proceed directly from definition of condition probability)
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Poisson Process Comprehensive Problems

Thursday, November 8, 2018 9:39 AM

Exercise 2.47
¢ Problem setup

o N;(t) :=number of trucks that have passed up to time t
o N,(t) = number of cars that have passed up to time t
o N; and N, are Poisson process with rate 40 and 100 respectively
o 1/8of trucks and 1/10 of cars go to Bojangle's
o B;(t) :=number of trucks that have gone to Bojangle's up to time t
0 B,(t) = number of cars that have gone to Bojangle's up to time t
o Then B; and B, are Poisson process with rate 5 and 10 respectively

¢ Find the probability that exactly 6 trucks arrive at Bojangle's between noon and 1PM

6

5
o P(B;(1)=6) = e-5a

¢ Given that there were 6 truck arrivals at Bojangle's between noon and 1PM, what is the
probability that exactly two arrived between 12:20 and 12:407?

o w5 (Y= mm=e)= () (2TL) (222 - ()3 ()

¢ Suppose that trucks always have 1 passenger; 30% of the cars have 1 passenger, 50% have 2,
and 20% have 4. Find the u and o2 of the number of customers arrive at Bojangle's in one
hour.

o Define
» S, (t) :=number of customers that arrive in trucks up to time t
» S,(t) := number of customers that arrive in cars up to time t
* Y) ) = number of passengers in k'™ truck to arrive at Bojangle's

* Y, = number of passengers in k'™ cars to arrive at Bojangle's
By(t)
= 500 = Z Yik
k=1
= S(t) = S;(t) + S,(t) to be total customers up to time t
o Compute E[S(1)] = E[S;(1)] + E[S,(1)]
" E[Si (D] =E[B(D]E[Y14] =(G-1-1=5
= E[S,(1)] = E[B,(D]E[Y,,] =(10-1) - (1 X 0.3+ 2x 05+ 4x0.2) =21
* = E[S(D] = E[S; (D] + E[S,(1)] = 26
o Compute Var[S(1)] = Var[S;(1)] + Var[S,(1)] (by independence)
= Var[S;(1)] = 5E[Y#] =5
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= Var[S,(1)] = 10E[Y#;] = 10(1% x 0.3 + 22 X 0.5 + 42 X 0.2) = 55
» = Var[S(1)] = Var[S;(1)] + Var[S,(1)] = 60
Exercise 2.27
¢ Problem setup
o The next bus arrival time is uniformly distributed over the next hour
o Cars pass at a rate of 6 per hour (following a Poisson process)
o 1/3 of car will pick up a hitchhiker
e Define
o Tg :=time bus arrives, then Tz ~Unif[0,1]
o N(t) :=the number of car passed up to time t, then N(t) is a Poisson process with A = 6
o H(t) := the number of car pick up a hitchhiker up to time ¢, then H(t) is a P.P. with A = 2
o T, = arrival time for first car that will pick up a hitchhiker, then T; ~Exp(2)
¢ What is the probability someone takes the bus rather than hitchhikes?

L e 1 1
o P(Tg <Ty) =f0 f fr, ) fry ) dxdy=J;) f 2072 dxdy=§<1—e—2>
y y

Exercise 2.50

¢ Problem setup
o N(t) == number of typos author has made in the first t pages
o N¢(t) = number of typos found in the first t pages
o Then N(t), N (t) are Poisson processes with rate A and 0.9 respectively
o X :=number of typos found in full manuscript, then X = N;(200)

¢ Compute the expected number of typos
o E[X] = E[N;(200)] = 200- 0.9 = 18021

¢ Estimate A if the total number of typos is 108

108

1801~ 108> 1=— =
© 180

0.6
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More Exercises on Poisson Process

Tuesday, November 13, 2018 9:36 AM

Exercise 2.45

¢ Problem setup

O

Signals are sent as a Poisson process with rate 4

o

Each signal reaches its target with probability p and fails with probabilityqg =1 —p

O

N, (t) = # successful transimissions up to time t

O

N,(t) = # failed transimissions upto time t

¢ Find the distribution of (Nl (t),N, (t))

o This is asking for the joint PMF of N; (t), N,(t)

o N;(t) and N; (t) are thinned versions of the general singal process

o So N;(t) and N, (t) are Poisson proecss with rates pA and (1 — p)A4, respectively
o Additionally, N (t) and N, (t) are independent

o PNy (t) =j,No(t) = k) = P(N,(¢) = PN (2) = k)

= [e—p,u (p’l_t)j] [e—(l—p)zt (a- P)"lt)k] Y (pAt)’ (1 - P)At)
I K k!

e [ = # signals lost before the first success. Find the distribution of L
o We can compute P(L = k),thenP(L=k)=P(L=k)-P(L=k+ 1)

o F, = time of k™! failed signal, S}, := time of k™ successful signal

o P(L=k)=P(F,<S;) =J ka(t)f fs,(s)ds dt
t

o At k-1 00 At k-1
= f qle e—aAt (g _) <f p,le_pls dS) dt = J q/le_’u —(q ) dt
0 0

(k —1)! (k —1)!
p) k-1
_qf Ae ‘“((ktzl)'dt—q"

Gamma Dist.
o PL=k)=PL=2k)-P(L=2k+1)=q¢*(1—-q¢) =1 -p)*p
o So L~Geometric(p)

o Note: {L = k} = {First k transimissions fail, k + 1 transimission succeeds}

Examples of Conditional Poisson Process

e N(t) is a Poisson process with rate 1

n!
« Recall that the PDF of (T, ..., ToIN(t) = n) is f(ty, ., ty) ={gn 0 SO S Sty st
0 otherwise

e Compute E[T;|N(1) = 2]
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1

Ltz 2! 1
0 J0

0
e Compute E[T;T,|N(1) = 2]

! 2! ! 1
o) ]E[TszlN(l) = 2] = f f tltZ .thl dtz = f t23 dtz = Z
0 Jo

0
e Compute E[T,|N(4) = 3]

ts rty 31 4 rts ) 31 491
e} [Tle(4) = 3] f f f tz 3 dtldtzdt3 = J;) J;) tz . Edtzdté f 43 t3 dt3 2
e Compute E[T;|N(1) = n]
iid

o LetU,..., U, ~Unif([0,1]) and define T = min{U;, ..., U,}, then E[T;|N(1) = n] = E[T]
o FF()=1-P(T>t)=1-PWU; >¢,..,.U,>t)=1-(1-0)"= fr(t) =n(1—-t)"*!

1

1

o E[TyIN(1) =n] =E[T] = f tn(1 —t)" tdt = ——

0 n+1

1 tn t3 tz n!

o Alternatively, E[T;|N(1) = n] =J J Jo -fo tlﬁdtldtz---dtn_ldtn

tn t3n|
f f f t%dt2 -dt,_,dt,
tn tan
J J J tgdtg dtn_ldtn="'

th=1
=J- n_!tt tn+1 — 1
o " o ntl
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Introduction to Renewal Process

Tuesday, November 20, 2018 9:30 AM

Renewal Process
¢ Renewal process is more general than Poisson process

e The structure is the same as a Poisson process, but we do not assume 7;~Exp(4)

¢ We use the notation t4, o, ... "Y'F where F is a CDF for a non-negative distribution

e With very few assumptions, it is difficult to say much in general

Arrival Law of Large Numbers

e Statement
o Letu = E[t;] be the mean interarrival

N(it) 1
o If]P’(ti>O)>0thenT—>ﬁ ast —» o

¢ Recall Strong Law of Large Numbers
iid X1+ X+ + X,

o IfXy,X,,... ~F with E[X;] = ug, then - — Upasn — ©

e Proof
) t1+"'+tN(t)
m--—-———-
( ) t—co N(t)

o Using the strong law of large numbers 11m - u

o Also, we know that Ty <t < Ty()+1

Tne t Tnt)+1 _ Tn)+1 _ N(t)+1
N() ~ N(t) N(t) N@t)+1 N()
-u -u -1

o Therefore,

t
Ast > oo,u < lim——<p-1=p
° St ORS BN =

N(i@) 1
o Therefore llm —_— =
t u

Renewal Reward Process
¢ Idea
o With each arrival, there is an associated reward (or cost)
e Notation
o 1, = value/cost of k™ arrival

o N(t) = number of arrivals up to time t
N(D)
o R(t) = Z 1, = cumulative reward up to time t
k=1
e Key assumptions

o (r,ty),(ry, ty), ... is an iid sequence of rewards and waiting times
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R(t) . E[r;]

¢ Reward/Cumulative Law of Large Number: < Elt,] ast — oo
i
= Nf E[r]ast by law of 1 b
O —=—- N : o0
N NO & Tk rilas y law of large numbers
R(t) R(t) N(t) 1 E[r;]
= . = E[r]- — ¢ b wval LLN
t N(t) t [rl] ]E[Tl] ]E[Tl] ast — oo by arriva

Alternating Renewal Process

1 < . u, ) [ . (VY $s u3
e For the graph on the right, we have I : ’ )
srap 8 0 T & % A A
O s; timein state 1, u; time in state 2

O s, time in state 3, u, time in state 4, and so on.
iid iid

O S1,S9,.. ~Fanduq,u,,.. ~G

O S1,U4q,S52,Usy, ... are independent

¢ Alternating renewal LLN

_Hr
Hrt+ Hg
o Reframe as a renweal reward process with t;, = s, + u; and r, = s

o The long-run fraction of time spent in state 1 is

N(b) N(b)

o ThenR(t) = Z T = Z sy = total time spent in state 1 up to time t

k=1 k=1
R(t E|r;
o Therefore, lim © = [ri] _ K
BT TRl g

Application: Geiger Counter

¢ Problem background
o Radioactive particles are emitted as a Poisson process with unknown rate 4
o Geiger counter locks for a random amount of time when a particle registers
o Then it opens and waits for next particle

¢ Two processes: particle emission and particle observation

¢ How do we estimate actual emission rate A from observed process?
13 u G Ts %, 5 O ,Tq; Nk

= . . G
Emission —=

- e .
; !
o) ‘: G 0, [# o | Cs
Oounter +— I % - - * y >
i ! i
| =
Obsorve] +—2 4 & L 4 > NGt
o OklgExp(/l) and independent of Cy, C5, ...
®) .
o Sety; = — then for large values t, we can use arrival LLN
1 1 1 ~ Y
O VY= = = - A=—-—
Elty] E[Cel + E[Ok+1] E[C]+ 2 1-y.E[C4]
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Renewal Process, Age and Residual Life

Tuesday, November 27, 2018 9:32 AM

Review: LLN for Renewal Process

e Renewal process: Like a Poisson process, but waiting time ¢, do not have to be Exp(4)

. . N® 1
e Arrival LLN: glm —~ = E,Where u=E[t;]
e Reward LLN
N(t)
. . R(t) E[r]
o Letr; = reward/cost of i-th renewal, and R(t) = 17, then, glm— = E[t,]
i1 i

¢ Alternating LLN

o Letsy,s,,...be the times in state 1, and u4, u,, ... be times in state 2

E[s;]
o Then the limiting fraction of time spent in state 1 is ——————
i E[s:] + B[]

Exercise 3.2: Alternating Renewal Process
e Let/q,/,, ... be the length of jobs, and S, S5, ... be the time she spends between jobs

e Giventhat E[/,] = 11 and S, ~Exp[1/3], what fraction of Monica's life will be work?

¢ This is an alternating renewal process where state 1 is "Monica is employed"

Ed 11
EJe] + E[S,] 11+3 14O eHme

¢ By the Alternating LLN, Monica will work

Exercise 3.4: Renewal Reward Process
¢ Taxi customers arrive to the stand independently, with interarrival times ¢, ~F
¢ The amount each customer pays 1}, follows a distribution G

¢ What is the long-run amount of money per unit time that taxis at the stand collect

R(t)

LetR(t) = E 1, = total fares collected up to time t, then we want to find tlim —
—00
k=1

N(®)

R(t E(r;
By the Renewal Reward LLN, limg = Ll _He
too L Elt;]  wur

Example 3.4: Renewal Reward Process

¢ The lifetime of a car follows some continuous distribution with density function h
e Mr. Brown's policy:

o Ifthe car breaks, buy a new one for $A, and repair for $B

o Ifthe car survives to time T, buy a new one for $A
¢ Whatis the long-run average cost per unit time of this policy?

e This is a renewal process where the renewal is buying a new car
th
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o Lett; be time between car purchases and r; be cost of buying i*" car

E[r;]
E[t;]

¢ Then by the reward LLN, the long-run cost per unit time is

e Lets;~hbe the lifetime of i*" car, then t; = min{s;, T}

T

e E[t;] = E[min{s;, T}] = foomin{s, T} h(s)ds = f
0

0

s h(s)ds + Tfooh(s)ds
T

T
. ]E[ri]=(A+B)]P’(si<T)+A~]P’(si2T)=A+B~]P’(si<T)=A+BJ h(s)ds
0

E[r] A+ BfOT h(s)ds
e Therefore, =— =
E[¢t;] Jo s-h(s)ds +T [ h(s)ds

Challenging follow-up: use this solution to choose optimal value of replacement time T

Age and Residual Life

¢ Introduction

Al Z()

|
(l) T I3 Iney t Tne+r
o A(t) = age = time since last renewal =t — Ty
o Z(t) = residual life = time until next renewal = Ty ()41 — t
e Whatis the limiting distribution for A(t) and Z(t)?
o Consider a renewal process with continuous waiting times between renewals
1. Letx,y = 0 be fixed values
Let R(t) be the total time up to t for which age > x and residual life > y, then

llm P(A(t) > x,Z(t) > y) = llm Q

1 (o0}
= lim —f 1{A(s) > x,Z(s) > y}ds = f P(t; > z)dz
too t Jg x+y

1
E[¢;]
2. Thus, lim P(Z(t) > y) = Lfoo[F’(ti > z)dz

t—oo ]E[tl] y

]P)(tl > Z)

So the limiting PDF of Z(t) is g(z) = Elc]
i

for z = 0, and same for A(t)

]E[t?]
2E[t;]

Lo . fla+2)
4. If t;, ~f then the limiting joint PDF of A(t) and Z(t) is ——— fora,z >0

E[t;]

3. The limiting expected value of A(t) and Z(t) is

e Example
o Given t;~Gamma(2, 1), what is limiting density for A(t)?

Pty >2) 5 A1 A ooiz
o g(z) = TEL] Z/Af (2_1)'dt € A2(dz+ 1) forz =0
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Continuous Time Markov Processes

Thursday, November 29, 2018 9:34 AM

Continuous Time Markov Processes

e We say that X; with ¢t > 0 is a continuous time Markov process if
e Foranytime0 < sy < -+ <'s,, < s, and any states j, i, i, ..., [y, we have

]P(Xs+t =j|Xs = i:Xsn = ip, ---:Xso = iO) = ]P(Xs+t =j|Xs =1i)= [P)(Xt =j|X() =1i)

¢ The equation above is called the (continuous) Markov property

¢ We denote the transition probability P(X; = j|X, = i) by p,(i, )
Poisson Process is Markovian

¢ Change N(0) to be some starting number of points. Then
e P(N(s+t)=jIN(s) =i, N(sp) =iy, ..., N(5g) = ip)
_ P(N(s+t) =j,N(s) =i,N(sp) = ip, ..., N(5g) = ip)
B P(N(s) = i,N(s,,) = ip, ..., N(59) = ig)
_ P(N(sq) =i, N(sg,51] =iy —ig, ..., N(sp,s] =i —in, N(s,s +t] =j— D)
- P(N(so) = ig, N(Sq,S1] = i1 — ig, e, N(Sp, S] = i — i)

=P(N(s,s+t]=j—1) %
B P(N(s,s+t]=j—i,N(s) =1i)
P(N(s) =1i)
_P(N(s+1t) =j,N(s) =10)
P(N(s) = 1)

=P(N(s+1t) =j|N(s) = i)
Construction from a Discrete Time Markov Chain
e Procedure
o SupposeY,,Y;, ...isa DTMC with transition probability u(i, j)
o Let N(t) be a Poisson process with rate 4
o Then X; = Yy is a continuous time Markov chain
e [ntuition
o Transitions occur at random times according to the Poisson process
¢ Significance
o This gives one general procedure for constructing continuous time Markov chain
Chapman—Kolmogorov Equation

e Equation

O Ponelif) = ) pali Ptk )

kEeS
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e Proof

O Pstt(l,)) = PXgpe = jlXog =10) = Z P(Xsye = J, Xs = k|Xo = 1)

kES
= D POy = j1Xo = D PO = kX = ) = ) peipelh )
kes pe(k,j) ps(ik) kes

e Importance

o Suppose we know p,(i,j) forallt € [0, ty)

o Then forall s € [ty, 2t), we have p(i,j) = Ps/2+s/2(0J) = z Ps/2(L K)ps/2(k, j)
kes

o Thus for arbitrarily small t,, we can always find p(i, j) forall s > ¢,

Jump Rates

¢ Definition

i,j
o For any states i # j, the jump rate from i to j is defined as q;; := }llil.% ph(h J)

¢ Example of CTMCs constructed from DTMC

1¢ Ah)"
o ql-j=limph(£ ])= im —z e"lh( ) u(i,j)

n!

N i /‘lnhn—l

T —Ah .. § ne: : _ PR
_}llir(l) Ae u(ll_])+ ] n' u (l']) _){u(lr])
n=

o Note that the jump rate q;; is the rate for a thinned Poisson process

Construction From Jump Rates
¢ Procedure

o Suppose we know q(i, j) for all states i # j

O

Define A(i) = Z q(i,j) to be the rate at which the MC leaves i
Jj=Ei
q(i,j)
A

o

Define r(i,j) = with r(i, i) = 0 to be the transition probability from i to j

Let Yy, Y4, ... be a DTMC with transition matrix (i, j), and tg, T, .. @Exp(l)

O

i
~Exp(A(Y;_)),and T; = 2 t,,fori =0
n=0

o SetX,=Y;_qforT;_; <t <TjthenX;isa CTMC

O

Define Y
efinet; = ———
A(YiZ1)

e (Caveat

o lim T, = T, could be finite, then X, is only defined for 0 < t < T,

n—-oo

o One fix is to set X; = A (cemetery state) fort > T,
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M/M/s Queue, Kolmogorov Equations

Tuesday, December 4, 2018 11:20 AM

CTMCs Constructed from Jump Rates
e Poisson process
o Waiting time between customers is an Exp(4) random variable

o Asa CTMC, the state spaceis S = {0,1,2, ...}

A A A A
© O ®» ©®
o The jump rates are {q (2(?; 1=) 0= A j\z:liisl
e M/M/s Queue
o Aline of customers is being helped by s servers
o Customers arrive as a Poisson process with rate 4
o Each server requires an Exp(u) of time to serve their customer

o X(t) := #Customers in system (being served and in line) at time t

A A A A A A
oPoB OB BoBOBE
M 2M M SM SM S

gnn+1)=41 n=0
o Thejumpratesare{q(nn—1)=nu 1<n<s
gnm,n—1)=su n=s
Kolmogorov Equations
e Motivation
o How do we get p;(i,j) from the transition rates q(i, j)

¢ Kolmogorov equations (coordinate form)

o Define 4; = Z qirx to be the rate out of state i

k+i
d
o Backward: — [p.(i,))] = ) q(GIOP(k.)) — Ape(i.)
k+i
d, . o
o Forward: —[pe(i.)] = ) pe(i,0a(k.)) —~ pe(i, DA,
k+i

¢ Kolmogorov equations (matrix form)

o Define the transition rate matrix (or jump rate matrix) Q as
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o -4 q(1,2) q(1,3)
qij 1t *] q(2, 1) _AZ q(2'3)
n L. = . R — =
Qy {—Ai ifi=j Q q3,1) q(3,2) —43
d
Backward: i [p:] = Qp:
o Then we have d t
Forward: — [p,] = p,Q

dt

¢ Why we need Kolmogorov equations

o Given the transition rates q (i, j), we can find p; (i, j) by solving the ODEs

¢ [s matrix or coordinate form better?

o Matrix form is nice for general proofs and theory

o Coordinate form is nice for specific examples, especially when most q(i,j) = 0

Solving Forward Kolmogorov Equations

 Claim: e'? solves Forward Kolmogorov equation

(tQ)"‘ Z
dt

¢ The initial condition is p, = I, because

detQ
dt

had tn—lQn
— (n — D!

(tQ)”] _

n!

ifi =j

. 1
© po(”)z{o ifi %

e

e Why not always use p, = e*? for all CTMSs?

©0r_oor

=1

tQ)n—l

s (n—1)! = Qe®®

o Matrix exponentials are hard to compute, especially for infinite state space

Derivation of Forward Kolmogorov Equations
Pesn(@J) — 0 ()

d . .
. E[pt(l:])]—}ll_%

h
1 _ _ .
= ;111% Z pe (6, Kpr(k, j) — e, )
| keS
= }LIL%E z pe (L Kok, j) + (@ DG J) — 0 ()
3
= }lll_l}g)ﬁ Z pe (&, k)pn(k, j) — Pt(lrl)(l - ph(/'f))
z3
= }JL%E Z p: (&, K)pn(k,j) — p: (0, )) Z pr(, k)
=3 k#j
i 1] N - lim & K
= lim Zpt(z, Ipn(k, ) | = pe(@.)) lim > zph(b )
Z3 k#j
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.
= w0 im0y 6

k#j k+j
= > pel Ak, ) - P )y
k=)
Example: Birth and Death Processes
e The state spaceis § = {0,1,2, ..., N}

qinn+1) =1,

¢ Only nonzero rates are
y {q(n,n— D =u,

¢ Note the conflict in notation. Usually 4,, = Z Gnk = Gnn

k#n
Ao A s Ava
M, M, vu; .M”

¢ Kolmogorov equations
o pr(i,)) = pe(ij = DAy +pe (i + Digjyr — 0 @GN +p5),Vj =1,..,N =1
o pi(i,0) = p(i, Dy — pe(i,0)2g
o pe(i, N) =p (i, N — DAy_1 — pe (i, Ny
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Properties of CTMC

Thursday, December 6, 2018 9:37 AM

Intuitive View of CTMCs

¢ Transition graph

] o

e Exponential alarm clock 7
o An alarm clock that goes off after a random Exp amount of time

¢ Explanation on transition graph
o Each edge in the graph represents an exponential clock with the edge weight as rate
o When you land in a new state, the clocks on the out edges begin

o Then your CTMC takes the path of the clock that goes off first

Foundational Work

¢ Make this informal description formal
¢ Show it possesses the Markov property

¢ Use Kolmogorov equations to determine p; (i, j) for a MC defined by jump rates

Two States Chains

¢ Transition graph A
e Transition rate matrix M
-1 A
O =
¢ [ uo—u
¢ Backward equation
d pi(1,1) pé(l,Z)] [—A A ] [pt(l,l) pt(l,z)]
o == = 4 ’ I =
ac Pl = o [m(z,l) pi22)] " lu —ullp.D p@2)
: pt(lJZ) =1- pt(l'l) .
o Since , we only need to find p;(1,1), (2,2
{ptm) = 1-p2y ™ Pl pe(2:2)
pé(l,l) = _Apt(]-']-) + Apt(zil) I 1
p =2>p:(,1D)—-pi21)=-A1+ 1,1) —p: (2,1
g'@® g(t)
o Solving the equation above ,we have g(t) = Ce~ A+t where C = 1
o Thus,p;(1,1) — p(2,1) = e~ H+uit
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A U
’ — 1,1) = —(A+wt
pi(1,1) = —2e @A+t pe(1,1) 1 e 4+ —

=
pi(21) = pe A 21) = -
pt( Y ) A+/J.

e~ 4 _H
A+u
Stationary Distributions
e Recall from DTMC
o Coordinate form: P, (X, =j) =n(j),vn=>0,j €S
o Matrixform:tP*"=n,vn=>0nP ==
¢ (Continuous time
o Coordinate form: P, (X(t) =j) = w(j),Vt > 0,j €S
o Matrix form: mp; =
¢ (laim: m is stationary ifand only if rQ = 0
o Assume mQ = 0, we want to show thattp, = 7
o mp,=mel=nm (tg!)n=n+nZiL—TQ"=n+0=n
n=

n=0

Convergence Theorem

¢ Irreducibility
o A CTMC X(t) is irreducible if for any i, j € S, there exists states kq, ..., k,_1 s.t.
o q(i,k1)q(kq, ky) - q(k,_1,j) > 0i.e. "Itis possible to go from i to j"

¢ Fact about periodicity
o IfX(t) isirreducible, then p,(i,j) > 0,forallt > 0andi,j €S

e Convergence theorem
o IfX(t)isa CTMCs.t. X(t) is irreducible, and has a stationary distribution
o Then, !1_% p:(i,j) =n(j),Vi,jES

¢ Proof
o pup(i,j)>0forallh>0andi,j€ES
O py is a stochastic matrix that is irreducible, aperaodic, and has stationary distribution =

o By Discrete Time Convergence Theorem, 111_{210 Pan(i,)) = w(j)

o Since this is true for all A > 0, we have tlim pe(i,)) =w(j)

Detailed Balance
¢ Definition
o We say & satisfies the detailed balance equations if
o m(D)q(i,j) =m()q(,i),vj # i
e Fact
o Any distribution satisfying the detailed balance equations is a stationary distribution

¢ Example: Birth and Death Process
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S =1{0,1,2,..., N} with N = oo as a possible choice

2o A

Note: A jaa bad notatigp choice, sipitg it usually refers to 4, = ki = —Qkk

ik

Exercise: Show that Birth and Death processes satisfy the detailed balanced equations

qn,n+1)=4, vne{0,.. N—-1}
The transition rates for this Markov chainis{ q(n,n — 1) = u, vn € {1,..,N}
q(i,j) =0 otherwise

Let 7 be a distribution that satisfies the detailed balance equation. Then
Forj#i+1lori—1

» (i) - 0 = n(j) - 0, which is automatically satisfied
Fori €{0,..,N —1}

» w(i)q(,i+1)=n({+ g+ 1,i)

= w()A; = (i + Dptigq

A Ao
(i) =——m
Uiv1 Uiv1 Ui Halq

s 7(i+1) =

0)
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CTMC Exercises

Tuesday, December 11, 2018 9:36 AM

Exercise 4.8(a)

Two station queueing network

Arrivals only occur to first station at rate 2

Arriving customer at first station leaves if server is busy

First server works at rate 4, second server works at rate 2

When a customer is done as station 1, they go to station 2 immediately

If station 2 already has a customer, the customer from station 1 leaves

Model this as a CTMC with S = {0,1,2,12}

Find the proportion of customers that enter the system

An arriving customer enters the system if station 1 is open

This only happens when the system is in state 0 or 2, so we want r(0) + (2)

The jump rate matrix is

0 1 2 12

0 [-2 2 0 0

o Q=1 |0 -4 4 0
2 |2 o0 -4 2

12 lo 2 4 -6

Detailed balance does not work
o m(0)q(0,1) = m(1)q(1,0)
o 2n(0)=m(1)-0=0
o Thus,m=[0 0 0 0]isthe only solution satisifies DB
Solving mQ = 0 with (0) + w(1) + n(2) + ©(12) = 1, we have

—2m(0) +2n(2) =0
2m(0) —4n(1) + 2n(12) =0 1
o | 4m(1)—4m(2) +4n(12) =0 == [_
21(2) — 61(12) = 0 3
m(0) + (1) +n(2) +w(12) =1

211]

Exercise 4.13

15 lily pads and 6 frogs

Each frog gets the urge to jump to a new pad atrate 1

When they jump, they choose 1 of 9 available pads uniformly at random
Find the stationary distribution for the set of occupied lily pads
Define L = {1,2,...,15}and S = {s € L||s| = 6}

Then the only non-zero transition rates are

1
o q{a,b,c,d,e f}{g bcdef}) = 5 for any distinct a, b,c,d,e, f,g € L
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¢ To find &, use the detailed balance equation
o n({a,..,fHqela, .., f1{g.b,...f1) =nl{gb, .., fDalyg.b, ... fhia ... fD
1 1
o n({a,..,f} 5= n({g,b,....f}) '3
o n({a, .., fH)=n{gb, ... f}

1 -1
e Therefore all the rates must be equal = n(s) = ] = (165>

e Asymmetric Simple Exclusion Process (with p # q)

R

Stationary Distribution of M/M/s Queue

¢ Find constraints on A, u so that a stationary distribution exists for the M/M/s

A A A A A A
0B OB BOoBOBE
M 2M M SI SA SaL

gn,n+1)=2 n=0
e Thejumpratesaresqg(n,n—1)=nu 1<n<s

qin,n—1) =su n=s
¢ Use the formula for birth and death process

n

- Ao Ay s o ! —m(0) 1<n<s
o mn)=———m————T = n

1 Un
WTE(O) nzs

¢ In order for 7 to be a distribution, we need Y.;-,m(n) < oo

0 s—1 %) s—1 o n
At 0) A% A

S aw= S s S =0 O (Y
n=0 n=0 n=s n=0 n. M S: H n=0 S#
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