Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / 15

Math 375 – Midterm 2 Practice 2

  • Nov 15, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 11/14

  • Nov 15, 2017
  • Shawn
  • Math 375
  • No comments yet
Eigenvalues and Eigenvectors • Definition ○ If T:V→V is linear and V is a vector space ○ Then v∈V is an eignevector of T with eigenvalue λ if § v≠0 § Tv=λv • Example ○ Suppose you have two eigenvectors § v,w∈V with Tv=λv, Tw=μw ○ Then § T(2v+3w)=2Tv+3Tw=2λv+3μw ○ Find a solution to Tx=v+w § Try x=av+bw § Then Tx=T(av+bw) § =λav+μbw § =v+w § ⇒┴? {█(λa=1@μb=1)┤⇒{█(a=1/λ@b=1/μ)┤ (if λ,μ≠0) § Therefore x=1/λ v+1/μ w ○ Compute T^2017 (2v+3w) § T^2017 (2v+3w) § =T^2016 (2λv+3μw) § =T^2015 (2λ^2 v+3μ^2 w) § ⋮ § =2λ^2017 v+3μ^2017 w • Fibonacci Number ○ f_n={■8(0&n=0@1&n=1@f_(n−1)+f_(n−2)&n≥2)┤ ○ For example § f_0=0 § f_1=1 § f_2=1 § f_3=2 § f_4=3 § ⋮ ○ It could be viewed as a sequence of vectors § [█(1@0)],[█(1@1)],[█(2@1)],[█(3@… ○ Consider § x_n=[█(f_n@f_(n−1) )] § x_(n+1)=[█(f_(n+1)@f_n )]=[█(f_n+f_(n+1)@f_n )]=⏟([■8(1&1@1&0)] )┬T ⏟([█(f_n@f_(n−1) )] )┬(x_n ) ○ Try to compute § x_2017=[█(f_2017@f_2016 )]=T[█(f_2016@f_2015 )]=…=T^2016 [█(1@0)] § If we had two eigenvectors/eigenvalues for T § And [█(1@0)]=av+bw § Then [█(f_2017@f_2016 )]=λ^2016 av+μ^2016 bw • Eigenvector Equation ○ By definition, if T:V→V is linear and V is a vector space ○ Then v∈V is an eignevector of T with eigenvalue if § v≠0, and Tv=λv § ⇒Tv=λIv § ⇒Tv−λIv=0 § ⇒(T−λI)v=0 § ⟺v∈Null(T−λI) ○ Therefore § v is an eigenvector with eigenvalue λ § ⇒0≠v∈Null(T−λI) § ⇒T−λI is not injective • Theorem ○ If T: Rn→Rn is given by matrix multipication ○ Then λ is an eigenvalue of T if and only if ○ det⁡〖(T−λI)=0〗 • Proof ○ V=Rn or ℂ^n ○ Tx=[■8(t_11&⋯&t_1n@⋮&⋱&⋮@t_n1&⋯&t_nn )][█(x_1@⋮@x_n )] ○ T−λI=[■8(t_11−λ&t_12&⋯&t_1n@t_21&t_22−λ&…&t_2n@⋮&⋮&⋱&⋮@t_n1&t_n2&⋯&t_nn−λ)] ○ Fibonacci Example § T=[■8(1&1@1&0) § det⁡〖(T−λI)=|■8(1−λ&1@1&−λ)|=λ^2−λ−1=┴? 0〗 • Solving for eigenvalue and eigenvector ○ For T: Rn→Rn (or ℂ^n→ℂ) ○ det⁡(T−λI) is called the characteristic polynimal of T § det⁡(T−λI) § =|■8(t_11−λ&t_12&⋯&t_1n@t_21&t_22−λ&…&t_2n@⋮&⋮&⋱&⋮@t_n1&t_n2&⋯&t_nn−λ)| § =(−λ)^n+c_1 (−λ)^(n−1)+…+c_(n−1) (−λ)+c_n § Where c_1=tr(T), c_n=det⁡T ○ By Fundamental Theorem of Algebra § det⁡(T−λI) § =(−λ)^n+c_1 (−λ)^(n−1)+…+c_(n−1) (−λ)+c_n § =(−λ)^n (λ−λ_1 )(λ−λ_2 )…(λ−λ_n ) § λ_1,λ_2,…,λ_n∈ℂ is called the eigentvalue of T ○ Given eigenvalues λ_1,…,λ_n § We can find eigenvectors N_1,…,N_n by § N_1∈N(T−λ_1 I) § N_2∈N(T−λ_2 I) § ⋮ § N_n∈N(T−λ_n I) • Theorem ○ T:V→V ○ v_1,…,v_k∈V are eigenvectors ○ with distinct eigenvalues λ_1,…,λ_k ○ then {v_1,…,v_k } is linearly indelendent • Proof ○ By induction on k ○ When k=1 § Given v_1∈V, v_1≠0,Tv_1=λ_1 v_2 § Then {v_1 } is independent because v_1≠0 ○ When k 1 § Assume Theorem true for k−1 § Suppose Tv_1=λ_1 v_1,…,Tv_k=λ_k v_k § λ_i≠λ_j for all i≠j, and all v_i≠0 § Suppose c_1 v_1+c_2 v_2+…+c_k v_k=0 § ⇒{█(λ_k c_1 v_1+λ_k c_2 v_2+…+λ_k c_k v_k=0@λ_1 c_1 v_1+λ_1 c_2 v_2+…+λ_1 c_k v_k=0)┤ § ⇒(λ_k−λ_1 ) c_1 v_1+…+(λ_k−λ_(k−1) ) c_(k−1) v_(k−1)=0 § Since Theorem is true for k−1 § ⇒{v_1,…,v_(k−1) } is linearly independent § ⇒{█(⏟((λ_k−λ_1 ) )┬(≠0) c_1=0@⋮@⏟((λ_k−λ_(k−1) ) )┬(≠0) c_(k−1)=0)┤ § ⇒c_1=c_2=…=c_(k−1)=0 § Therefore c_k v_k=0 § Since v_k≠0, we find c_k=0 § ⇒{v_1,…,v_k } is linearly independet
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP