Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / July / 4

第13讲 矩阵的秩

  • Jul 04, 2017
  • Shawn
  • Linear Algebra
  • No comments yet
13.1 秩的概念 • 定义 ○ 非零子式的最高阶数,记作 r(A) ○ {█(存在 r 阶子式非零@所有 r+1 阶子式都为零)┤⇒{█(r(A)≥r@r(A)≤r)┤⇒矩阵 A 的秩为 r ○ 若 A=0, 则 r(A)=0 ○ 0≤r(A_(m×n) )≤min⁡(m,n) • 例子:A=(■8(1&2&3&4&5@0&6&7&8&9@0&0&0&0&0))⇒r(A)=2 • 满秩 ○ 方阵满秩 § r(A_(n×n) )=n ○ 行满秩 § r(A_(m×n) )=m (m<n) ○ 列满秩 § r(A_(m×n) )=n (n<m) ○ 性质:A 满秩⇔|A|≠0⇔A可逆⇔非奇异⇔非退化 § r(A)=n § ⇒存在 n 阶子式不为零 ,即其自身 § ⇒|A|≠0∎ 13.2 秩的性质 • 定理1 ○ 初等变换不改变秩 ○ 交换两行 § A=(■8(a_11&a_12&a_13@a_21&a_22&a_23 )) →┴(r_1↔r_2 ) B=(■8(a_21&a_22&a_23@a_11&a_12&a_13 )) § 对于交换到的子式,仅改变符号,不改变非零性 § 即 r(B)=r(A) ○ 用非零 k 乘一行 § A=(■8(a_11&a_12&a_13@a_21&a_22&a_23 )) →┴(kr_1 ) B=(■8(ka_11&ka_12&ka_13@a_21&a_22&a_23 )) § 包含这一行的子式乘以 k,不改变非零性 § 即 r(B)=r(A) ○ 一行的 l 倍加到另一行 § A=(■8(a_11&a_12&a_13@a_21&a_22&a_23@a_31&a_32&a_33 )) →┴(r_2+lr_1 ) B=(■8(a_11&a_12&a_13@a_21+la_11&a_22+la_12&a_23+la_13@a_31&a_32&a_33 )) § 对于不包含这两行的子式 □ 如 |■8(a_11&a_12@a_31&a_32 )|,无变化 § 对于两行都包含的子式 □ 如 |■8(a_11&a_12@a_21+la_11&a_22+la_12 )|=|■8(a_11&a_12@a_21&a_22 )|,与原子式相等 § 对于只包含被加行的子式 □ 如|■8(a_21+la_11&a_22+la_12@a_31&a_32 )|=|■8(a_21&a_22@a_31&a_32 )|+l|■8(a_11&a_12@a_31&a_32 )| □ 若r(A)=r,根据上式 B 的 r+1 阶全为零⇒r(B)≤r(A) □ 若将 B 初等变换回 A,同理可以得到 r(A)≤r(B) □ 即 r(B)=r(A) § 综上所述 r(B)=r(A) • 定理2 ○ 乘可逆矩阵不改变秩 ○ A 可逆⇒r(B)=r(AB)=r(BA) 13.3 化阶梯形求秩 • 等价标准形矩阵的秩 ○ D=(■8(I_r&0@0&0))⇒r(D)=r • 阶梯形矩阵 ○ 定义 {█(零行位于下方@每一行的非零首元下方都为零)┤⇔{█(零行位于下方@非零首元逐行靠后)┤ ○ 例子 § (■8(1&2&3@0&4&5@0&0&1)) § (■8(1&2&3&4@0&0&1&2@0&0&0&0)) ○ 练习:列举所有可能的 3×3 的阶梯形矩阵 § 用 ∗ 代表任意元素,用 ! 代表非零元素 § (■8(!&∗&∗@0&!&∗@0&0&!))(■8(!&∗&∗@0&!&∗@0&0&0))(■8(!&∗&∗@0&0&!@0&0&0))(■8(!&∗&∗@0&0&0@0&0&0)) § (■8(0&!&∗@0&0&!@0&0&0))(■8(0&!&∗@0&0&0@0&0&0)) § (■8(0&0&!@0&0&0@0&0&0)) § (■8(0&0&0@0&0&0@0&0&0)) • 定理:阶梯形矩阵的秩就是非零行的个数 • 例1:求 A=(■8(1&0&1&−1&2@2&1&3&−1&6@1&1&2&−2&5@−1&−1&1&0&−1)) 的秩 ○ (■8(1&0&1&−1&2@2&1&3&−1&6@1&1&2&−2&5@−1&−1&1&0&−1))→(■8(1&0&1&−1&2@0&1&1&1&2@0&1&1&−1&3@0&−1&2&−1&1)) ○ →(■8(1&0&1&−1&2@0&1&1&1&2@0&0&0&−2&1@0&0&3&0&3))→(■8(1&0&1&−1&2@0&1&1&1&2@0&0&0&−2&1@0&0&3&0&3))→(■8(1&0&1&−1&2@0&1&1&1&2@0&0&3&0&3@0&0&0&−2&1)) ○ ⇒r(A)=4 • 例2:A=(■8(λ+2&2λ+1&1@1&−1&0@5&4&1)),已知 r(A)=2,求 λ ○ 方法一:行列式 § r(A)=2⇒A不满秩⇒|A|=0 § |■8(λ+2&2λ+1&1@1&−1&0@5&4&1)|=|■8(λ+2&3λ+3&1@1&0&0@5&9&1)| § =−|■8(3λ+3&1@9&1)|=−(3λ+3)+9=0 § ⇒λ=2 § 经检验,此时 r(A)=2 ○ 方法二:初等行变换 § (■8(λ+2&2λ+1&1@1&−1&0@5&4&1))→(■8(1&−1&0@5&4&1@λ+2&2λ+1&1)) § →(■8(1&−1&0@0&9&1@0&3λ+3&1))→(■8(1&−1&0@0&9&1@0&0&1−1/3(λ+1))) § ∵r(A)=2 § ∴ 1−1/3 (λ+1)=0⇒λ=2
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP