Math 632004 HW07

Shawn Zhong
TOTAL POINTS
$30 / 30$

QUESTION 1
1 Durrett 3.610 / 10
\checkmark - 0 pts Correct

- 2 pts (a) Computational mistake
- 4 pts (a) Conceptual error. Examples: does not set up a renewal as the sum of three turns
- $\mathbf{2}$ pts (b) Computational mistake
- 4 pts (b) Conceptual error. Examples: does not set
up the process as a Markov chain correctly

QUESTION 2
2 Durrett 3.1110 / 10
\checkmark - 0 pts Correct

- $\mathbf{2}$ pts (a) Computational mistake
- 4 pts (a) Conceptual error. Examples: computes
expected reward without taking maximum
- 2 pts (b) Computational mistake
- 4 pts (b) Conceptual error. Examples: does not
apply the memoryless property to get sleeping time distribution

QUESTION 3
3 Durrett 3.2310 / 10
$\checkmark-0$ pts Correct

- $\mathbf{3}$ pts Smaller errors. Examples: mistake in the
integral or other computation
- 5 pts Substantial errors or several mistakes.

Examples: uses wrong formula for $\$ \$ \mathrm{~g}(\mathrm{z}) \$ \$$ or
\$\$E[Z(t)]\$\$ for large \$\$t\$\$

- 7 pts Serious errors. Examples: does not attempt
to apply limiting theorems for renewals
- 10 pts No work submitted

Math 632 Lecture 4, Fall 2018, Homework 7

Due Tuesday December 4 by 10:05am

Question 1

Three children take turns shooting a ball at a basket. They each shoot until they miss and then it is next child's turn. Suppose that child $i(1 \leq i \leq 3)$ makes a basket with probability p_{i} and that successive trials are independent. Use the following two approaches to determine the average fraction of time in the long run that child i shoots.
(a) (first method) Consider the renewal process with interarrival times $t_{k}=s_{k}^{1}+s_{k}^{2}+s_{k}^{3}$, where s_{k}^{i} is the number of shots child i takes in the $k^{\text {th }}$ turn. Find $P\left(s_{k}^{i}=n\right)$. Then use this to compute the fraction of time child i spends shooting the ball.
(b) (second method) Consider the discrete time Markov Chain with three states, where the system is in state $i \in \mathcal{S}=\{1,2,3\}$ if child i has the ball. Use the theory from chapter 1 to determine the fraction of time child i spends shooting the ball in the long run.
Part (a)

- Let $s_{1}^{i}, s_{2}^{i} \ldots$ be the time in state i, then this forms a alternating renewal process
- $\mathbb{P}\left(s_{k}^{i}=n\right)=p_{i}^{n-1}\left(1-p_{i}\right) \Rightarrow s_{k}^{i} \sim \operatorname{Geo}\left(p_{i}\right) \Rightarrow \mathbb{E}\left[s_{k}^{i}\right]=\frac{1}{1-p_{i}}$
- By Alternating LLN, the fraction of time child i spends shooting the ball is $\frac{\frac{1}{1-p_{i}}}{\sum_{n=1}^{3} \frac{1}{1-p_{n}}}$

Part (b)

- Let π be a stationary measure for the Markov chain $\mathcal{P}=\left[\begin{array}{ccc}p_{1} & 1-p_{1} & 0 \\ 0 & p_{2} & 1-p_{2} \\ 1-p_{3} & 0 & p_{3}\end{array}\right]$, then
- $\left\{\begin{array}{l}\pi(1)=\pi(1) p(1,1)+\pi(3) p(3,1) \\ \pi(2)=\pi(1) p(1,2)+\pi(2) p(2,2) \\ \pi(3)=\pi(2) p(2,3)+\pi(3) p(3,3) \\ \pi(1)+\pi(2)+\pi(3)=1\end{array} \Rightarrow\left\{\begin{array}{l}\pi(1)=\pi(3)\left(1-p_{3}\right)+\pi(1) p_{1} \\ \pi(2)=\pi(1)\left(1-p_{1}\right)+\pi(2) p_{2} \\ \pi(3)=\pi(2)\left(1-p_{2}\right)+\pi(3) p_{3} \\ \pi(1)+\pi(2)+\pi(3)=1\end{array} \Rightarrow \pi(i)=\frac{\frac{1}{1-p_{i}}}{\sum_{n=1}^{3} \frac{1}{1-p_{n}}}\right.\right.$

Question 2

Durrett p. 115 Exercise 3.11(a)-(b) (doctor working at night). You can ignore (c).
Hint. The difference between parts (a) and (b) is a little subtle. The sleep cycle s_{i} in (b) is not the same as the reward r_{i} in the i th emergency cycle in (a). The first sleep cycle s_{1} begins only when the doctor actually gets to sleep, in other words, when there is an emergency cycle t_{i} of length >0.6.

1 Durrett 3.610 / 10
$\checkmark-0$ pts Correct

- 2 pts (a) Computational mistake
- $\mathbf{4}$ pts (a) Conceptual error. Examples: does not set up a renewal as the sum of three turns
- 2 pts (b) Computational mistake
- 4 pts (b) Conceptual error. Examples: does not set up the process as a Markov chain correctly
3.11. A young doctor is working at night in an emergency room. Emergencies come in at times of a Poisson process with rate 0.5 per hour. The doctor can only get to sleep when it has been 36 minutes (. 6 hours) since the last emergency. For example, if there is an emergency at 1:00 and a second one at 1:17 then she will not be able to get to sleep until at least $1: 53$, and it will be even later if there is another emergency before that time.
(a) Compute the long-run fraction of time she spends sleeping, by formulating a renewal reward process in which the reward in the i th interval is the amount of time she gets to sleep in that interval.
(b) The doctor alternates between sleeping for an amount of time s_{i} and being awake for an amount of time u_{i}. Use the result from (a) to compute $E u_{i}$.
Part (a)
- Let t_{i} be the i-th interarrival time of emergency, then $t_{i} \sim \operatorname{Exp}(0.5) \Rightarrow \mathbb{E}\left[t_{i}\right]=2$
- Let $r_{i}=\max \left\{0, t_{i}-0.6\right\}$ be the amount of time the doctor gets to sleep in the i-th interval
- $\mathbb{E}\left[r_{i}\right]=\int_{0}^{\infty} s \cdot f_{t_{i}}(s+0.6) d s=\int_{0}^{\infty} s \cdot 0.5 e^{-0.5(s+0.6)} d s=\frac{2}{e^{0.3}}$
- Let $R(t)=\sum_{k=1}^{N(t)} r_{i}$ be the total amount of time the doctor gets to sleep up to time t
- By Renewal LLN, $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[r_{i}\right]}{\mathbb{E}\left[t_{i}\right]}=\frac{1}{e^{0.3}}$

Part (b)

- $\mathbb{E}\left[s_{i}\right]=\mathbb{E}\left[t_{i}\right]=2$ by memoryless property of exponential distribution
- By alternating LLN, $\frac{\mathbb{E}\left[s_{i}\right]}{\mathbb{E}\left[s_{i}\right]+\mathbb{E}\left[u_{i}\right]}=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{1}{e^{0.3}}$
- Thus, $\mathbb{E}\left[u_{i}\right]=\mathbb{E}\left[s_{i}\right]\left(e^{0.3}-1\right)=2\left(e^{0.3}-1\right)$

Question 3

Durrett p. 117 Exercise 3.23 (taxi collects five people and then drives off). Letting Z denote the time until the onlooker sees a cab depart, find the density function g and the mean of Z. Compute the mean two ways: by (3.10) in Durrett, and by integrating with the density function g you found for Z, and this way confirm your answer. Assume that when the person comes to observe, the process has been running for a long time.
3.23. While visiting Haifa, Sid Resnick discovered that people who wish to travel from the port area up the mountain frequently take a shared taxi known as a sherut. The capacity of each car is 5 people. Potential customers arrive according to a Poisson process with rate λ. As soon as 5 people are in the car, it departs for The Carmel, and another taxi moves up to accept passengerso on. A local resident (who has no need of a ride) wanders onto the scene. What is the distribution of the time he has to wait to see a cab depart?

- Let $t=\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}+\tau_{5} \sim \operatorname{Gamma}(5, \lambda)$ be the interarrival time for a renewal process, then

$$
\circ \mathbb{E}[t]=\frac{5}{\lambda}
$$

2 Durrett 3.1110 / 10

$\checkmark-0$ pts Correct

- 2 pts (a) Computational mistake
- 4 pts (a) Conceptual error. Examples: computes expected reward without taking maximum
- $\mathbf{2}$ pts (b) Computational mistake
- 4 pts (b) Conceptual error. Examples: does not apply the memoryless property to get sleeping time distribution
3.11. A young doctor is working at night in an emergency room. Emergencies come in at times of a Poisson process with rate 0.5 per hour. The doctor can only get to sleep when it has been 36 minutes (. 6 hours) since the last emergency. For example, if there is an emergency at 1:00 and a second one at 1:17 then she will not be able to get to sleep until at least $1: 53$, and it will be even later if there is another emergency before that time.
(a) Compute the long-run fraction of time she spends sleeping, by formulating a renewal reward process in which the reward in the i th interval is the amount of time she gets to sleep in that interval.
(b) The doctor alternates between sleeping for an amount of time s_{i} and being awake for an amount of time u_{i}. Use the result from (a) to compute $E u_{i}$.
Part (a)
- Let t_{i} be the i-th interarrival time of emergency, then $t_{i} \sim \operatorname{Exp}(0.5) \Rightarrow \mathbb{E}\left[t_{i}\right]=2$
- Let $r_{i}=\max \left\{0, t_{i}-0.6\right\}$ be the amount of time the doctor gets to sleep in the i-th interval
- $\mathbb{E}\left[r_{i}\right]=\int_{0}^{\infty} s \cdot f_{t_{i}}(s+0.6) d s=\int_{0}^{\infty} s \cdot 0.5 e^{-0.5(s+0.6)} d s=\frac{2}{e^{0.3}}$
- Let $R(t)=\sum_{k=1}^{N(t)} r_{i}$ be the total amount of time the doctor gets to sleep up to time t
- By Renewal LLN, $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[r_{i}\right]}{\mathbb{E}\left[t_{i}\right]}=\frac{1}{e^{0.3}}$

Part (b)

- $\mathbb{E}\left[s_{i}\right]=\mathbb{E}\left[t_{i}\right]=2$ by memoryless property of exponential distribution
- By alternating LLN, $\frac{\mathbb{E}\left[s_{i}\right]}{\mathbb{E}\left[s_{i}\right]+\mathbb{E}\left[u_{i}\right]}=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{1}{e^{0.3}}$
- Thus, $\mathbb{E}\left[u_{i}\right]=\mathbb{E}\left[s_{i}\right]\left(e^{0.3}-1\right)=2\left(e^{0.3}-1\right)$

Question 3

Durrett p. 117 Exercise 3.23 (taxi collects five people and then drives off). Letting Z denote the time until the onlooker sees a cab depart, find the density function g and the mean of Z. Compute the mean two ways: by (3.10) in Durrett, and by integrating with the density function g you found for Z, and this way confirm your answer. Assume that when the person comes to observe, the process has been running for a long time.
3.23. While visiting Haifa, Sid Resnick discovered that people who wish to travel from the port area up the mountain frequently take a shared taxi known as a sherut. The capacity of each car is 5 people. Potential customers arrive according to a Poisson process with rate λ. As soon as 5 people are in the car, it departs for The Carmel, and another taxi moves up to accept passengerso on. A local resident (who has no need of a ride) wanders onto the scene. What is the distribution of the time he has to wait to see a cab depart?

- Let $t=\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}+\tau_{5} \sim \operatorname{Gamma}(5, \lambda)$ be the interarrival time for a renewal process, then

$$
\circ \mathbb{E}[t]=\frac{5}{\lambda}
$$

- $\mathbb{E}\left[t^{2}\right]=\operatorname{Var}[t]+(E[t])^{2}=\frac{5}{\lambda^{2}}+\left[\frac{5}{\lambda}\right]^{2}=\frac{30}{\lambda^{2}}$

○ $\mathbb{P}(t>z)=\int_{z}^{\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^{4}}{4!} d t=e^{-\lambda z}\left[1+\lambda z+\frac{(\lambda z)^{2}}{2}+\frac{(\lambda z)^{3}}{6}+\frac{(\lambda z)^{4}}{24}\right]$

- Thus, the limiting PDF of Z is

○ $g(z)=\frac{\mathbb{P}(t>z)}{\mathbb{E}[t]}=\frac{\lambda e^{-\lambda z}}{5}\left[1+\lambda z+\frac{(\lambda z)^{2}}{2}+\frac{(\lambda z)^{3}}{6}+\frac{(\lambda z)^{4}}{24}\right]$

- The expectation of Z is
- $\mathbb{E}[Z]=\int_{0}^{\infty} \frac{z \lambda e^{-\lambda z}}{5}\left[1+\lambda z+\frac{(\lambda z)^{2}}{2}+\frac{(\lambda z)^{3}}{6}+\frac{(\lambda z)^{4}}{24}\right] d z=\frac{3}{\lambda}$
- $\mathbb{E}[Z]=\frac{\mathbb{E}\left[t^{2}\right]}{2 \mathbb{E}[t]}=\frac{30 / \lambda^{2}}{10 / \lambda}=\frac{3}{\lambda}$

3 Durrett 3.2310 / 10

$\checkmark-0$ pts Correct

- $\mathbf{3}$ pts Smaller errors. Examples: mistake in the integral or other computation
- $\mathbf{5}$ pts Substantial errors or several mistakes. Examples: uses wrong formula for $\$ \$ \mathrm{~g}(\mathrm{z}) \$ \$$ or $\$ \$ \mathrm{E}[\mathrm{Z}(\mathrm{t})] \$ \$$ for large $\$ \$+\$ \$$
- $\mathbf{7}$ pts Serious errors. Examples: does not attempt to apply limiting theorems for renewals - 10 pts No work submitted

